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Non-relativistic torque andEdelstein effect in
non-collinear magnets

Rafael González-Hernández1 , Philipp Ritzinger 2, Karel Výborný2,
Jakub Železný2 & Aurélien Manchon 3

The Edelstein effect is the origin of the spin-orbit torque: a current-induced
torque that is used for the electrical control of ferromagnetic and anti-
ferromagnetic materials. This effect originates from the relativistic spin-orbit
coupling, which necessitates utilizing materials with heavy elements. Here, we
show that in magnetic materials with non-collinear magnetic order, the Edel-
stein effect and, consequently, a current-induced torque can exist even in the
absence of the spin-orbit coupling. Using group symmetry analysis, model
calculations, and realistic simulations on selected compounds, we identify
large classes of non-collinear magnet candidates and demonstrate that the
current-driven torque is of similar magnitude as the celebrated spin-orbit
torque in conventional transition metal structures. We also show that this
torque can exist in an insulatingmaterial, which could allow for highly efficient
electrical control of magnetic order.

In materials and heterostructures with spin-orbit coupling, the inter-
connection between the spin and momentum degrees of freedom of
the electronic Bloch states underscores a rich landscape of micro-
scopic “spin-orbitronics" phenomena, such as anomalous Hall effect1

and anisotropic magnetoresistance2, spin Hall effect3, Dzyaloshinskii-
Moriya interaction or spin-orbit torques4,5. To maximize these effects,
materials displaying reasonably large spin-orbit coupling are neces-
sary, which implies using metals with large atomic numbers Z, such as
Pt, W, Bi, etc. Some of these elements are however scarce, expensive,
and environmentally unfriendly. In addition, arbitrarily large spin-orbit
coupling does not necessarily lead to arbitrarily large spin-orbitronics
phenomena6,7 because of the competition with crystal field and
exchange.

Contrary to a common conception though, spin-orbit coupling is
not amandatory ingredient to obtain spin-momentum locking. In fact,
as noticed by Pekar and Rashba in themid-sixties8, electronics states in
materials with a spatially inhomogeneousmagnetization display a spin
texture in momentum space that share similarities with the one
obtained through spin-orbit coupling. In other words, non-collinear
magnetismmimics spin-orbit coupling to someextent and cansupport
a number of phenomena that are well known in spin-orbit coupled

materials such as electric-dipole spin resonance8,9, topological Hall
effect10–12, spin Hall effect13, and magnetic spin Hall effect14,15, the latter
being specific to magnetic materials. It is therefore natural to wonder
whether another hallmark of spin-orbit coupled materials, the Edel-
stein effect16–18 (also called the Rashba-Edelstein effect, inverse spin-
galvanic effect, or themagneto-electric effect), and its associated spin-
orbit torque can also be achieved in spin-orbit free non-collinear
magnets.

The Edelstein effect refers to the generation of nonequilibrium
spin density by an applied electric field in non-centrosymmetric
semiconducting or metallic materials and heterostructures with spin-
orbit coupling. The magnitude of the nonequilibrium spin density is
governed by the competition between the spin-orbit coupling energy
and the crystal field energy associated with inversion symmetry
breaking. In magnetic materials, the spin-momentum locking is gov-
erned by themagnetic exchange between local and itinerant electrons,
rather than by the atomic spin-orbit coupling, suggesting that a large
Edelstein effect can be obtained in non-centrosymmetric magnetic
materials. A possible advantage of such amechanism is that it does not
require the presence of heavy elements, and it could exist even in
materials with negligible spin-orbit coupling such as organic magnetic
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materials. In addition, since the magnitude of the Edelstein effect is
directly related to themagnetic configuration of thematerial, it should
be highly tunable using an external magnetic field.

Substantial attention has been paid lately to the non-relativistic
momentum-space spin texture and splitting in antiferromagnets. Non-
collinear antiferromagnets display a spin texture in momentum space
that results in the so-called magnetic spin Hall effect, i.e., a transverse
spin current whose polarization is governed by the magnetic
configuration14,15. Collinear antiferromagnets whose sublattices
are connected by a rotation symmetry, recently classified as
“altermagnets”19, display momentum-symmetric spin-splitting20–31 that
also supports spin currents28,32. These spin currents, which do not
generate torque in the bulk material, can exert a self-torque when the
antiferromagnet is implemented in a junction33. Whereas all these
studies have focusedoncentrosymmetric antiferromagnets displaying
momentum-symmetric spin texture and splitting, it has been recently
shown that non-centrosymmetric antiferromagnets naturally display
momentum-antisymmetric spin texture and splitting34–36. This non-
relativistic antisymmetric spin-splitting gives rise to a global non-
relativistic Edelstein effect at the level of the antiferromagnetic
unit cell.

In the present work, we demonstrate that wide classes of anti-
ferromagnets lacking a center of inversion, either locally or globally,
can support the current-driven Edelstein effect in the absence of
spin-orbit coupling. This effect does not necessarily necessitate
momentum-antisymmetric spin-splitting and, as such, it is not limited
to non-centrosymmetric antiferromagnets but concerns a much
broader class of systems including heterostructures and centrosym-
metric antiferromagnets. We establish general symmetry principles to
discover new materials, propose selected promising candidates,
demonstrate and quantify the effect in specific materials, and extend
the idea to the case of magnetic multilayers. We implemented an
algorithm for determining the symmetry of the non-relativistic Edel-
stein effect as well as other non-relativistic phenomena and we
released it within an open-source code. Remarkably, we show that the
non-relativistic Edelstein effect can also be present in insulating
materials. This could allow for controlling the magnetic order by a
voltage in the absence of any Ohmic conduction, resulting in a much
higher efficiency than the conventional current-induced torques.

Results
Conditions for an antisymmetric spin texture
In non-magnetic materials lacking inversion symmetry, the relativistic
Edelstein effect is associated with an antisymmetric spin texture in the
reciprocal space37. These spin textures arise from the spin-momentum
locking imposed by the spin-orbit coupling and are characterized by a
spin direction that varies in momentum space. In the absence of spin-
orbit coupling and in the presence of non-collinear magnetism, one
expects non-relativistic analogs of the antisymmetric spin textures.
Therefore, before addressing the non-relativistic Edelstein effect and
its associated torque, we first consider the conditions of the emer-
gence of such antisymmetric spin textures. Recently, spin textures in
the absence of spin-orbit coupling have been studied in non-
collinear14,29,34 as well as in collinear magnetic materials20–31. In colli-
near systems, however, the direction of spin is fixed and only the
magnitude and sign of the spin-splitting varies in momentum space. In
addition, most of the non-relativistic spin textures studied so far (with
the exception of ref. 34) are typically symmetric in momentum k,
Snk = Sn−k, n being the band index, which forbids the realization of the
non-relativistic Edelstein effect at the level of the magnetic unit cell.

In the absence of relativistic spin-orbit coupling, the spin and
orbital degrees of freedom are decoupled, which also means that the
spin is not coupled to the lattice. In such a case the symmetry of
magnetic systems is described by the so-called spin space groups38,39.
In addition to crystallographic symmetry operations that form the

magnetic space groups, which describe the relativistic symmetry of
magnetic systems, the spin space groups also contain pure spin rota-
tions. Elements of the spin space groups can be written in the form
{Rs∣∣R∣τ}, where Rs denotes the spin rotation, R is a crystallographic
point group operation, i.e., a proper or improper rotation, and τ is a
translation.Wedenote symmetry operations that contain time reversal
as fRsjjRjτg0.

In a 3D periodic system, the rules for the existence of spin-
splitting are simple to determine. For an arbitrary k-point (that is, a k-
point lying away from any high-symmetry lines or planes), the only
symmetry operations that can keep the spin invariant are the com-
bined space-inversionand time reversal (the so-called PT symmetry), a
pure spin rotation, translation, or any combination of these symmetry
operations. In a PT symmetric system, the bands with opposite spin
must be degenerate, which is known as Kramers degeneracy and holds
even in the presence of spin-orbit coupling. If a pure spin rotation is
present, the spin of all non-degenerate states must lie along the spin-
rotation axis. If more than one spin rotation with different spin axes is
present, this cannot be satisfied for non-degenerate states and thus
implies a spin degeneracy. This can also be seen from the fact that spin
rotations along different axes do not commute. Since translation does
not change spin, the same conclusions apply to symmetry operations
that contain translation. Thus spin-splitting can exist in all systems,
except those that have a PT symmetry or two spin rotation axes in the
point group. In ferromagnetic systems, spin-splitting can exist any-
where in the Brillouin zone since no symmetry operations connecting
states with opposite spin exist. In spin-split antiferromagnetic mate-
rials, there can be specific high-symmetry points where opposite spin
must be degenerate. This has been studied systematically for collinear
antiferromagnets20–31,40,41. Note that the spin-split collinear antiferro-
magnets have sometimes been referred to as “altermagnets”19.

In a collinear magnetic system, any spin rotation along the mag-
netic axis is a symmetry. Thus if there exists another spin rotation
around a perpendicular axis, the bands must be degenerate. Such a
spin rotationmust contain translation (otherwise the system could not
be magnetic) and can only be a 180° rotation, which in a collinear
system has the same effect on themagnetic order as the time reversal.
The existence of such a symmetry thus implies that the system is
invariant under a T τ (combined time reversal and translation) sym-
metry. Collinear magnetic systems can thus be separated into three
types. In systems with PT symmetry, bands are spin degenerate even
with spin-orbit coupling. In systemswith T τ but broken PT symmetry,
spin-splitting occurs only when the spin-orbit coupling is present.
Finally, in systems with broken PT and T τ symmetries, a non-
relativistic spin-splitting can be present. Such systems include both
ferromagnets as well as antiferromagnets (we use the term antiferro-
magnet here to refer generally to all magnetically ordered systems
with negligible net magnetization). We note that this separation does
not hold for non-collinear magnets since, in those, the time reversal
does not have the same effect as a 180° spin rotation, and spin rota-
tions with different angles can also occur. Consequently, there can be
non-collinear antiferromagnets with T τ symmetry that exhibit non-
relativistic spin-splitting. This was recently studied in ref. 36.

The existence of antisymmetric spin textures is governed by
symmetries that transform k → −k. This involves, in particular, the
inversion symmetry,which impliesSnk=Sn−k. In systemswith inversion
symmetry, any spin texture thus must be symmetric. In a coplanar
system a combined spin rotation and time-reversal operation
fRsðn̂?,180° ÞjjEjjEg0 is a symmetry. Here Rsðn̂?,180°Þ denotes a spin
rotation by 180° around the direction perpendicular to the magnetic
plane n̂?. As a consequence, it must hold that Sjj

nk =S
jj
n�k and

S?
nk = � S?

n�k, where S∣∣ and S⊥ denote the components of spin parallel
and perpendicular to the plane, respectively. In a coplanar system, the
only antisymmetric component is thus perpendicular to the magnetic
plane, as in the case studied byHayami et al.34. We note that evenwhen
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allmagneticmoments liewithin a plane, the electron spins can contain
an out-of-plane component. In a collinear magnetic system, this is not
possible, however, since, in this case, spin is a good quantum number
and all spins must lie along a single axis. There, any non-relativistic
spin-splitting must thus be symmetric in momentum.

Conditions for nonequilibrium spin densities and torques
Let us now turn our attention toward the non-relativistic Edelstein
effect. The nonequilibrium properties of materials obtained via the
Kubo formula are often parsed into so-called Fermi surface and Fermi
sea contributions42,43, the former being even under T and the latter
being odd. In the context of the Edelstein effect, the T -even Fermi
surface contribution is related to the antisymmetric spin texture in
momentum space16,17, whereas the T -odd Fermi sea contribution is
related to the Berry curvature in mixed spin-momentum space in the
weak scattering limit44–46. As a consequence, in spin-orbit coupled non-
centrosymmetric magnetic heterostructures, the Fermi surface con-
tribution produces the so-called field-like torque whereas the Fermi
sea contribution is responsible for the antidamping-like torque5.
Notice that the T -odd Fermi sea contribution can also be non-zero in
PT symmetric antiferromagnets with Kramers degeneracy. Further-
more, formanipulating themagnetic order inmore complexmagnetic
systems, especially in antiferromagnets, the nonequilibrium spin
density one shouldbe concernedwith is the local one, projectedon the
magnetic sublattices, rather than the global one, at the level of the
magnetic unit cell42,47. The T -even component of the local Edelstein
effect can be understood as originating from the antisymmetric spin
texture obtained upon projecting on the local atom. Such a “hidden”
texture can again exist even in systems with Kramers degeneracy48.
Consequently, the symmetry conditions that allow for the existence of
an Edelstein effect and a torque on the magnetic order are distinct
from those for the existence of antisymmetric spin textures.

The symmetry of the non-relativistic global and local Edelstein
effects and the resulting torque can be determined in a similar fashion
as for the relativistic one, just replacing the magnetic space groups
with spin groups. The key symmetry that needs to be broken for the
existence of the Edelstein effect is the inversion symmetry. This holds
regardless of the presence of spin-orbit coupling. For the global
Edelstein effect, the global inversion symmetry must be broken,
whereas for the local Edelstein effect, it has to be broken locally (e.g.,
see ref. 48). This means that for the presence of the Edelstein effect on
a given magnetic site, theremust be no inversion symmetry operation
that would leave this site invariant.

As alreadymentioned, inmagnets the Edelstein effect can be non-
zero even without spin-orbit coupling, similar to the spin Hall effect,
for example49. This applies even to collinearmagnets; however, in such
a case, the induced spin density must be oriented along the magnetic
order and does not lead to a torque (although it could play a role, for
example, in the presence of magnons). Consequently, we focus here
on non-collinear magnetic systems, seeking the symmetry rules that
govern the emergence of T -odd and T -even spin densities, respec-
tively referred to as Sodd and Seven. In the presence of a pure spin
rotation fRsðn̂,θÞjjEjjτg

�
, where τ could also be zero, the global Edel-

stein effect must obey S∣∣n. In the presence of spin rotation coupled
with time reversal fRsðn̂,θÞjjEjjτg

�0 it obeys Seven∣∣n and Sodd⊥n. The
same holds for the local Edelstein effect as long as the site is invariant
under τ. Consequently, in coplanar systems, Seven must be oriented
perpendicular to the magnetic plane and Sodd must lie within the plane
for both the global and the local Edelstein effects.

To determine the full symmetry of the non-relativistic Edelstein
effect, it is necessary to consider all the symmetry operations of the
spin group. We have implemented an algorithm for determining all
spin group symmetry operations of a givenmagnetic systemwithin the
freely available open-source Symmetr code50. The process of deter-
mining the non-relativistic symmetry is described in detail

in Supplementary materials. We have utilized this program to explore
the symmetry of non-collinear materials from the MAGNDATA data-
base of magnetic materials. We have analyzed the symmetry of 484
non-collinear magnetic materials and have found that the global
Edelstein effect is allowed in 160 of these materials, whereas the local
Edelstein effect on amagnetic sublattice is allowed in 355 compounds.
The full list is given in the Supplementary materials. As also described
in the Supplementary materials, the Symmetr code allows one to
directly obtain the non-relativistic symmetry of the Edelstein effect (as
well as other phenomena) for materials from the MAGNDATA.

Among the noticeable materials whose crystal structure admits
both a global and local (sublattice) torque, we identified ferroelectric
antiferromagnets such as orthorhombic DyFeO3, hexagonal HoMnO3,
YbMnO3, and LuFeO3, as well as metallic antiferromagnets such as
α-Mn, Tb3Ge5 and Tb5Ge4. Interestingly, the centrosymmetric metallic
antiferromagnets Mn5Si3, Mn3(Sn, Ge, As), andMn3CuN do not display
a global torque but do admit a local torque on the individual magnetic
sublattices. These torques are expected to induce magnetic excita-
tions and potentially magnetic order reversal. In the following, we
explicitly compute the global and local Edelstein effects in both
LuFeO3 and Mn3Sn as an illustration of both cases.

Non-relativistic Edelstein effect in non-collinear
antiferromagnets
To calculate the Edelstein effect and torque we use the Kubo formula
within the constant relaxation time approximation. We only consider
an Edelstein effect linear in an electric field: δSi = χijEj, where δSi is the
induced spin, Ej is the electric field, and χij is a response tensor. The
T -even and T -odd components are computed using the Kubo formula
derived in refs. 45,51,

χevenij = � e_
π

X

k,m,n

Re ½ ψkn

�
∣Ŝi∣ψkm

�
ψkm

�
∣v̂j ∣ψkn

��Γ2

ðεF � εknÞ2 + Γ2
� �

ðεF � εkmÞ2 + Γ2
� � , ð1Þ

χoddij = 2e_
X
nocc:

munocc:

k,n6¼m

Im ½hψnk∣Ŝi∣ψmkihψmk∣v̂j ∣ψnki�

×
Γ2 � ðεkn � εkmÞ2

½ðεkn � εkmÞ2 + Γ2�
2 :

ð2Þ

Hereψkn is the Bloch function of band n, k is the Blochwave vector, εkn
is the band energy, εF is the Fermi energy, v̂j is the velocity operator,
e > 0 is the elementary charge, Ŝi is the spin operator, and Γ is a
parameter that describes the strength of disorder, which is related to
the relaxation time τ = ℏ/2Γ. This parameter is usually chosen tomatch
the conductivity computed numerically with the experimental value.
To calculate the local Edelstein effect on a given sublattice, a projec-
tion of the spin operator on the sublattice is used instead.

In the limit Γ → 0, Eq. (1) goes to the semiclassical Boltzmann
constant relaxation formula, which scales as 1/Γwhereas Eq. (2) goes to
the so-called intrinsic formula, which is Γ independent and can be
understood in terms of Berry curvature in mixed spin-momentum
space46. Equations (1) and (2) are sometimes referred to as “intraband"
and “interband" contributions, respectively.

A non-coplanar 3Q antiferromagnet
An example of a non-relativistic Edelstein effect in a non-collinear
coplanar antiferromagnet was recently given by Hayami et al.34. In this
case, the coplanarity of the magnetic texture imposes the current-
driven spin density to be oriented perpendicular to the magnetic
plane. Here, we adopt a triangular antiferromagnet with a 3Q spin
texture, as displayed in Fig. 1a. This magnetic texture can be stabilized
in the presence of 4-spin interaction52,53 and hosts quantumanomalous
Hall effect10–12. The 3Q texture is also commonly observed in
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three-dimensional materials such as γ-FeMn54 and pyrochlores55. We
use a simple tight-bindingmodelwith a 3Q spin texture to illustrate the
physical properties of such systems. The model is given by

H = �
X

<ab>α

tabc
y
aαcbα + J

X

aα,β

ðσ �maÞαβcyaαcaβ: ð3Þ

Here, c† and c denote the creation and annihilation operators respec-
tively;a,bdenote the site index andα,β the spin index. Thefirst term is
the nearest-neighbor hopping term, with tab representing the hopping
magnitude. The second term represents the coupling of the conduc-
tion electrons to the on-site magnetic moments. Here mi is the
magnetic moment direction, J is the exchange parameter and σ is the
vector of Pauli matrices. We only consider nearest-neighbor hopping.
To break the inversion symmetry, we use two different hopping
magnitudes, as shown in Fig. 1b. This could be understood as due to
the presence of another atom illustrated in Fig. 1a.

The band structures of the 3Q antiferromagnet are given in Fig. 1c,
f, without and with inversion symmetry breaking. In the absence of
inversion symmetry breaking, the band structure is doubly degen-
erate. Breaking the inversion symmetry lifts the band degeneracy
(Fig. 1f) and results in a spin texture, shown in Fig. 1e. This spin texture
contains both symmetric and antisymmetric components, the latter
giving rise to the current-driven Edelstein effect and its torque. When
the inversion symmetry is broken, we observe a finite Edelstein effect
as shown in Fig. 1d, g. Several features are worth noticing. First,
because the magnetic texture of the 3Q antiferromagnet spans the 3D
space, the current-driven spin density possesses all three components,
Sx, Sy and Sz, which strikingly contrasts with the result of ref. 34. Sec-
ond, both T -even and T -odd components contribute with
similar magnitude. Finally, for the set of parameters adopted in this
calculation, i.e., the exchange and hopping energies are of comparable
magnitude (Δ = 2t = 4t′ = 2 eV), we obtain a nonequilibrium spin

density of about 10−11 ℏm/V. For the sake of comparison, in a
two-dimensional Rashba gas, the nonequilibrium spin density
is17 SRsurf=eE = ðαR=_

2Þðm0=πΓÞ. Taking Γ = 0.1 eV, m0 being the free
electronmass, αR = 10−9 eV ⋅mas the typical Rashba strength expected
in transition metal heterostructures56, and (3 Å)2 as a unit cell area, the
Edelstein effect yields χS ~ 3.6× 10

−11 ℏm/V,which is in the same range as
our calculations for the two-dimensional 3Q system reported in Fig. 1.

A centrosymmetric antiferromagnet: Mn3Sn
In antiferromagnets, and in general in more complex magnetic sys-
tems, themagnetic dynamics is not determined by the global Edelstein
effect, but rather by the local Edelstein effect on each magnetic sub-
lattice. Consequently, in antiferromagnets, it is the local rather than
the global inversion symmetry breaking that is necessary for the
existence of the Edelstein effect and the current-induced torque42. An
example of an antiferromagnet with a global inversion symmetry and a
local inversion symmetry breaking is the well-known non-collinear
antiferromagnet Mn3Sn

57,58. In this material, the global Edelstein effect
vanishes but the local Edelstein effect is allowed on each sublattice,
even in the absence of spin-orbit coupling.

The crystal and magnetic structure of Mn3Sn are given in Fig. 2c.
Mn3Sn has sixmagnetic sublattices,which are composed of three pairs
of sites with equivalent moments connected by inversion symmetry.
Notice that we neglected the small spin canting of Mn3Sn induced by
spin-orbit coupling as it has a negligible influence on the non-
relativistic torque we are concerned about. The inversion partners are
denoted by′ in Fig. 2b. Due to the inversion symmetry, the Edelstein
effect on the two inversion-connected sites must be opposite. The
local Edelstein effect tends to drive the system into a state where the
magnetic moments of the inversion-connected sites are not parallel
and thus it acts against the exchange. As such, it is unlikely to reverse
the magnetic order but it can excite different magnonmodes. Leaving
the rigorous analysis of the magnetic dynamics to future studies, we

(a)

(b)

(d)

(e)

(c)

(f)

(g)

Sz

-1.5

+1.5

Fig. 1 | Global torque in the 3Q triangular antiferromagnet. a Sketch of the
triangular lattice with 3Q non-coplanar configuration of the magnetic moments.
The blue atoms are magnetic and the green atoms break the planar inversion
symmetry.bTop viewof the triangular lattice. Thehopping parametersof the black
and red bounds are t and t0, respectively. c In-plane spin texture in momentum
space at energy ε = −5 eV, corresponding to the red dashed line in panel (e).

d, e Band structure for t0 = t and t0 = t=2, respectively. In the absence of inversion
symmetry breaking, t0 = t, the degenerate bands display compensating spin texture
inmomentum space.When t0≠t, the band degeneracy is lifted and the spin textures
no longer compensate. The color scale indicates the value of Sz. f, g T -even (f)
T -odd (g) contributions for t0 = t=2 and ε = −4 eV when rotating the electric field
direction in the (x,y) plane. We set t = 1 eV, Γ = 0.1 eV and the exchange is J = −2 eV.
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emphasize that the global inversion symmetry can be broken, for
example, by an interface. Then the two sites with the same moments
are no longer connected by inversion symmetry and consequently can
experience the Edelstein effect of the same sign, enabling the electric
manipulation of the magnetic order.

We evaluate the Edelstein effect in Mn3Sn using ab initio calcula-
tionswith andwithout spin-orbit coupling (see “Methods” for detailsof
the calculation setup). The result of the calculation for Γ = 0.01 eV is
shown in Fig. 2a.Wefind substantial T -even and T -odd Edelstein effect
on all sublattices. Including the spin-orbit coupling does not change
the results substantially, similar to previous calculations of the spin
Hall effect in this material13. Our calculations agree well with the
symmetry analysis shown in the Supplementarymaterials. Notice that,

again, the magnitude of the current-driven spin density is rather large,
corresponding to a Rashba strength of 10−9 − 10−10 eV ⋅ m.

We note that current-induced switching of Mn3Sn has
been experimentally observed in Mn3Sn/non-magnetic metal
heterostructures59–62. The switching has been attributed to the spin
Hall effect from the non-magnetic metal layer and to spin-transfer
torque and inter-grain spin-transfer torque, however, it is possible that
the non-relativistic Edelstein effect also contributes.

A non-centrosymmetric antiferromagnet: LuFeO3

As an example of a real non-collinear antiferromagnet that can exhibit
a global non-relativistic Edelstein effect and torques, we consider the
hexagonal LuFeO3, a multiferroic with antiferromagnetic order. In
bulk, LuFeO3 is typically orthorhombic. However, the hexagonal phase
has been stabilized in thin layers63 and can also be stabilized in the
bulk64. It has a non-collinear coplanar antiferromagnetic structurewith
magnetic space group (MSG) #185.201 (P63c’m’) as presented in
Fig. 3a63,64. The inversion symmetry is broken in this material by the
crystal structure, which suggests the possibility of non-relativistic spin
torques. The system has a small net moment of ~0.02μB along the z
direction (weak ferromagnetism). Thismoment is of relativistic origin,
and thus, in the absence of spin-orbit coupling, themagnetic structure
is perfectly compensated. Apart from the magnetic order, hexagonal
LuFeO3 also exhibits a ferroelectric order that is present below ~1000K
and the material has attracted large attention for its multiferroic
properties and the possibility of magneto-electric coupling63–65.

The non-relativistic electronic structure is shown in Fig. 3b. The
material is insulating; here we only show the valence bands, which are
relevant to our calculations. As can also be seen in Fig. 3b, the bands
are spin-split and thus there is also a non-relativistic spin texture,
shown in Fig. 3c for two cuts through the Brillouin zone. Due to the
coplanarity of themagneticorder, the spin texture is symmetric for the
Sx and Sy components and antisymmetric for the Sz component. The Sz
component is non-zero but very small.

For the calculation of the Edelstein effect, wemove the Fermi level
into the valence band to simulate doping. Our symmetry analysis
shown in the Supplementary materials shows that the Edelstein effect
is allowed in LuFeO3 even with no spin-orbit coupling. Results of
the calculation for Γ = 0.01 eV with and without spin-orbit coupling
are given in Fig. 4.We calculate both the global Edelstein effect and the
local one for all Fe sublattices. For brevity though, we only show here

Fe kz=0.25

kz=-0.25

Lu
O
(a) (b) (c)

Sx

Sz

Fig. 3 | The non-centrosymmetric antiferromagnet LuFeO3. a The crystal and
magnetic structure of the hexagonal LuFeO3. b LuFeO3 band structure without
spin-orbit coupling. The color denotes the Sx projection. X points represent
opposite kx coordinates, Z points represent opposite kz coordinates, and P points
represent opposite kx, ky, kz coordinates in the Brillouin zone. Asymmetric -odd in k-
and symmetric -even-spin-splitting is labeled in the corresponding k-path. c The

spin texture of LuFeO3 at the Fermi surface for Fermi level 0.45 eV below the top of
the valenceband.Weplot the spin texture for twoplanes corresponding to kz=0.25
Å−1 and kz = −0.25 Å−1. The center of the figure lies at the Γ point. The arrows
represent the spin and we use the color to highlight the z-component of the spin
since it would be hard to distinguish otherwise.
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the result for the global effect and for one sublattice. The full results
are shown in the Supplementary materials.

Our calculations reveal a large non-relativistic global and local
Edelstein effect in good agreement with the symmetry analysis. With-
out spin-orbit coupling for the global effect, only the T -odd compo-
nent is allowed (Fig. 4b). With spin-orbit coupling, even the global
T -even component appears (Fig. 4a). We find that the effect of spin-
orbit coupling is quite small for the T -odd component, but fairly large
for the T -even component. For the local effect (Fig. 4c, d), both T -even
and T -odd components are allowed.

An important remark is in order. The T -even component has to
vanish within the gap since it is a Fermi surface property (see Eq. (1)).
The global T -odd component vanishes within the gap as well (Fig. 4b).
However,wefind that the localT -odd components on the Featomsare
non-zero within the gap, as shown in Fig. 4d and in the Supplementary
materials. Only the xz and yz components are non-zero within the gap,
reaching a constant value. Such a result is intriguing as within the gap,
there is noOhmic conduction, and thus heat dissipation is absent. This
could consequently allow for electric field control ofmagnetic order in
the absence of Ohmic dissipation. The existence of spin-orbit torque in
an insulator was previously studied in topological materials46,66,67.
Since the T -odd Edelstein effect is related to the Berry curvature in
spin-momentum space, it arises from matrix elements between occu-
pied and unoccupied states which do not necessarily vanish in the gap.
Our results are similar, except that in the case of LuFeO3, the origin of
the torque is non-relativistic, due to the coexistence of the non-
collinear magnetic order with inversion symmetry breaking. We point
out that the torque is not quantized, contrary to the quantized
magneto-electric effect in topological insulators66,68, and therefore
unlikely to be of topological origin. We are also not aware of any
topological properties of LuFeO3. The T -odd torque is governedby the
Berry curvature in mixed spin-momentum space and involves elec-
trically driven interband transitions, resulting in a finite (but not
quantized) value in the gap.

We note that inmetals the torques induced by an electric field are
accompanied by an electric current and thus often referred to as
“current-induced” torques. However, even in metals, the torques are,
in fact, due to the electricfield rather than to the currentflow, although
the torque cannot exist without Ohmic conduction. In non-
centrosymmetric insulating magnets though, Ohmic conduction is

suppressed while the electrically driven torque remains sizable, as
demonstrated in LuFeO3. This opens promising perspectives for the
dissipation-free electrical control of magnetization.

Non-centrosymmetric heterostructures
The examples we have discussed so far all have inversion symmetry
(globally or locally) broken in the bulk of their crystal structure. Such a
constraint, however, severely restricts the Edelstein effect to the
materials listed in the Supplemental materials. For this reason, we
propose to exploit the broken inversion symmetry taking place at the
interface between the non-collinear antiferromagnet and an adjacent
metal. Such heterostructures are commonly utilized for spin-orbit
torque, where the ferro- or antiferromagnet is typically interfacedwith
a heavy elementmetal such as platinum5. This simple but instrumental
configuration allows for observing the spin-orbit torque in a wide
variety of systems and enables interfacial engineering of the spin-orbit
torque properties.

The same concept can be applied to the non-relativistic Edelstein
effect. When a non-collinear magnetic material with inversion sym-
metry is interfaced with a different material, the broken inversion
symmetry can result in a non-relativistic Edelstein effect, which in turn
generates a torque on the magnetic order. We illustrate this concept
using the example of the well-known non-collinear antiferromagnet
Mn3Ir, whose crystal and magnetic structures are displayed in Fig. 5a.
In this material, each magnetic site is an inversion center, and thus no
Edelstein effect is allowed in the bulk. To break the inversion sym-
metry, we consider a thin layer ofMn3Ir interfacedwith a thin layer of a
non-magneticmaterial.WhenMn3Ir is grownalong the [001] direction,
the non-relativistic Edelstein effect in such a heterostructure is only
allowed for an electric field along the [001] direction. In such a case no
electric current can flow, however. Thus we instead consider Mn3Ir
grown along the [111] direction. For this orientation, the symmetry is
lowered, and the Edelstein effect is allowed for an electric field
oriented along the interface. We consider a structure composed of 12
atomic layers of the Mn3Ir, as shown in Fig. 5b. The individual atomic
layers are shown in Fig. 5c.

We utilize a simple tight-binding model that is not meant to give
quantitative predictions but rather to confirm that the effect can exist
and illustrate its basic properties. The model is analogous to the one
we have used for the 3Q antiferromagnet. It is composed of s-electrons
on each site with nearest-neighbor hopping and exchange coupling to
the atomic magnetic moments. Similar models have been utilized to
demonstrate other properties of the Mn3Ir and similar antiferro-
magnets such as the non-relativistic spin currents13 or the anomalous
Hall effect69. We do not include any spin-orbit coupling in the model.
The Hamiltonian is in Eq. (3), where we consider nearest-neighbor
hopping t = 1 eV and magnetic exchange J = 1.7 eV on Mn atoms (gray
and gold atoms representing non-magnetic layer and Ir atoms,
respectively, are not endowed with magnetic moment).

The calculated Edelstein effect is shown in Fig. 5c for each sub-
lattice and atomic layer. For this calculation, we have used Γ = 0.01 eV
and εF =0 eV.Our calculations are fully in agreementwith the symmetry
analysis, shown in the Supplementary materials. Both T -even and
T -odd components are present. We find the largest effect close to the
interfaces, although the current-driven spin density remains sizable in
the center of theMn3Ir layer. A large effect is foundboth at the interface
with thenon-magnetic layer andat the top surface,which illustrates that
the presence of another layer is, in principle, not necessary.

In Fig. 5, we only give the result of the calculation for the tensor
components that correspond to an in-plane electric field. Interestingly,
the out-of-plane components do not vanish even though no current
canflow in the out-of-plane direction, similar to the case of the LuFeO3.
In this case, however, since the system is metallic, the out-of-plane
electric field is screened, and thus the effect is hard to observe in
practice.

xx
xy

xz
yx

yy
yz

zx
zy

zz

5

0

5
S

[
 m

/V
]

1e 11

5

0

5
1e 12

0.4 0.2 0.0
E - EF [eV]

1

0

1

2

S
[

 m
/V

]

1e 10

0.4 0.2 0.0
E - EF [eV]

1

0

1

1e 11

(a)

(c) (d)

(b)

Fig. 4 | Edelstein effect in LuFeO3 computed with (dashed lines) and without
spin-orbit coupling (solid lines). Here zero energy corresponds to the top of the
valence band. a T -even component of the total Edelstein effect. b T -even com-
ponent of the local Edelstein effect. c T -odd component of the total Edelstein
effect. d T -odd component of the local Edelstein effect.

Article https://doi.org/10.1038/s41467-024-51565-6

Nature Communications |         (2024) 15:7663 6

www.nature.com/naturecommunications


In addition to the Mn3Ir bilayer, we also include results of analo-
gous tight-binding calculations for the Mn3Sn/Ru bilayer in the Sup-
plementary materials. These results show that, in the presence of
interfacial inversion symmetry breaking, the compensation of the
Edelstein effect on inversion-pair sublattices that naturally occurs in
bulk Mn3Sn is no longer fulfilled. Consequently, a net Edelstein effect
emerges, allowing for efficientmanipulation of themagnetic order.We
have also included preliminary results of first-principles calculations of
the Mn3Sn/Ru bilayer. These calculations, only included for illustra-
tion, show that the magnitude of the Edelstein effect in the first-
principles calculations is comparable to the results of the tight-binding
calculations.

Discussion
The torque induced by the non-relativistic Edelstein effect shares
important similarities with the conventional spin-orbit torque. Both
torques are electrically driven self-induced torques that necessitate
inversion symmetry breaking, either locally or globally. The key dif-
ference though is that the torque due to the non-relativistic Edelstein
effect does not originate from spin-orbit coupling but rather from the
non-collinear magnetic order. As a consequence, the microscopic
origin of these two torques is quite distinct. In the non-relativistic limit,
spin is conserved and the torque is directly associated with a spin
current: the torque corresponds to spin sources33 and can be under-
stood as a local transfer of spin angular momentum within the mag-
netic unit cell.

In the present work, we have computed the non-relativistic Edel-
stein effect in four different systems, all displaying inversion symmetry
breaking, either in the magnetic unit cell or locally. It is quite
remarkable that all the examples discussed here display a sizable
electrically induced spin density, in spite of the absence of spin-orbit
coupling. For the sake of comparison, in our previous calculations of
the relativistic Edelstein effect in a collinear antiferromagnet Mn2Au,
we found a magnitude of χS ~ 4.3 × 10−11 ℏm/V for Γ = 0.01 eV42, corre-
sponding to a Rashba strength of 10−9 eV ⋅ m, similarly to the magni-
tude reported in our realistic simulations on LuFeO3 and Mn3Sn.
Further systematic studies as necessary to determine the conditions
for a maximal non-relativistic Edelstein effect.

A central feature of the non-relativistic nature of the torque is its
dependence on the magnetic order. In most magnetic systems, the
magnetic exchange is much larger than any other magnetic interac-
tions or torques acting on the system. Hence, during the dynamics of
the magnetic order, the angles between the individual magnetic
moments stay approximately unchanged. Therefore, the dynamics of
themagnetic order are described by an overall rotation of all magnetic
moments and a small canting. In the non-relativistic limit (ignoring the
small canting) the rotated states are connected by a spin rotation and,
consequently, the corresponding torquesmust also be transformedby
this spin rotation. Specifically, any torque acting onmagneticmoment
Mi can be written as Ti =Mi ×Bi, whereBi is an effectivemagnetic field.
When themagneticmoments are rotated by rotation R then the torque
reads Ti = RMi × RBi. This is quite distinct from the conventional spin-
orbit torque for which the two most important terms are the field-like
torque, in which Bi is independent ofM, and the antidamping torque,
in which Bi ~ Mi × p, p being some constant direction5.

Because of the dependence of the non-relativistic torque on the
magnetic order, it may be difficult to realize reversible switching since
there can be no magnetic configuration for which the effective field Bi

vanishes. This might not be such a limitation in practice, however,
since some spin-orbit coupling is always present, which may enable
deterministic switching even in cases where the non-relativistic torque
is dominant. Furthermore, deterministic switching could be achieved
by using field-assisted switching or precise pulse timing. In the pre-
sence of antiferromagnetic domain walls, the non-relativistic torque
could provide an additional source of spin current and therefore
enhance or quench the domain wall mobility, depending on the wall
configuration. In fact, the very dependence of the torque on the
magnetic ordering makes the interplay between the flowing electrons
and the magnetic order particularly rich and, as such, the non-
relativistic torque is well adapted to excite magnetic modes and self-
oscillations which, in antiferromagnets, are particularly appealing for
THz applications.

Methods
The DFT calculations use the VASP code70 and we use the Wannier90
code71 to construct theWannier Hamiltonian that serves as an input to
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the linear response calculations. For LuFeO3 we use 9 × 9 × 3 k-point
mesh and 520 eV cutoff energy. For the Wannierization, we use the
s and d orbitals for Fe, s and p orbitals for O and εF ± 3 eV frozen energy
window. For Mn3Sn we use 11 × 11 × 11 k-point mesh and set the cutoff
energy to 520 eV. For theWannierization, weuse the s, p, and dorbitals
for the Mn atoms, s and p orbitals for the Sn atoms, and we set the
frozen energy window to εF ± 2 eV.

For the linear response calculations, we use the Linres code72. This
code uses the Wannier or tight-binding Hamiltonian as an input. This
Hamiltonian is then Fourier transformed to a dense mesh in the reci-
procal space, which is used for evaluating the Kubo formulas as
described in ref. 14.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon request.

Code availability
The open-source codes used in the work are available on the following
links: refs. 50,72.
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