Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Aug 15;302(Pt 1):87–94. doi: 10.1042/bj3020087

Cytosolic calcium pre-elevation amplifies agonist-induced calcium release in human leukaemic HL-60 cells.

Y M Leung 1, C Y Kwan 1, T T Loh 1
PMCID: PMC1137194  PMID: 8068028

Abstract

Histamine, ATP, and two microsomal Ca(2+)-pump inhibitors, thapsigargin (TG) and cyclopiazonic acid (CPA), were able to release intracellular Ca2+ in human leukaemic HL-60 cells. The relationships between the agonist-, TG- and CPA-sensitive Ca2+ pools were investigated with optimal concentrations of these agents in Ca(2+)-free medium. CPA failed to release Ca2+ after the Ca2+ stores of the cells had been discharged by TG, and vice versa, suggesting that the TG- and CPA-sensitive pools exactly overlap. Using this protocol, it was further demonstrated that (a) histamine and ATP utilized the same agonist-sensitive pool, and (b) the CPA- or TG-sensitive pool was much larger than, and encompassed, the agonist-sensitive pool. Although optimal (30 microM) CPA treatment for 5 min totally emptied the agonist-sensitive pool, a brief exposure (1.5 min) to a sub-optimal concentration (3 microM) of CPA, which only slightly raised cytosolic free Ca2+ concentration ([Ca2+]i), substantially enhanced subsequent agonist-induced Ca2+ release. Brief pretreatments with sub-optimal concentrations of TG or ionomycin, which caused moderate [Ca2+]i elevation, also caused such enhancement. However, sub-optimal CPA pretreatment had no prominent effect on Ca2+ release, which was InsP3-independent: it did not enhance TG-induced Ca2+ release, and only relatively weakly augmented ionomycin-induced Ca2+ release. Our results represent a novel observation showing that low concentrations of CPA, TG and ionomycin can potentiate subsequent agonist-induced Ca2+ release, and suggest that a 'priming' moderate [Ca2+]i elevation can amplify subsequent InsP3-dependent Ca2+ release in HL-60 cells.

Full text

PDF
87

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  3. Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
  4. Bian J. H., Ghosh T. K., Wang J. C., Gill D. L. Identification of intracellular calcium pools. Selective modification by thapsigargin. J Biol Chem. 1991 May 15;266(14):8801–8806. [PubMed] [Google Scholar]
  5. Blackmore P. F. Thapsigargin elevates and potentiates the ability of progesterone to increase intracellular free calcium in human sperm: possible role of perinuclear calcium. Cell Calcium. 1993 Jan;14(1):53–60. doi: 10.1016/0143-4160(93)90018-2. [DOI] [PubMed] [Google Scholar]
  6. Demaurex N., Lew D. P., Krause K. H. Cyclopiazonic acid depletes intracellular Ca2+ stores and activates an influx pathway for divalent cations in HL-60 cells. J Biol Chem. 1992 Feb 5;267(4):2318–2324. [PubMed] [Google Scholar]
  7. Deng H. W., Kwan C. Y. Cyclopiazonic acid is a sarcoplasmic reticulum Ca(2+)-pump inhibitor of rat aortic muscle. Zhongguo Yao Li Xue Bao. 1991 Jan;12(1):53–58. [PubMed] [Google Scholar]
  8. Dolor R. J., Hurwitz L. M., Mirza Z., Strauss H. C., Whorton A. R. Regulation of extracellular calcium entry in endothelial cells: role of intracellular calcium pool. Am J Physiol. 1992 Jan;262(1 Pt 1):C171–C181. doi: 10.1152/ajpcell.1992.262.1.C171. [DOI] [PubMed] [Google Scholar]
  9. Dubyak G. R., Cowen D. S., Meuller L. M. Activation of inositol phospholipid breakdown in HL60 cells by P2-purinergic receptors for extracellular ATP. Evidence for mediation by both pertussis toxin-sensitive and pertussis toxin-insensitive mechanisms. J Biol Chem. 1988 Dec 5;263(34):18108–18117. [PubMed] [Google Scholar]
  10. Finch E. A., Turner T. J., Goldin S. M. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science. 1991 Apr 19;252(5004):443–446. doi: 10.1126/science.2017683. [DOI] [PubMed] [Google Scholar]
  11. Graier W. F., Kukovetz W. R., Groschner K. Cyclic AMP enhances agonist-induced Ca2+ entry into endothelial cells by activation of potassium channels and membrane hyperpolarization. Biochem J. 1993 Apr 1;291(Pt 1):263–267. doi: 10.1042/bj2910263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  13. Guse A. H., Roth E., Emmrich F. Intracellular Ca2+ pools in Jurkat T-lymphocytes. Biochem J. 1993 Apr 15;291(Pt 2):447–451. doi: 10.1042/bj2910447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henrion D., Laher I., Laporte R., Bevan J. A. Angiotensin II amplifies arterial contractile response to norepinephrine without increasing Ca++ influx: role of protein kinase C. J Pharmacol Exp Ther. 1992 Jun;261(3):835–840. [PubMed] [Google Scholar]
  15. Iino M. Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol. 1990 Jun;95(6):1103–1122. doi: 10.1085/jgp.95.6.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lambert D. G., Nahorski S. R. Muscarinic-receptor-mediated changes in intracellular Ca2+ and inositol 1,4,5-trisphosphate mass in a human neuroblastoma cell line, SH-SY5Y. Biochem J. 1990 Jan 15;265(2):555–562. doi: 10.1042/bj2650555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu C., Hermann T. E. Characterization of ionomycin as a calcium ionophore. J Biol Chem. 1978 Sep 10;253(17):5892–5894. [PubMed] [Google Scholar]
  18. Lytton J., Westlin M., Hanley M. R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem. 1991 Sep 15;266(26):17067–17071. [PubMed] [Google Scholar]
  19. Marshall I. C., Taylor C. W. Biphasic effects of cytosolic Ca2+ on Ins(1,4,5)P3-stimulated Ca2+ mobilization in hepatocytes. J Biol Chem. 1993 Jun 25;268(18):13214–13220. [PubMed] [Google Scholar]
  20. Mason M. J., Garcia-Rodriguez C., Grinstein S. Coupling between intracellular Ca2+ stores and the Ca2+ permeability of the plasma membrane. Comparison of the effects of thapsigargin, 2,5-di-(tert-butyl)-1,4-hydroquinone, and cyclopiazonic acid in rat thymic lymphocytes. J Biol Chem. 1991 Nov 5;266(31):20856–20862. [PubMed] [Google Scholar]
  21. McPherson P. S., Campbell K. P. The ryanodine receptor/Ca2+ release channel. J Biol Chem. 1993 Jul 5;268(19):13765–13768. [PubMed] [Google Scholar]
  22. Meldolesi J., Clementi E., Fasolato C., Zacchetti D., Pozzan T. Ca2+ influx following receptor activation. Trends Pharmacol Sci. 1991 Aug;12(8):289–292. doi: 10.1016/0165-6147(91)90577-f. [DOI] [PubMed] [Google Scholar]
  23. Nathanson M. H., Padfield P. J., O'Sullivan A. J., Burgstahler A. D., Jamieson J. D. Mechanism of Ca2+ wave propagation in pancreatic acinar cells. J Biol Chem. 1992 Sep 5;267(25):18118–18121. [PubMed] [Google Scholar]
  24. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  25. Rooney T. A., Renard D. C., Sass E. J., Thomas A. P. Oscillatory cytosolic calcium waves independent of stimulated inositol 1,4,5-trisphosphate formation in hepatocytes. J Biol Chem. 1991 Jul 5;266(19):12272–12282. [PubMed] [Google Scholar]
  26. Seifert R., Höer A., Schwaner I., Buschauer A. Histamine increases cytosolic Ca2+ in HL-60 promyelocytes predominantly via H2 receptors with an unique agonist/antagonist profile and induces functional differentiation. Mol Pharmacol. 1992 Aug;42(2):235–241. [PubMed] [Google Scholar]
  27. Shimamoto H., Bourreau J. P., Kwan C. Y., Daniel E. E. Amplification of alpha adrenergic vasoconstriction in canine isolated mesenteric artery and vein. J Pharmacol Exp Ther. 1992 Mar;260(3):1119–1127. [PubMed] [Google Scholar]
  28. Takemura H., Ohshika H., Yokosawa N., Oguma K., Thastrup O. The thapsigargin-sensitive intracellular Ca2+ pool is more important in plasma membrane Ca2+ entry than the IP3-sensitive intracellular Ca2+ pool in neuronal cell lines. Biochem Biophys Res Commun. 1991 Nov 14;180(3):1518–1526. doi: 10.1016/s0006-291x(05)81368-3. [DOI] [PubMed] [Google Scholar]
  29. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tornquist K., Tashjian A. H., Jr 12-O-tetradecanoyl-phorbol-13-acetate decreases influx of extracellular Ca2+ induced by depolarization in GH4C1 cells: effects of pretreatment with 1,25-dihydroxycholecalciferol. Endocrinology. 1990 Apr;126(4):2068–2078. doi: 10.1210/endo-126-4-2068. [DOI] [PubMed] [Google Scholar]
  31. Zacchetti D., Clementi E., Fasolato C., Lorenzon P., Zottini M., Grohovaz F., Fumagalli G., Pozzan T., Meldolesi J. Intracellular Ca2+ pools in PC12 cells. A unique, rapidly exchanging pool is sensitive to both inositol 1,4,5-trisphosphate and caffeine-ryanodine. J Biol Chem. 1991 Oct 25;266(30):20152–20158. [PubMed] [Google Scholar]
  32. Zhang B. X., Zhao H., Muallem S. Ca(2+)-dependent kinase and phosphatase control inositol 1,4,5-trisphosphate-mediated Ca2+ release. Modification by agonist stimulation. J Biol Chem. 1993 May 25;268(15):10997–11001. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES