
Vol.:(0123456789)1 3

Clinical Research in Cardiology (2024) 113:1317–1330 
https://doi.org/10.1007/s00392-023-02248-7

ORIGINAL PAPER

Heart rate variability: reference values and role for clinical profile 
and mortality in individuals with heart failure

Silav Zeid1,2 · Gregor Buch1,2,3 · David Velmeden1,2 · Jakob Söhne1,2 · Andreas Schulz1 · Alexander Schuch1,2 · 
Sven‑Oliver Tröbs1,2 · Marc William Heidorn1,2 · Felix Müller1,2 · Konstantin Strauch3 · Katrin Coboeken4 · 
Karl J. Lackner5,2 · Tommaso Gori6,2 · Thomas Münzel6,2 · Jürgen H. Prochaska1,7,2 · Philipp S. Wild1,7,2,8 

Received: 21 September 2022 / Accepted: 19 June 2023 / Published online: 9 July 2023 
© The Author(s) 2023

Abstract
Aims To establish reference values and clinically relevant determinants for measures of heart rate variability (HRV) and to 
assess their relevance for clinical outcome prediction in individuals with heart failure.
Methods Data from the MyoVasc study (NCT04064450; N = 3289), a prospective cohort on chronic heart failure with a 
highly standardized, 5 h examination, and Holter ECG recording were investigated. HRV markers were selected using a sys-
tematic literature screen and a data-driven approach. Reference values were determined from a healthy subsample. Clinical 
determinants of HRV were investigated via multivariable linear regression analyses, while their relationship with mortality 
was investigated by multivariable Cox regression analyses.
Results Holter ECG recordings were available for analysis in 1001 study participants (mean age 64.5 ± 10.5 years; female 
sex 35.4%). While the most frequently reported HRV markers in literature were from time and frequency domains, the data-
driven approach revealed predominantly non-linear HRV measures. Age, sex, dyslipidemia, family history of myocardial 
infarction or stroke, peripheral artery disease, and heart failure were strongly related to HRV in multivariable models. In a 
follow-up period of 6.5 years, acceleration capacity  [HRperSD 1.53 (95% CI 1.21/1.93), p = 0.0004], deceleration capacity 
 [HRperSD: 0.70 (95% CI 0.55/0.88), p = 0.002], and time lag  [HRperSD 1.22 (95% CI 1.03/1.44), p = 0.018] were the strongest 
predictors of all-cause mortality in individuals with heart failure independently of cardiovascular risk factors, comorbidi-
ties, and medication.
Conclusion HRV markers are associated with the cardiovascular clinical profile and are strong and independent predictors 
of survival in heart failure. This underscores clinical relevance and interventional potential for individuals with heart failure.
ClinicalTrials.gov identifier NCT04064450.
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Background

Heart failure is a complex, poly-etiologic clinical syndrome 
in which neurohormonal systems such as the renin–angio-
tensin–aldosterone system, the autonomic nervous system 
(ANS), and in particular the sympathetic and parasympa-
thetic nervous systems play a pivotal role [1]. However, the 
involvement of the ANS in the pathophysiology of heart 
failure has not yet been completely understood.

Both branches of the ANS control heart rate, reflecting 
the sympathovagal balance of the autonomic control of the 
ventricles. Cardiac sympathetic nerves innervating the sinus 
node release catecholamine neurotransmitters, mainly epi-
nephrine and norepinephrine, and accelerate heart rate. The 
parasympathetic nerves release the neurotransmitter acetyl-
choline, which has a local inhibitory effect in cardiomyo-
cytes to decrease the heart rate [2]. It is known that sym-
pathetic nervous system activity is chronically increased in 
heart failure, and parasympathetic nervous system activity 
is simultaneously inhibited, resulting in sympathetic over-
activation [3]. The increase in sympathetic activity in heart 
failure also affects other organs, such as the kidneys and the 
peripheral vasculature, where it can lead to systemic vaso-
constriction and augmented venous tone [4]. To measure 
autonomic function in cardiovascular disease, measures of 
heart rate variability (HRV) have been increasingly used as 
non-invasive markers reflecting ANS activity.

HRV is the temporal variation between heartbeats, and 
is assessed based on the intervals between R-waves of the 
QRS complex in the electrocardiogram. Several measures 
can be derived and are typically grouped into three domains: 
time domain, frequency domain, and non-linear indices. The 
time domain is a quantification of the temporal variability 
between RR intervals, the frequency domain a decomposi-
tion of the individual frequencies that make up the electri-
cal pulses emitted by the sinus node, and non-linear indices 
capture the stochasticity of the overall heart rate variability. 
The direct translation from ANS activity to HRV measures 
has not been fully elucidated [5].

Investigations using HRV measures by ambulatory 
Holter ECG are scarce or outdated, even though 24 h ECG 
recordings more accurately reflect normal daily physical 
activity than standardized short-term HRV measurements 
[6]. Moreover, reference values for HRV measures derived 
from Holter ECG have not been established yet. Several 
studies have shown that a large reduction in HRV is associ-
ated with cardiac and all-cause death when assessed with 
short-time measurements of HRV [7–9]. However, the 
prognostic value of long-term HRV markers for survival 
in patients with heart failure has not been comprehensively 
investigated, which represents an important gap in the evi-
dence for the clinical relevance of HRV in heart failure.

The aims of this study were (i) to identify clinically rel-
evant measures of HRV, (ii) to determine normal values of 
HRV measures, (iii) to identify clinical determinants of HRV 
measures, and (iv) to assess the clinical relevance of HRV 
measures for the clinical status and all-cause and cardiac 
mortality in individuals with heart failure.

Methods

Study design

For this study, data from the MyoVasc study (ClinicalTrials.
gov Identifier: NCT04064450), a prospective, observational 
cohort study of individuals with heart failure (N = 3289), 
were analyzed. The local data protection officer and the 
responsible ethics committee approved the study protocol 
[reference number 837.319.12 (8420-F)] prior to study ini-
tiation. All study participants provided written informed 
consent prior to study enrollment. The Declaration of Hel-
sinki [10] and the recommendations of good clinical practice 
and good epidemiological practice were followed in all study 
procedures. Study participants were recruited from hospi-
tals, practices and by random sampling from registry offices.

All participants in the MyoVasc study were classified 
into stages of heart failure according to the current Univer-
sal Definition of Heart Failure as proposed by the writing 
committee of the Heart Failure Society of America, Heart 
Failure Association of the European Society of Cardiology, 
and the Japanese Heart Failure Society [11]. Echocardiog-
raphy was performed in the MyoVasc study center, as part 
of the examination, to assess the cardiac status. A detailed 
description of the design and rationale for the MyoVasc 
study, including baseline characteristics, has been published 
recently [12].

Study participant examination

Participants underwent an extensive 5 h array of medico-
technical measurements, including the assessment of cardiac 
structure and function by transthoracic cardiac echocardi-
ography. Venous blood was drawn to measure routine blood 
markers relevant to traditional cardiovascular risk factors 
(CVRFs) and disease, and the heart failure syndrome in 
particular (see Supplemental Text 1 for a detailed descrip-
tion). Presence of CVRFs (arterial hypertension, diabetes 
mellitus, smoking, obesity, dyslipidemia, family history of 
ischemic stroke or myocardial infarction) and comorbidi-
ties (myocardial infarction, stroke, coronary artery disease, 
peripheral artery disease defined as physicians’ diagnose or 
ankle-brachial index [ABI] < 0.9, cancer, chronic kidney dis-
ease defined as physicians’ diagnose or estimated glomerular 
filtration rate [eGFR] < 60 ml/min/1.73  m2 [CKD], venous 
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thromboembolism [VTE] and chronic obstructive pulmo-
nary or airway disease) was evaluated during an extensive 
computer-assisted personal interview, and assessed by 
laboratory markers and clinical investigations where appli-
cable. Medication intake was classified according to the 
Anatomical Therapeutic Chemical Classification System 
(ATC). With the baseline examination, participants received 
a multi-channel (3-lead) digital 24 h Holter ECG recorder 
(resolution storage: 1024 Hz/12bit;  Cardiomem® CM 4000, 
GETEMED, Teltow, Germany) in ambulatory setting. Study 
participants were instructed regarding the correct handling 
of the devices during day and nighttime and asked to keep a 
log of their physical activity. The SQUASH (Short Question-
naire to Assess Health enhancing physical activity) instru-
ment was used to assess the habitual physical activity level.

Assessment of heart rate variability

Holter ECG data were transferred from the device and 
imported into Holter ECG analysis software  (CardioDay® 
2.4.3.16, GETEMED) to retrieve RR intervals. Subse-
quently, RR intervals were analyzed and filtered for artifacts, 
prior to the conversion into 70 secondary variables from 
the time domain, frequency domain, and non-linear indi-
ces of HRV using the ‘RHRV’ R package [13]. A detailed 
description and overview of all HRV parameters computed 
for the MyoVasc study can be found in the extended methods 
section in Supplemental Text 1 and Supplemental Table 1, 
respectively.

Marker selection, data handling, and statistical 
analysis

For this analysis, only participants with 24 h Holter ECG data 
were included. Participants with pacemaker stimulation and 
those in whom atrial fibrillation was present during at least 
half of the Holter ECG recording time were excluded, as well 
as participants who underwent a heart transplantation. HRV 
markers of interest were selected using (1) a systematic litera-
ture screen on markers relevant for cardiovascular disease and 
(2) a random survival forest model of markers for predicting 
cardiac death. A literature screen on PubMed was conducted 
for every HRV parameter using a search query including the 
respective HRV parameter, the term ‘HRV’, and the term 
‘cardiovascular’ (detailed search queries provided in Supple-
mental Table 2). The search results were ranked by frequency 
of search hits, in descending order. The top ten ranked HRV 
markers were considered to be important according to the 
HRV-related scientific knowledge. A random survival forest 
model was fitted to rank HRV markers in relation to cardiac 
death adjusted for age and sex. Minimum depth was used as 
variable importance metric, where a lower value corresponds 
to greater importance for the prediction. The top ten ranked 

HRV markers were again considered clinically important. The 
combined result from the literature screen and machine learn-
ing approach was a set of 20 relevant HRV markers.

The distribution of these 20 HRV markers was determined 
in a subgroup of study participants classified as healthy or at 
risk of heart failure (heart failure stage A), and in individu-
als with heart failure (i.e., heart failure stage B, C, or D). 
The first group served as reference group after exclusion of 
participants with diabetes mellitus diagnosed ≥ 10 years ago 
who were not receiving dietary treatment, as well as partici-
pants with degenerative or structural neurological disorders. 
Values corresponding to the 5th and 95th percentiles were 
taken as bounds of the reference range.

The age of the study participants was reported as mean 
[standard deviation, (SD)], and discrete variables were 
described by relative and absolute frequencies, stratified 
by the reference group and individuals with heart failure. 
Multivariable linear regression models were used to explora-
tively investigate the relationship between the clinical pro-
file (i.e., cardiovascular risk factors and comorbidities), and 
the selected HRV markers in individuals with heart failure. 
Linear regression models were adjusted for age, sex, cardio-
vascular risk factors, comorbidities, and medication intake, 
i.e., antidiabetic agents, antithrombotic agents, cardiac ther-
apy, diuretic agents, beta-receptor blocking agents, selec-
tive beta-blocking agents, calcium channel blocker, agents 
acting on the renin–angiotensin system, ACE inhibitors, 
angiotensin-II-receptor blockers, lipid modifying agents, 
and antidepressants. Dependent variables (i.e., HRV mark-
ers) were standardized for comparisons, i.e., divided by their 
standard deviations. Finally, all-cause mortality over 8 years 
of follow-up and cardiac death over 6 years of follow-up 
in individuals with heart failure were shown for each HRV 
marker stratified by tertiles, and by their values being within 
or outside the reference range. Multivariable Cox propor-
tional hazard regression models, adjusted for age, sex, and 
additionally for cardiovascular risk factors, comorbidities, 
and medication intake, were computed to examine the inde-
pendent contribution of standardized HRV markers to all-
cause mortality and cardiac death. Since this was an explora-
tory investigation, p values were interpreted as continuous 
measures of statistical evidence for an association. A two-
sided p value < 0.05 was considered a nominally significant 
association. All analyses were performed in R, version 4.0.3 
(R Foundation for Statistical Computing, Vienna, Austria).

Results

Baseline characteristics of study participants

The analysis sample comprised 1001 study participants 
[mean age in years (SD): 64.5 (10.5); female sex: 35.4%; 
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see Supplemental Fig. 1 for the study flow chart). The mean 
wearing time of the ambulatory Holter ECG device was 
22.49 (± 4.12) h. Baseline characteristics for study partici-
pants with heart failure and the reference group are pre-
sented in Table 1. Characteristics of functional and struc-
tural cardiac status markers are reported in Supplemental 
Table 3. The median concentration of NT-proBNP in par-
ticipants with heart failure was 204.1 pg/ml [interquartile 
range (IQR) 96.0/491.2 pg/ml]. The reference group was 
drawn from the analysis sample and contained 133 indi-
viduals after excluding study participants classified as heart 
failure stage B (n = 301), C or D (n = 554), participants diag-
nosed with diabetes mellitus ≥ 10 years ago not receiving 
dietary treatment (n = 10), and participants with degenera-
tive or structural neurological disorders (n = 3). All tradi-
tional cardiovascular risk factors were more prevalent among 
individuals with heart failure than the reference group. This 
was most pronounced for arterial hypertension (heart failure: 
77.3 vs. 53.4% in the reference group), dyslipidemia (78.9 
vs. 48.1%), and obesity (33.6 vs. 22.6%). The prevalence of 
cancer, COPD, and VTE were approximately equal between 
individuals with heart failure and the reference group. In 
contrast, atherosclerotic cardiovascular disease (i.e., coro-
nary artery disease, history of myocardial infarction, stroke 
or TIA, and peripheral artery disease) was more prevalent in 
heart failure as compared to the reference group.

Selection of clinically relevant HRV parameters

The selection of relevant HRV markers based on systematic 
literature search and random survival forest model predicting 
cardiac death are shown in Fig. 1. The top ten HRV markers 
reported in literature all belonged to the time or frequency 
domain. The search hits for all HRV parameters are dis-
played in Supplemental Table 2. The top ten HRV markers 
from the random survival forest model, ranked by the vari-
able importance metric minimal depth, were primarily non-
linear indices and from the frequency domain. Supplemental 
Table 4 lists the variable importance ranking for all HRV 
markers. Figure 2 shows the three different HRV domains 
graphically, and provides an overview of the different HRV 
abbreviations and their meanings.

Reference values for time, frequency, and non‑linear 
HRV parameters

Median, IQR, and reference values for each of the HRV 
parameters are displayed by domain in Table 2, together 
with an overview of the frequencies of individuals with heart 
failure outside the reference range. Distributions of HRV 
parameters are shown in Supplemental Fig. 2.

Clinical profile and heart rate variability

The relationship between the clinical profile and HRV meas-
ures independently of age, sex, CVRFs, comorbidities, and 
medication in the heart failure analysis sample is shown in 
Fig. 3, where standardized beta-coefficients from separate 
linear regression models are displayed, stratified by HRV 
domain. Supplemental Fig. 4 and 5 include the 95% confi-
dence intervals (95% CI), and adjustments for age and sex 
only.

Age and dyslipidemia were strongly associated with HRV 
across all three domains, while sex, a positive family history 
of myocardial infarction or ischemic stroke, and peripheral 
artery disease were only strongly associated with time and 
frequency domain, but not with non-linear parameters. Arte-
rial hypertension, coronary artery disease, and heart failure 
were related with frequency domain parameters and non-lin-
ear indices, and smoking with time domain parameters and 
non-linear indices. Diabetes mellitus demonstrated a strong 
relationship with non-linear indices of HRV, and obesity and 
CKD with frequency domain parameters. Myocardial infarc-
tion, stroke, cancer, venous thromboembolism, and COPD 
had no clinically relevant relationships with HRV.

HRV is prognostic for risk of death and cardiac death

The median follow-up time for assessing all-cause death and 
cardiac death was 6.5 years (IQR 5.1/7.5) and 6.0 years (IQR 
5.1/6.0), respectively. In total, 118 participants died during 
the follow-up period, of whom 34 were reported to have died 
of a cardiac cause.

The cumulative incidence curves for all-cause mortality 
in the heart failure sample for the two highest ranked HRV 
predictors from the random survival forest model, accelera-
tion capacity (AC) and deceleration capacity (DC), respec-
tively, surrogates of sympathetic and parasympathetic nerv-
ous system activity, are shown in Fig. 4. Participants with 
values in the highest tertile for AC and the lowest tertile 
for DC had a cumulative 8 years mortality of > 30 percent, 
whereas those in the lowest tertile for AC and highest tertile 
for DC had < 10 percent in this time period. The cumulative 
incidence curves for all-cause death and cardiac death in 
the analysis sample, stratified by tertiles and values inside 
vs. outside the reference ranges, are shown in Supplemental 
Fig. 5 and 6, respectively.

Multivariable Cox regression models were used to eval-
uate whether HRV markers were prognostic of all-cause 
death in the heart failure sample independent of age, sex, 
CVRFs, comorbidities, and medication intake (Fig. 5A). 
From the time and frequency domain, the mean heart rate 
[HR 1.21 (95% CI 1.01–1.45), p = 0.04], LF/HF [HR 0.71 
(95% CI 0.58–0.86), p = 0.0005], and total power [HR 0.84 
[95% CI 0.71–0.98), p = 0.03] were relevantly prognostic 



1321Clinical Research in Cardiology (2024) 113:1317–1330 

1 3

Table 1  Sample characteristics 
of the analysis sample with 
heart failure and the reference 
group

Heart failure defined according to the Universal Definition of Heart Failure as stated in the report of the 
Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japa-
nese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure, stage B, C 
or D; The reference group is defined as healthy or at risk of heart failure (HF stage A), excluding individu-
als with diabetes mellitus diagnosed ≥ 10 years ago who were not receiving dietary treatment, as well as 
participants with degenerative or structural neurological disorders. Categorical variables are presented in 
relative and absolute frequencies. Age is reported as mean and standard deviation. Data were available in 
97.3% of the analysis sample. Anatomical Therapeutic Chemical Classification System (ATC) codes for 
each type of medication are displayed in brackets
MI myocardial infarction, RAS renin–angiotensin system

Heart failure
(n = 855)

Reference group
(n = 133)

Demographics
 Female sex, [%] (n) 33.9 (290) 46.6 (62)
 Age, [years] 65.6 (10.1) 57.8 (10.3)

Heart failure stages
 Heart failure stage 0/A, [%] (n) 0 (0) 100 (133)
 Heart failure stage B, [%] (n) 35.2 (301) 0 (0)
 Heart failure stage C/D, [%] (n) 64.8 (554) 0 (0)

Cardiovascular risk factors
 Active smoking, [%] (n) 11.7 (100) 7.5 (10)
 Arterial hypertension, [%] (n) 77.3 (661) 53.4 (71)
 Diabetes mellitus, [%] (n) 23.6 (202) 6.8 (9)
 Dyslipidemia, [%] (n) 78.9 (675) 48.1 (64)
 Family history of MI or stroke, [%] (n) 25.6 (218) 24.1 (32)
 Obesity, [%] (n) 33.6 (287) 22.6 (30)

Comorbidities
 Atrial fibrillation, [%] (n) 24.0 (205) 8.3 (11)
 Chronic kidney disease, [%] (n) 25.4 (216) 12.0 (16)
 Chronic obstructive pulmonary disease, [%] (n) 13.7 (117) 13.5 (18)
 Coronary artery disease, [%] (n) 48.8 (417) 15.8 (21)
 History of cancer, [%] (n) 16.7 (143) 16.5 (22)
 History of myocardial infarction, [%] (n) 34.0 (291) 0 (0)
 History of stroke, [%] (n) 8.8 (75) 3.8 (5)
 History of transient ischemic attack, [%] (n) 6.4 (55) 1.5 (2)
 History of venous thromboembolism, [%] (n) 9.8 (84) 5.3 (7)
 Pacemaker, [%] (n) 2.5 (21) 0.8 (1)
 Peripheral artery disease, [%] (n) 7.7 (66) 0.8 (1)

Medication
 Agents acting on the RAS (C09), [%] (n) 74.3 (635) 38.3 (51)
 Antidepressants (N06A), [%] (n) 9.2 (79) 8.3 (11)
 Antidiabetic agents (A10), [%] (n) 17.1 (146) 6 (8)
 Antithrombotic agents (B01A), [%] (n) 73.1 (625) 30.1 (40)
 Beta blockers (C07), [%] (n) 66.8 (571) 18.0 (24)
 Calcium channel blocker (C08), [%] (n) 19.9 (170) 10.5 (14)
 Digitalis glycosides, anti-arrhythmics, and vasodilators 

(C01), [%] (n)
21.5 (184) 5.3 (7)

 Diuretic agents (C03), [%] (n) 35.2 (301) 8.3 (11)
 Lipid modifying agents (C10), [%] (n) 55.7 (476) 26.3 (35)
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for all-cause mortality in the age- and sex-adjusted models. 
However, after additional adjustment for CVRFs, comor-
bidities and medication intake, no association remained 
for time and frequency domain parameters.

Acceleration capacity [HR 1.61 (95% CI 1.32–1.96), 
p  < 0.0001], DC [HR 0.66 [95% CI 0.56–0.78), 
p < 0.0001], and time lag [HR 1.27 (95% CI 1.10–1.47), 
p = 0.001], were predictive non-linear indices for all-cause 
mortality in both the age- and sex-adjusted models as well 
as the models additionally adjusted for CVRFs, comorbidi-
ties, and medication intake. The remaining markers were 
only weakly related to death. Further adjustments for left 
ventricular ejection fraction (LVEF) or physical activity 
did not relevantly change the relationship between HRV 
and outcome (Supplemental Figs. 7 and 8).

Multivariable Cox regression models demonstrated 
that the established reference ranges of the majority of 

HRV markers were independently prognostic for mortal-
ity (Fig. 5B) and cardiac death in individuals with heart 
failure (Supplemental Fig. 9).

With regard to the HF phenotypes, only non-linear indi-
ces of HRV are of prognostic relevance. Supplemental 
Fig. 10 shows that only AC, DC, and fractal dimension are 
prognostically relevant for all-cause death in individuals 
with HFpEF and only the Lyapunov exponent is prognostic 
in individuals with HFrEF.

Discussion

This study introduced possible reference ranges and clini-
cal determinants for markers of HRV in a comprehensive 
approach. The deep phenotyping performed in the Myo-
Vasc study allowed for consideration of a large number of 

Fig. 1  Selection of heart rate variability parameters based on a lit-
erature search (A) and on a data-driven approach (B). Left (A), the 
top ten HRV markers retrieved by a systematic literature search from 
the PubMed database. Right (B), the top 10 HRV markers identified 
with a random survival forest model with cardiac death as outcome 
and 62 HRV markers as predictors, adjusted for age and sex, ranked 
according to the variable importance metric minimal depth, with 
lower values indicating higher importance. The markers retrieved via 
the systematic literature search all belong to the time and frequency 
domains, while the top ten ranked markers from the machine learning 

model belong mostly to non-linear indices of HRV. The full model 
is displayed in Supplemental Table  4. HRV, heart rate variability; 
HF, high frequency; LF, low frequency; SDNN, standard deviation 
of the NN (normal to normal) intervals in milliseconds; rMSSD, 
root mean square of successive differences between normal heart-
beats; pNN50%, percentage of neighboring NN intervals that differ 
from each other by more than 50 ms; SDANN, standard deviation of 
the 5 min average NN intervals; VLF, very low frequency; HR, heart 
rate; ULF, ultra-low frequency; Max., maximal; r, radius
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potential determinants and confounders. Markers of HRV 
from all three domains were prognostic of death in indi-
viduals with heart failure. Particularly values outside of the 
proposed reference range were strongly prognostic for clini-
cal outcome, suggesting their relevance for clinical decision-
making. The prognostic relevance of HRV out of reference 
range was independent of traditional CVRFs, comorbidities, 
and medication intake, suggesting a role for risk stratifica-
tion and potential intervention strategies.

Cardiovascular risk factors associated with the devel-
opment and progression of heart failure, such as arterial 

hypertension [14, 15], type 2 diabetes mellitus and pre-dia-
betes [16, 17], metabolic syndrome [18, 19], and smoking 
[20] have all been associated with autonomic imbalances 
as measured with HRV, as well as cardiovascular disease, 
including atrial fibrillation [21], myocardial infarction 
[22], ischemic stroke [23], and chronic kidney disease [24]. 
However, reference ranges for non-linear indices of HRV 
based on Holter ECG recordings had not been reported 
yet. Sammito and Böckelmann [25, 26] investigated 695 
healthy individuals and provided reference values based on 
24 h Holter ECG recordings for four time domain and three 

Fig. 2  Graphical representation of the heart rate variability domains, 
and an overview of the different HRV abbreviations and their mean-
ings. Graphical overview on the three different domains of HRV and 

an overview of the different HRV abbreviations and their meanings 
for the identified HRV parameters
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frequency domain parameters only. In contrast to the present 
study, participants older than 60 years were excluded [25], 
which limits generalizability to the population most at risk 
of cardiovascular disease. Beckers et al. [27] investigated 
time, frequency, and non-linear parameters in 276 healthy 
individuals and provided means and standard deviations 

for various HRV parameters stratified by sex, but did not 
establish reference values. The present study attempted to fill 
this gap in the literature for a range of HRV markers, which 
were selected on the basis of a systematic literature screen as 
well as a machine learning approach. The former especially 

Table 2  Distribution of heart rate variability and reference values in the reference sample and the sample with heart failure

Q1 first quartile, Q3 third quartile, pct percentile, HR heart rate, SDNN standard deviation of the NN intervals, SDANN standard deviation of the 
5 min average NN intervals, rMSSD root mean square of the successive differences between normal heart beats, pNN50 percentage of neighbor-
ing NN intervals that differ from each other by more than 50 ms, ULF ultra-low frequency, VLF very low frequency, LF low frequency, HF high 
frequency, LF/HF the ratio between low and high frequency, ULF Fourier interquartile range of the ULF short time Fourier transform, ULF 
wavelet median of the ULF wavelet transform, Max. maximal, exp. Exponent, r radius

Distribution of HRV in the reference 
sample w/o heart failure (N = 133)

Distribution of HRV in the heart 
failure sample (N = 855)

Individuals with heart failure outside of the 
reference range

Median
(Q1, Q3)

5th pct 95th pct Median
(Q1, Q3)

5th pct 95th pct Outside refer-
ence range, [% 
(n)]

 < 5th pct, [% 
(n)]

 > 95th pct, [% 
(n)]

Time domain
 Mean HR [1/

min]
77.9 (71.7/83.2) 58.7 90.4 72.2 (65.0/79.2) 56.6 91.8 14.4 (123) 7.5 (64) 6.9 (59)

 SDNN [ms] 136 (113/160) 80 211 125 (101/155) 69.1 207 14.4 (123) 10.2 (87) 4.2 (36)
 SDANN 

[ms]
121 (97.5/143) 69.7 189 110 (86.8/136) 57.8 182 15.1 (129) 11.1 (95) 4.0 (34)

 rMSSD [ms] 28.2 (22.8/37.9) 14.8 71.3 32.4 (22.6/55.2) 14.0 135 22.2 (190) 6.3 (54) 15.9 (136)
 pNN50 [%] 4.31 (2.57/9.70) 0.675 25.0 5.43 (2.15/13.2) 0.559 42.4 17.2 (147) 6.0 (51) 11.2 (96)

Frequency domain
 ULF [ms/

Hz]
6090 (4169/8191) 2260 13,498 5134 (3303/7613) 1558 13,190 16.3 (139) 11.8 (101) 4.5 (38)

 VLF [ms/
Hz]

149 (102/241) 60.2 427 119 (70.4/209) 27.7 511 26.9 (230) 19.6 (168) 7.3 (62)

 LF [ms/Hz] 249 (160/457) 72.1 817 190 (99.8/437) 37.7 1,551 28.1 (240) 16.0 (137) 12.1 (103)
 HF [ms/Hz] 94.6 (54.6/150) 22.8 386 95.4 (46.1/253) 18.2 1,341 24.2 (207) 7.5 (64) 16.7 (81)
 LF/HF 2.69 (1.90/4.27) 1.06 6.86 1.87 (1.22/2.71) 0.721 5.13 19.9 (170) 18.1 (155) 1.8 (15)
 Total power 

[ms/Hz]
6646 (4522/9200) 2514 14,481 5817 (3785/8603) 1828 14,637 17.1 (146) 10.8 (92) 6.3 (54)

 ULF Fourier 
[ms/Hz]

618 (398/902) 252 1603 496 (309/795) 122 1563 22.0 (188) 17.2 (147) 4.8 (41)

 ULF wavelet 
[ms/Hz]

9904 
(6114/15561)

3292 26,249 7617 
(4504/13,053)

1880 26,506 19.2 (164) 14.2 (121) 5.0 (43)

Non-linear indices
 Acceleration 

capacity
− 6.21 

(− 7.64/− 4.98)
− 9.94 − 3.60 − 4.87 

(− 6.39/− 3.57)
− 8.74 − 2.17 28 (239) 2.1 (18) 25.9 (221)

 Deceleration 
capacity

6.33 (5.02/7.74) 3.44 10.0 4.93 (3.64/6.36) 2.19 8.74 23.0 (197) 21.6 (185) 1.4 (12)

 Time lag 6.0 (4.0/10.0) 2 27 8.0 (4.0/17.0) 1.00 60 33.7 (288) 16.5 (141) 17.2 (147)
 Embedding 

dimension
9.0 (8.76/10.0) 8 12 9.31 (9.0/10.0) 7.00 12.0 28.1 (240) 20.6 (176) 7.5 (64)

 Fractal 
dimension

2.97 (2.55/3.63) 2.09 4.72 3.12 (2.58/3.67) 1.94 4.70 13.8 (118) 9.1 (78) 4.7 (40)

 Sample 
entropy

0.363 
(0.311/0.407)

0.253 0.481 0.363 
(0.311/0.413)

0.243 0.502 13.6 (116) 6.1 (52) 7.5 (64)

 Max. 
Lyapunov 
exp.r=100

0.027 
(− 0.021/0.069)

− 0.13 0.155 0.022 
(− 0.012/0.057)

− 0.108 0.161 8.8 (75) 3.4 (29) 5.4 (46)
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resulted in markers from the time and frequency domains, 
while the latter identified non-linear indices.

The time domain markers, standard deviation of the NN 
intervals (SDNN) and standard deviation of the 5 min aver-
age NN intervals (SDANN), are both markers of overall 
autonomic function including information from cardiac 
sympathetic and parasympathetic nervous system activity 
[6]. However, when derived from Holter records, variations 
are mostly due to activity of the sympathetic nervous sys-
tem [28]. The root mean square of the successive differ-
ences between normal heart beats (rMSSD) and percentage 
of neighboring NN intervals that differ from each other by 
more than 50 ms (pNN50) are parameters mostly reflecting 
vagal activity from higher frequency oscillations [6].

Ultra-low frequency (ULF) power reflects oscillations 
in the heart rhythm with a period of ≥ 5 min. Variations in 

circadian rhythm, internal body temperature, metabolism, 
and the renin–angiotensin system are all assumed to contrib-
ute to differences in ULF spectral power [29–31]. However, 
the exact contribution of the ANS to ULF power is not clear 
yet. The physiological mechanisms contributing to variations 
in the very low frequency (VLF) band are uncertain, but 
previous experimental research has shown that the intrinsic 
nervous system of the heart generates the VLF rhythm and 
efferent sympathetic activity [28]. Traditionally, the HF band 
in ms/Hz is reported as proxy for parasympathetic tone and 
the LF band has often been used as proxy for sympathetic 
activity; more recently, the latter has also been recognized 
as a proxy of baroreflex sensitivity [32–34]. Combined, the 
LF/HF ratio is used as a marker of sympathovagal balance.

From the non-linear indices that were identified in 
this study with machine learning, AC, DC, time lag, 

Fig. 3  Relationships between cardiovascular risk factors, comor-
bidities, and heart rate variability in individuals with heart failure 
N = 855. Each cell shows the coefficient estimate and confidence 
interval for a cardiovascular risk factor or comorbidity from a sepa-
rate linear regression model with a HRV marker (standardized) as 
the dependent variable, adjusted for age, sex, traditional cardiovas-
cular risk factors, comorbidities, and medication intake in the heart 
failure analysis sample. The table is color coded according to the p 
values. HR, heart rate; SDNN, standard deviation of the NN inter-

vals; SDANN, standard deviation of the 5 min average NN intervals; 
rMSSD, root mean square of the successive differences between nor-
mal heart beats; pNN50, percentage of neighboring NN intervals that 
differ from each other by more than 50 ms; ULF, ultra-low frequency; 
VLF, very low frequency; LF, low frequency; HF, high frequency; 
LF/HF, the ratio between low and high frequency; ULF Fourier, inter-
quartile range of the ULF short time Fourier transform; ULF wavelet, 
median of the ULF wavelet transform; Max., maximal; exp., expo-
nent; r, radius
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embedding dimension, fractal dimension, sample entropy, 
and the maximal Lyapunov exponent are all measures cap-
turing non-linear, complex heart rhythm dynamics, which 
are not captured with traditional time and frequency analy-
sis of the RR intervals [35]. The time lag is an intermedi-
ate parameter used for the calculation of more complex 
statistics, and indicates by how much an RR interval series 
should be shifted with respect to itself until consecutive 

values are no longer strongly correlated. In sicker indi-
viduals, the variability in RR intervals is low (i.e., there is 
little adaptation of heart rate to dynamic variations in envi-
ronmental exposures), and so the time between R peaks 
does not vary much. Hence, a longer time lag is necessary 
to capture independent (i.e., uncorrelated) signal from 
RR interval timings in such individuals. The non-linear 
analysis of HRV is especially important in subjects with 
cardiovascular disease where HRV is usually depressed, 
which complicates linear analysis of the RR intervals. 
With regard to physiological mechanisms of non-linear 
indices, only AC and DC can separate sympathetic from 
vagal rhythm modulations of the heart rate [22].

Beyond defining reference values, this investigation has 
also revealed clinical characteristics that are associated with 
altered HRV. Besides the well-known age and sex differ-
ences in HRV, this study has shown that dyslipidemia and a 
positive family history of myocardial infarction or ischemic 
stroke were also strongly related to HRV. Importantly, dys-
lipidemia was not self-reported, but measured in the cur-
rent investigation. Dyslipidemia has been associated with 
impaired endothelial function and increased muscle sympa-
thetic nervous system activity [36]. The inverse relationship 
between dyslipidemia and rMSSD (root mean square of suc-
cessive differences between normal heartbeats) and DC in 
this study may indicate impaired parasympathetic nervous 
system activity or tone besides sympathetic neural overdrive. 
Although it is difficult to separate effects of vagal modula-
tions from sympathetic modulations on the heart with HRV 
analysis, these findings underline the importance of physi-
ological mechanisms that lower the heart rate in individuals 
with heart failure. The fact that this study shows only weak 
relationships with several CVRFs and comorbidities after 
adjustment for a large array of potential confounders, even 
though these were previously thought to strongly influence 
HRV, underlines the importance of taking the full clinical 
profile and medication intake into account when analyzing 
HRV in individuals with heart failure. Nevertheless, HRV 
markers without additional information are also promising 
for risk stratification in practice, as they are competitive 
with existing risk markers and even contribute additional 
information.

With regard to heart failure, time domain and non-linear 
indices seem to be of less importance than the frequency 
domain. Only LF/HF ratio and ULF wavelet showed a clear 
relationship with heart failure. Interestingly, of the non-lin-
ear indices, only time lag seemed to be of some prognostic 
importance in heart failure. Whereas time lag is not usually 
considered a stand-alone marker of autonomic dysfunction, 
as it is used as a variable for calculation of more complex 
non-linear markers and is, therefore, usually disregarded in 
analyses, this study has shown that its prognostic potential 
may even exceed that of more complex markers.

Fig. 4  Cumulative incidence curves for all-cause mortality according 
to tertiles of acceleration capacityand deceleration capacity in heart 
failure, stage B to D. The cumulative incidences of all-cause mortal-
ity in individuals with heart failure over 8 years of follow-up stratified 
by tertiles are shown for the top two heart rate variability markers, 
acceleration capacity (panel A) and deceleration capacity (panel B), 
from the random survival forest model predicting cardiac death. The 
tertiles were for acceleration capacity: lowest tertile: ≤  − 5.86, mid-
dle tertile: >  − 5.86 and ≤  − 3.97, and highest tertile: >  − 3.97; and 
for deceleration capacity: lowest tertile: ≤ 4.03, middle tertile: > 4.03 
and ≤ 5.71, and highest tertile: > 5.71
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The strong relationship of HRV values outside the refer-
ence range and mortality confirmed the clinical importance 
of establishing HRV reference ranges. Surprisingly, the com-
monly used time domain parameters did not have as much 
prognostic information as the non-linear parameters, under-
lining the importance of incorporating non-linear HRV indi-
ces in cardiovascular research, as was previously suggested 
by the Task force of the European Society of Cardiology and 
the North American Society of Pacing and Electrophysiol-
ogy [37] and the e-Cardiology ESC Working Group and the 
European Heart Rhythm Association [38].

In terms of clinical outcome, only the LF/HF ratio from 
the frequency domain and AC, DC and time lag from the 
non-linear indices of HRV seemed of prognostic importance. 
This is the first study to examine the relationship between 
time lag and clinical outcome and show that higher values of 
time lag, reflecting lower overall HRV, are associated with 

a worse prognosis. Furthermore, the survival analyses show 
that increased sympathetic and decreased vagal modulations 
of the heart rate, respectively, represented by AC and DC, 
are indicative of a higher risk of death. These results are 
congruent with previous investigations of AC and DC. Bauer 
et al. [22] showed that DC is a better predictor of mortality 
after myocardial infarction than SDNN or AC, especially 
in patients with an ejection fraction > 30 percent. Similarly, 
Arsenos et al. [39] found that DC predicted mortality in 
heart failure patients with severe ventricular dysfunction, 
and Hayano et al. [40] showed that DC is a predictor of sur-
vival after myocardial infarction independent of LVEF. The 
finding that AC and DC were more convincingly related to 
outcome in persons with HFpEF than in HFrEF may suggest 
that individuals with HFpEF suffer more from both sympa-
thetic overdrive and vagal inhibition, which is in line with 

Fig. 5  Relationship of HRV with all-cause death  (A) as continuous 
trait and (B) for values outside of the reference range. Results of sep-
arate Cox regression models for each HRV parameter with adjustment 
for age and sex (black) and additional adjustment for traditional cardi-
ovascular risk factors, comorbidities, and medication intake (grey) in 
the heart failure sample (N = 855). HRV is used as predictor and all-
cause death as outcome with HRV as continuous trait (A) and for val-
ues outside vs. inside the reference range (B). HR, heart rate; SDNN, 
standard deviation of the NN intervals; SDANN, standard deviation 

of the 5 min average NN intervals; rMSSD, root mean square of the 
successive differences between normal heart beats; pNN50, percent-
age of neighboring NN intervals that differ from each other by more 
than 50 ms; ULF, ultra-low frequency; VLF, very low frequency; LF, 
low frequency; HF, high frequency; LF/HF, the ratio between low and 
high frequency; ULF IQR STFT, interquartile range of the ULF short 
time Fourier transform; ULF wavelet, median of the ULF wavelet 
transform; Max., maximal; exp., exponent; r, radius
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previous studies [41, 42]. Future studies should elucidate the 
mechanisms underlying these tentative relationships.

Strengths and limitations of the study

The use of a data-driven approach alongside a systematic 
literature-based selection of HRV markers was a strength 
of this study, allowing the identification of more clinically 
relevant HRV markers than are usually considered. The 
unbiased selection of HRV markers in this study has shown 
that the investigation of autonomic function in heart failure 
requires more complex markers than those commonly used, 
such as SDNN, rMSSD, or LF/HF. Moreover, the best stud-
ied markers from the literature were less strongly associated 
with mortality or cardiac death than the top HRV markers 
from the random survival forest model. No other study to 
date has established HRV reference ranges for clinically 
relevant HRV measures from the three domains simultane-
ously and verified their importance. Another strength of this 
study was the structured, in-depth clinical phenotyping per-
formed in all participants, which, adjusting for a wide range 
of potential confounders, allowed rigorous assessment of 
clinical characteristics affecting HRV measures.

Some limitations of this study should also be noted. 
First, physiological signals, such as those from Holter ECG 
recordings, are susceptible to measurement noise and arte-
facts. Advanced signal processing methods may have the 
potential to provide a more stable signal beyond what the 
applied R package ‘RHRV’ [13] and phase-rectified signal-
ing averaging can provide. Second, although this study has 
shown that associations between HRV and death are unde-
niably strong, the biological mechanisms underlying these 
tentative relationships are still unclear. Future studies incor-
porating molecular data may contribute to a better under-
standing of the underlying mechanisms. Third, the results 
have not been validated in another cohort, which should be 
performed to confirm their generalizability. Moreover, the 
reference group used in this study was not completely free 
of (subclinical) disease. However, the cardiovascular status 
of these individuals, as determined by extensive echocardi-
ography and circulating biomarkers, was within the physi-
ological range and the reference group was free of (the risk 
of) heart failure. Additionally, sample sizes varied by HF 
phenotype, hampering the precision of phenotype-specific 
analyses. Finally, HRV measurements could not be validated 
as markers of autonomic dysfunction with direct, but inva-
sive measures of the ANS, such as microneurography or 
muscle sympathetic nerve activity (MSNA). Nevertheless, 
this study has demonstrated that 24 h ECG-based HRV is 
a non-invasive modality that allows risk stratification with 
respect to mortality in both cardiovascular healthy individu-
als and patients with heart failure. This highlights its clinical 
relevance and utility in the outpatient setting.

Conclusion

Holter ECG-based heart rate variability is a non-invasive 
tool with prognostic relevance in individuals at risk of heart 
failure and with heart failure. The reference ranges presented 
in this study may support individualized risk assessment. 
Regardless of the stage of heart failure, the ability of HRV 
markers to predict overall survival independent of clinical 
risk factors, concomitant diseases, and medication could 
improve risk monitoring in outpatient heart failure man-
agement. Future research is required to investigate whether 
autonomic dysfunction can be specifically targeted to influ-
ence disease development.
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