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Introduction

Orthognathic surgery is widely used to correct jaw defor-
mities and to improve oral function and facial aesthetics. 
In recent years, three-dimensional virtual surgery planning 
(3D VSP) and computer-aided surgery (CAS) have been 
routinely incorporated in the daily practice to improve the 
efficiency of the surgical work-up and to enhance the pre-
dictability of surgical outcome [1, 2]. Numerous clinical 
studies have demonstrated the ability to achieve high surgi-
cal accuracy in bimaxillary orthognathic surgery by using 
interocclusal splints or patient-specific implants [3, 4].

One of the primary determinants for reliable VSP and an 
accurate transfer of VSP to the patient in the operation room 
is the condylar seating [5]. The 3D VSP is based on a CBCT 
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Objectives In orthognatic surgery, one of the primary determinants for reliable three-dimensional virtual surgery planning 
(3D VSP) and an accurate transfer of 3D VSP to the patient in the operation room is the condylar seating. Incorrectly seated 
condyles would primarily affect the accuracy of maxillary-first bimaxillary osteotomies as the maxillary repositioning is 
dependent on the positioning of the mandible in the cone-beam computed tomography (CBCT) scan. This study aimed to 
develop and validate a novel tool by utilizing a deep learning algorithm that automatically evaluates the condylar seating 
based on CBCT images as a proof of concept.
Materials and methods As a reference, 60 CBCT scans (120 condyles) were labeled. The automatic assessment of condylar 
seating included three main parts: segmentation module, ray-casting, and feed-forward neural network (FFNN). The AI-
based algorithm was trained and tested using fivefold cross validation. The method’s performance was evaluated by compar-
ing the labeled ground truth with the model predictions on the validation dataset.
Results The model achieved an accuracy of 0.80, positive predictive value of 0.61, negative predictive value of 0.9 and 
F1-score of 0.71. The sensitivity and specificity of the model was 0.86 and 0.78, respectively. The mean AUC over all folds 
was 0.87.
Conclusion The innovative integration of multi-step segmentation, ray-casting and a FFNN demonstrated to be a viable 
approach for automating condylar seating assessment and have obtained encouraging results.
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ing errors and enhancing patient outcomes in maxillary-first bimaxillary osteotomies.
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in which the mandible is positioned in centric occlusion. An 
occlusal wax-bite (OWB) is commonly used to stabilize the 
mandible in centric occlusion, so ensuring a correct seat-
ing of the condyles during CBCT scanning. However, chal-
lenges such as suboptimal manual guided closure, incorrect 
placement of the OWB or shifted condylar seating during 
the fitting of the OWB may result in inadequately seated 
condyles on the CBCT [6].

Incorrectly seated condyles would primarily affect the 
accuracy of maxillary-first bimaxillary osteotomies as the 
maxillary repositioning is dependent on the positioning 
of the mandible in the CBCT scan [7]. Inadequate seating 
of the condyles can result in an erroneous position of the 
mandible in VSP that does not correspond to the patient’s 
centric occlusion in the operating room. This discrepancy 
could negatively influence the postoperative occlusion, 
facial aesthetics and postoperative stability, leading to a 
suboptimal outcome [8]. Thus, the condylar seating should 
be systematically evaluated either prior to or during VSP. 
The incorporation of an automated assessment tool for con-
dylar seating could potentially warn surgeons and medical 
engineers in case of incorrectly seated condyles on CBCT 
so that adequate actions can be taken timely prior to surgery 
to address this problem [9].

In our previous study, a three-step deep learning approach 
based on 3D U-net was successfully implemented for the 
automated segmentation of mandibular condyles with high 
accuracy, consistency and efficiency [9]. The integration of 
this AI-segmentation tool into diagnostic software could 
provide the foundation for the development of an AI-based 
assessment tool for condylar seating. This study aimed to 
develop and validate a novel tool by utilizing a deep learn-
ing algorithm that automatically evaluates the condylar 
seating based on CBCT images as a proof of concept.

Materials and methods

Data

60 CBCT scans were collected from patients who under-
went orthognathic surgery between 2007 and 2017 at the 
Department of Oral and Maxillofacial Surgery at the Rad-
boudumc. Approval from the local Medical Ethical Com-
mittee for collecting patient data for medical research was 
obtained for this study (CMO Radboudumc 2020–6608). 
Inclusion criteria were CBCT scans on which the mandibu-
lar condyles were clearly depicted. Before inclusion, the 
scans were screened based on condylar seating quality to 
obtain a dataset in which the ratio of correctly and incor-
rectly seated condyles were ought to be equal. Screening 
took place by BB. The exclusion criteria were the presence 

of motion artefacts in a CBCT scan, patients under the age 
of 16 and a syndromic jaw disorder. CBCT scans were taken 
one to four weeks before surgery or up to one year after sur-
gery. A standard CBCT scanning protocol in the “Extended 
Field” modus was used during scanning (field of view: 
22 × 16 cm; scan time: 40 s; pixel spacing: 0.4 mm; slice 
thickness: 0.4 mm) at 120 kV and 5 mA pulse mode. All 
scans were acquired by an i-Cat CBCT scanner (i-CAT, 3D 
Imaging System, Imaging Sciences International Inc, Hat-
field, PA, USA). During scanning, the patients were seated 
in natural head position (NHP) with the dentition in a cen-
tric relation. After scanning, the CBCT data were exported 
in DICOM format and anonymized before further analysis.

Data annotation

The condylar seating was assessed on each CBCT based on 
the sagittal, axial, and coronal slices by four maxillofacial 
surgeons (MK, SB, TX, JL) and a 3D medical engineer (FB). 
The condylar seatings were labeled as correct or incorrect. 
All clinical annotators have 35, 30, 15 and 10 years of clini-
cal experience, respectively. The 3D medical engineer has 
6 years of experience in medical planning of orthognathic 
surgery. Each annotator was instructed and calibrated in the 
verification task. The final label assigned to each condyle 
(correctly or incorrectly seated) was determined using the 
majority rule. A condyle was considered incorrectly seated 
if it was not positioned in the center of the fossa and if the 
surgeon would contemplate modifying the 3D VSP or retak-
ing the CBCT scan due to the condyle’s seating.

Model

The automatic assessment of condylar seating included 
three main parts: segmentation module, ray-casting and 
feed-forward neural network (FFNN).

Segmentation module

For the automatic segmentation of the condyles and the fos-
sae, three different 3D U-Nets were utilized. The first 3D 
U-net was used to roughly segment the condyles from res-
caled and horizontally split CBCT scans (low-resolution). 
From the centroid of the roughly segmented condyles, the 
location of the condyles and fossae were determined auto-
matically in the original CBCT scan (high-resolution). The 
second 3D U-Net segmented the located condyles and fos-
sae as one entity in the original CBCT scan. The third 3D 
U-Net was applied to distinguish between the segmented 
condyle and fossa. Subsequently, the segmented condyle 
was used to compute the centroid [9]. 
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Ray-casting

A ray-casting algorithm was applied for each temporoman-
dibular joint, utilizing a reference hemi-icosphere (r = 1 mm) 
consisting of 198 vertices. The center of the hemi-icosphere 
was placed on the location of the computed centroid and the 
rays were cast outward in the direction of the 198 vertices, 
as can be seen in Fig. 1. The orientation of the hemi-icophere 
was aligned with the global coordinate system of the CBCT 
device. Subsequently, the length between the intersection of 
the condyle and fossa was calculated for each ray and for-
warded to the FFNN. If a ray did not intersect the glenoid 
fossa, thereby impeding the computation of condyle-fossa 
distances, a value ranging between the minimum and maxi-
mum computed ray distances were assigned to the ray.

Feed-forward neural network

A conventional FFNN with 192, 128, 64 and 32 nodes 
within the hidden layers was used for the binary classifica-
tion. The rectified Linear unit (ReLu) was implemented as 
the activation function within the hidden layers, whereas the 
sigmoid activation function was applied in the output layer.

Fivefold cross validation was used during training (80%) 
and testing (20%). Throughout the process of five-fold cross-
validation, four consecutive folds were allocated for train-
ing purposes, while the fifth fold was reserved for testing. 
This cycle was repeated five times to ensure comprehensive 

evaluation. The train-test split was stratified based on the 
amount of correctly and incorrectly seated condyles.

The FFNN optimization used an Adam optimizer at a 
decaying triangular cyclic learning rate with a base learning 
rate of 5 × 10− 5, a maximum learning rate of 5 × 10− 4 and 
a step size of 2,000. Class balancing was used to compen-
sate for an unequal distribution of correctly and incorrectly 
seated condyles in the datasets. Furthermore, a binary cross-
entropy loss, a batch size of 32, batch normalization with a 
momentum of 0.8 and a dropout rate of 0.25 were applied. 
The models were implemented in Keras and TensorFlow on 
a 12 GB NVIDIA TITAN V GPU and for each fold trained 
for 1,000 epochs. After training, the network had a confi-
dence value ranging between 0 and 1 as output. A prediction 
cut-off of 0.2 was used to distinguish if the network’s pre-
diction meant a correct (confidence value < 0.2) or an incor-
rect condylar seating (confidence value ≥ 0.2).

Data augmentation

To enhance the robustness of the network during training, 
several data augmentation techniques were employed to the 
training data. First, copies of the condyle/fossa pairs were 
mirrored along the midline to simulate the contralateral con-
dyle/fossa pairs, thereby increasing the amount of data that 
was used for training. Subsequently, to reduce the network’s 
dependence on the precise position of the hemi-icosphere 
within the condyle during ray-casting, the hemi-icosphere 
was randomly translated between − 2 and + 2 millimeters 
in all directions for each epoch. Additionally, to mitigate 
the effects of head tilt during CBCT scanning, the hemi-ico-
sphere was randomly rotated between − 10 and + 10 degrees 
in all directions for each epoch. This simulated slight devia-
tions in the patient’s head orientation during scanning. 
These augmentation strategies ensure the network becomes 
more resilient to variations in the input data, improving its 
generalization capabilities.

Statistical analysis

The condylar seating was assessed based on the true posi-
tives (TP), true negatives (TN), false positives (FP) and 
false negatives (FN) on the condyles of the validation data-
set. Classification metrics are reported as follows for the test 
set: accuracy = TP+TN

TP+TN+FP+FN , precision = TP
TP+FP  (also 

known as positive predictive value), dice = 2TP
2TP+FP+FN  

(also known as the F1-score), recall = TP
TP+FN  (also known 

as sensitivity), specificity = TN
TN+FP  and negative predictive 

value = TN
TN+FN . Furthermore, the area-under-the-curve-

receiver-operating-characteristics-curve (AUC) and confu-
sion matrix are presented.

Fig. 1 Is an illustration of the ray-casting method in which a hemi-
icosphere was placed in the centroid of the condyle Rays (blue arrows) 
were cast from the centroid of the condyle in the direction of all 198 
vertices of the hemi-icosphere. The distances (white arrows) between 
the intersection of the rays with the condylar surface (blue spheres) 
and glenoid fossa (red spheres) were computed. A cross illustrated 
whether a ray had no intersection with the glenoid fossa
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0.71 on the validation dataset. The sensitivity and speci-
ficity of the model was 0.86 and 0.78, respectively. The 
mean AUC over all folds was 0.87 for the validation data-
set (Figs. 5) and 0.90 for the training dataset. The model 
achieved an accuracy of 0.85 for the 80 condyles that were 
annotated unanimously, whereas this was 0.70 for the 40 
condyles in which the majority rule had to be used to assign 
the final label.

Discussion

The purpose of this study was to develop and validate a 
new tool based on deep learning that is able to automati-
cally evaluate the condylar seating using CBCT. By adopt-
ing a workflow that was consisted of a segmentation module 
(3D U-Net), ray-casting and FFNN, a dichotomic outcome 
in terms of a well-seated or a suboptimal seated condyle 
could be generated from the CBCT scan that was used as 
an input [9]. The evaluation metrics for condylar seating 
assessment showed encouraging results, with an accuracy of 
80% and an AUC of 0.86. The model achieved an accuracy 
of 80% and an AUC of 0.86. Sensitivity was high at 86%, 
effectively detecting incorrectly seated condyles. Specific-
ity was 78%, indicating the model’s ability to identify the 

Results

The 60 CBCT scans that were included resulted in 120 
condyle-fossa combinations that were annotated and seg-
mented. Of the 120 condyles, 85 condyles (71%) were 
assessed as being correctly seated, whereas 35 condyles 
(29%) had a suboptimal seating. For 40 condyles (33%) the 
majority-rule was used to come to a consensus, whereas for 
80 condyles (67%) the condylar seating was assessed unani-
mously (Table 1). Sagittal slices and their corresponding 
segmentations of condyles annotated as correctly and incor-
rectly seated can be found in Figs. 2 and 3, respectively. As 
a fivefold cross validation was used in combination with a 
stratified train-test split that was based on the number of 
correctly and incorrectly seated condyles, 17/85 unique cor-
rectly seated and 7/35 unique incorrectly seated condyles 
ended up in the validation dataset for each fold. Thereby, 
each condyle ended up once in the validation dataset.

The automated workflow was able to assess the condy-
lar seating by providing an output in terms of a well-seated 
or a suboptimal seated condyle. The confusion matrix in 
Fig. 4 illustrates the classification performance. The model 
achieved an accuracy of 0.80, positive predictive value of 
0.61, negative predictive value of 0.93, and a F1-score of 

Table 1 Assessment of the condylar seating by maxillofacial surgeons and medical engineers
Number of surgeons that marked the condylar seating as incorrectly 0 1 2 3 4 5
Number of condyles 63 12 10 14 4 17

Fig. 2 Sagittal slices (upper) and their corresponding 
segmentations (lower) of condyles annotated as correctly 
seated
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predictions. As this model is being used as assistant tool in 
the 3D VSP of orthognathic surgery, a higher specificity and 
negative predictive value are preferred. This ensures that the 
surgeon is alerted to re-assess the condylar seating when-
ever the model identifies a potential suboptimal condylar 
seating.

In case that the surgeon confirms the presence of a sub-
optimally seated condyle, modifications to the 3D VSP of 

correctly seated condyles. Although the precision was 61%, 
which suggested a further potential to reducing false posi-
tive outcomes, the high negative predictive value of 93% 
underlined the reliable identification of true negative cases.

In this study, a prediction cut-off value was strategically 
chosen to achieve a favorable balance between sensitiv-
ity and specificity. Choosing a lower cut-off value would 
improve sensitivity but might also result in more false 

Fig. 4 Confusion matrix illustrating the classification 
results of condylar seating over the 5 validation-folds. 
+ stands for correctly seated condyles; - represents the 
incorrectly seated condyles

 

Fig. 3 Sagittal slices (upper) and their corresponding 
segmentations (lower) of condyles annotated as incor-
rectly seated
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with target region classification to automate cortical thick-
ness measurement [12]. They achieved an average Intersec-
tion over Union (IoU) of 0.870 for marrow bone and 0.734 
for cortical bone. Le et al. employed a U-net using a 2D 
slice-by-slice segmentation method, attaining a commend-
able dice score of 0.91 for mandibular ramus and condyles 
[13]. Verhelst et al. used a layered 3D U-Net architecture AI 
model to automatically create a 3D surface of the mandible 
from CBCT images and obtained an IoU of 0.94 for user 
refined AI segmentations [14]. The three-step 3D U-Net 
based segmentation module of the present study obtained 
an IoU of 0.96 [9]. The conclusion from these studies was 
that the AI model could provide a time-efficient, accurate 
and reproducible workflow for the creation of 3D condylar 
models. However, the next step is to use the automatically 
created condylar models for clinical assessment of TMJs 
to support the clinician in diagnosis and clinical decision-
making. No previous studies have attempted to use these 
enhanced segmentations of the TMJs to evaluate the con-
dylar seating.

An advantage of the ray casting approach is its inde-
pendence from the voxel size of CBCT scans, as distances 
are translated into millimeters. This property facilitates 
the incorporation of a wider range of data for training and 
validation, which in turn would enhance the algorithm’s 
generalizability.

the intended bimaxillary osteotomies would be necessary. 
There are several clinical alternatives in this situation. One 
option is to use a mandible-first sequence in which the max-
illary position in VSP is not determined by the incorrectly 
seated condyle [10]. If this approach is less desired, retaking 
the CBCT with a correct seating of the condyles could also 
be considered. Moreover, by using patient-specific implants 
(patient-specific plates), the maxilla can also be reposi-
tioned accurately to the desired position in VSP, eliminating 
the necessity to have a perfectly seated condyle within the 
VSP [11].

The strength of the present study was the description 
of a new approach that strategically integrated three dis-
tinct innovations: a multi-step segmentation employing 3D 
U-Nets to ensure precise differentiation between condyles 
and fossae, a ray-casting technique utilizing reference hemi-
icospheres for meticulous 3D assessment, and a FFNN 
facilitating binary classification using ray-cast lengths. This 
cohesive methodology introduced a holistic and geometry-
focused approach for automating condylar seating assess-
ment. By combining these novel elements, the study offered 
a viable clinical assistance tool focused on the evaluation of 
condylar seating by using CBCT.

Up till today, studies have primarily focused on the auto-
mated segmentation of temporomandibular joints in CBCT 
images. Kim et al. introduced a modified U-net combined 

Fig. 5 Area-under-the-curve-receiver-operating-charac-
teristics-curve of the seating prediction of the condyles in 
the validation datasets
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relevant decisions regarding the adequacy of condylar seat-
ing for 3D VSP.

Another limitation of the study was that the dataset used 
exhibited class imbalance, with more instances of correctly 
seated condyles compared to incorrectly seated condyles. 
This imbalance could have adversely influenced the per-
formance of the workflow by skewing the model’s learning 
process. Additionally, the performance of the Feedforward 
Neural Network (FFNN) could be enhanced by augmenting 
the training dataset, as its size was relatively limited. Fur-
thermore, the reported study is limited by its monocentric 
design resulting in a database consisting of only local popu-
lation. The CBCTs were acquired with only one device and 
did not take clinical settings into account in which CBCTs 
may be acquired with different scanners. Furthermore, the 
model was strictly confined to the employed train- and test 
set which may limit its performance with external and more 
heterogenous datasets. Training of the present model with 
multi-centered and labelled data may be required to increase 
the model’s robustness and generalizability. Prospective 
studies with aforementioned suggestions are required prior 
to the implementation of this deep learning approach in the 
daily practice [9].

In conclusion, the innovative integration of multi-step 
segmentation, ray-casting and a FFNN demonstrated to be a 
viable approach for automating condylar seating assessment 
and have obtained encouraging results. The approach offers 
the potential to further ease 3D VSP in orthognathic surgery.
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Furthermore, the deep learning algorithm was trained 
using dense matrices. This approach necessitated the rep-
resentation of the fossa-condyle distances for all rays cast. 
However, a subset of rays did not intersect the glenoid fossa, 
thereby impeding the computation of condyle-fossa dis-
tances. To address this issue, such rays were assigned values 
ranged between the minimum and maximum computed ray 
distances. This strategy aimed to prevent undue algorithmic 
emphasis on these rays during training. An alternative strat-
egy might exclude these non-intersecting rays from the input 
dataset. This could be achieved by using sparse matrices for 
training, which could potentially further enhance the algo-
rithm performance. Future investigations should explore the 
potential benefits of sparse matrices to achieve better results 
in the automated evaluation of condylar seating.

Even though de Jong et al. [15]. have shown that the 
combination of a raycasting algorithm with FFNN could 
successfully be used for classification tasks, other deep 
learning techniques could also have been explored to refine 
the differentiation between correctly and incorrectly seated 
condyles, such as deep learning networks for 3D point cloud 
data [16, 17] or networks that had the original volumetric 
CBCT data directly as input [18]. Future research should 
investigate the efficacy of such methods in enhancing auto-
mated condylar seating assessments.

Although the present results are promising, there are sev-
eral limitations to this study. Firstly, the method lacked a true 
gold standard to determine whether the condyle was seated 
correctly or incorrectly within the fossa. This could also be 
seen from the considerable variation in classifications by 
the annotators. Clinical consensus was reached by the five 
annotators for only 80 out of the 120 condyles (66.7%). The 
model’s performance aligned with that of the annotators as 
the model’s performance was inferior for the 40 condyles 
in which no clinical consensus was reached. The absence 
of a gold standard may have impacted the method’s per-
formance, as the network could have been trained on data 
without a clear distinction between correctly and incor-
rectly seated condyles. Despite surgeons routinely classify-
ing whether the condylar seating is adequate for 3D VSP 
of orthognathic surgery, these results indicate that this task 
is not always straightforward and might be dependent on a 
surgeon’s experience and preference. Therefore, a method 
that objectively assesses the adequacy of condylar seating 
during 3D VSP, such as the one developed in this study, 
could be highly beneficial. However, using a more detailed 
and outcome driven classification protocol to distinct cor-
rectly from incorrectly seated condyles would be advanta-
geous. Ideally, a protocol or dataset should be developed in 
which the condylar seating was correlated to the surgical 
accuracy that was achieved during orthognathic surgery. 
This would enable the network to make more clinically 
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