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Localization and recognition of human
action in 3D using transformers
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Understanding a person’s behavior from their 3D motion sequence is a fundamental problem in
computer vision with many applications. An important component of this problem is 3D action
localization, which involves recognizing what actions a person is performing, and when the actions
occur in the sequence. Topromote the progress of the 3Daction localization community, we introduce
a new, challenging, and more complex benchmark dataset, BABEL-TAL (BT), for 3D action
localization. Important baselines and evaluating metrics, as well as human evaluations, are carefully
established on this benchmark.We also propose a strong baselinemodel, i.e., Localizing Actionswith
Transformers (LocATe), that jointly localizes and recognizes actions in a 3D sequence. The proposed
LocATe shows superior performance onBABEL-TAL aswell as on the large-scale PKU-MMDdataset,
achieving state-of-the-art performance by using only 10% of the labeled training data. Our research
could advance the development of more accurate and efficient systems for human behavior analysis,
with potential applications in areas such as human-computer interaction and healthcare.

Understanding a person’s behavior in the 3Dworld is a fundamental and
important problem1–9. A momentous step towards solving this is iden-
tifying what actions a person is performing, as well as when, where, and
why the actions are performed. 3D Temporal Action Localization (3D-
TAL) involves recognizing actions that a person is performing in a 3D
motion sequence, and locating precise start and end times of each action,
as illustrated in Fig. 1a. This research has various potential
applications10–12. For example, 3D action localization may enable the
automatic retrieval of semantically relevant movements for graphic
artists and game designers who use large databases of 3D data to animate
virtual characters. In contrast to RGB temporal action localization, 3D-
TAL focuses on the bodymotion alone, factoring out effects of the image
texture and lighting variation, which can result in bias in action
recognition9,13. Compared to RGB temporal action localization, 3D-TAL
task using motion-captured data provides several advantages. It offers
accurate spatial and temporal information14, robustness to
occlusions15,16, invariance to viewpoint changes17, and enables fine-
grained analysis of body dynamics18,19. These benefits make it a valuable
approach for a range of applications, including Human-Computer
Interaction (HCI), animation, and AR/VR systems20–22. Furthermore,

there is a potential for integrating Large Language Models (LLMs) with
3D-TAL, opening up new possibilities for analysis and synthesis23–25.

Despite the decreasing cost of 3D sensors, e.g., Kinects, phones, and
iPads, and the growing accessibility to 3D human movement data26–29,
progress in 3D-TAL30–33 has nearly stagnated in recent years.We argue that
the lack of a suitable benchmark dataset limits the progress on this task.
Current benchmarks are recorded in constrained indoor environments,
leading to a lack of data diversity. Taking the large-scale PKU-MMD32

dataset as an example, although the number of action categories is relatively
large, the intra-class variance is actually low.Aproof-of-concept experiment
shows ameanAverage Precision (mAP) of 91.9% could be reached by using
10% of the labeled training data.

In light of the limitations of current benchmarks and the necessity of
pushing forward the development of 3D-TAL, we introduce a new bench-
mark, namely BABEL-TAL (BT). This dataset is carefully built on the recent
BABEL dataset34. With the aim of thoroughly assessing the model’s per-
formance, we systematically categorize the classes within BABEL-TAL into
two tiers of granularity, encompassing 20 and 60 classes, respectively. As a
result, two distinct subsets are created: BABEL-TAL-20 (BT-20) and
BABEL-TAL-60 (BT-60). Moreover, a comprehensive dataset,
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encompassing more fine-grained action classes, is designated as BABEL-
TAL-ALL (BT-ALL). In applications involving human-computer interac-
tion, precise action localization is crucial for accurately interpreting and
responding to human actions. For example, a domestic robot equippedwith
fine-grained action recognition capabilities could accurately locate and
retrieve household items, assist with cooking or cleaning tasks, and provide
support for elderly or disabled individuals in daily activities. Our datasets
specifically address these objectives by providing fine-grained annotations
and a diverse range of activities, which we believe will be instrumental for
future research and applications.

Actions in the BT dataset vary widely in complexity, and samples have
large intra-class variances. As shown in Table 1, compared with previous
datasets, BT contains more complex movement sequences, with a long-
tailed distribution of actions. In fact, experimental results have demon-
strated that BT-20 poses a challenge for existing 3D-TAL methods. We
observe that a previousmethod31 that could achievemAPof 81.1%onPKU-
MMD32, could only achieve a surprisingly low mAP of 11.4% on BT-20. In
order to further the research in this field, it is essential to curate new chal-
lenging datasets, such as BT, that encompass a broader range of complex
scenarios and diverse contexts, spanning various application domains, to
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Fig. 1 | Overview of 3D-TAL, LocATe, and BT-ALL. a 3D-TAL Task Description:
3D Temporal Action Localization (3D-TAL) involves identifying actions and their
precise spans (start and end times) in a 3D motion sequence. We compare the
human-provided labels for the 3D motion with predictions from our proposed
LocATe approach. Predictions from LocATe correlate well with human labels,
including simultaneous actions (visualized as temporal overlaps between different
action spans). LocATe produces accurate localizations, and meaningful actions

(even when disagreeing with the human label, e.g., “Grasp Something” vs. “Bend'').
b LocATe Framework: Given a sequence of human poses, LocATe outputs a set of
action spans via an encoding-decoding paradigm. c Class frequency distributions of
the introduced BABEL-TAL-ALL (BT-ALL): This dataset offers a rich spectrum of
action labels and demonstrates intra-class diversity. Additionally, the distribution of
action data closely follows a long-tailed pattern, mirroring real-world scenarios.
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provide a benchmark database for a holistic evaluation of differentmethods.
This dataset will serve to validate algorithms’ robustness and generalization
capabilities, inspiring researchers to develop more robust and adaptable
methods. In order to establish a robust baseline model that can serve as a
foundation for future research on BT, we draw upon the recent advance-
ments in Transformer architecture and present our approach, called Loc
alizing A ctions with T ransforme rs (LocATe). LocATe is designed to
address the challenges in 3D-TAL by effectively capturing global correla-
tions among frames in extended sequences. Despite its simplicity, LocATe
proves to be highly competitive, demonstrating promising results in the task
at hand. Unlike other vision transformers35,36 based on image patches or
features, LocATe takes a sequence of 3D human joint positions as the input.
Given the 3D skeleton sequence, we formulate action localization and
recognition as an action-span set prediction problem which enables the
proposed method to trivially model simultaneous actions. In a nutshell,
LocATe is an end-to-end approach for 3Daction localization,much simpler
and more accurate than existing multi-stage methods.

Contributions. (1)We introduce a large-scale and challenging dataset
BABEL-TAL (BT) for 3D action localization and establish important
baselines on this dataset. (2)Weempiricallyfind that there exist human label
disagreements in annotations for 3D action localization anddevise a human
evaluation method to complement the automatic mAP evaluation. (3) We
present an end-to-end baseline model named LocATe, which leverages the
Transformer architecture and incorporates deformable attention

mechanisms. Our proposed model achieves superior performance on the
BT-20 dataset and other public benchmark datasets, surpassing the state-of-
the-art methods, with a remarkable mean Average Precision (mAP) of
91.9% attained using just 10% of the labeled training data on the PKU-
MMD dataset.

Results
In this section,we evaluate and analyze the performance of existing 3D-TAL
models as well as LocATe on BT, focusing primarily on the BT-20 bench-
mark, given its exemplar nature within BT series and the complexities that
current methods face when dealing with the more difficult BT-60 and BT-
ALL benchmarks. To attain further insights into the proposed BT bench-
marks and the baseline model LocATe, we also compare with the results on
existing popular datasets. Analyses and discussions are provided. Themean
Average Precision (mAP) at various temporal IoU thresholds is used to
measure the performance.

Experimental Setup
Ourmodel is implemented using PyTorch and trained on anNVIDIAA40
GPU. We compare our approach with 3D-TAL baselines such as Beyond-
Joints31 and Cui et al.30. Additionally, we adapted 2D-TAL methods as
baselines but found that the pre-trained backbones they used on 2D video
data were not suitable for 3D-TAL. Therefore, we replaced them with
similarly sized CNN or Transformer architectures. We first train both the

Table 1 | Comparison of existing 3D action localization datasets

Datasets Classes Sequences Instances Subjects Modalities Year Duration

G3D46 20 210 1467 10 RGB, D, S 2012 —

CAD-12076 20 120 ~1200 4 RGB, D, S 2013 —

Comp. Act49. 16 693 2529 14 RGB, D, S 2014 —

Watch-N-Patch48 21 458 ~ 2500 7 RGB, D, S 2015 230 min

OAD77 10 59 ~ 700 — RGB, D, S 2016 216 min

PKU-MMD32 51 1076 21545 66 RGB, D, IR, S 2017 3000 min

Wei et al.51 35 201 — — RGB, D, S 2020 —

BABEL-TAL-20 20 5727 6244 346 3D Mesh, S 2024 —

BABEL-TAL-60 60 6808 7332 584 3D Mesh, S 2024 —

BABEL-TAL-ALL 102 8808 9617 925 3D Mesh, S 2024 2580 min

The BABEL-TAL (BT) dataset stands out from existing 3D action localization datasets in several key ways. Firstly, it pioneers in using 3D motion-capture data to provide precise body joint movements for
temporal action localization. Secondly, this dataset comprises an extensive range of action labels and showcases substantial intra-class diversity. Thirdly, the action data adheres to a long-tailed
distribution, mirroring real-world scenarios. Lastly, the dataset contains continuous actions in extended motion sequences, free from environmental or actor constraints. D Depth, S Skeleton, IR Infrared
Radiation.

Table 2 | Quantitative evaluations on the BABEL-TAL-20 (BT-20) dataset

Method tIoU mAP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Beyond-Joints31 14.3 13.6 13.3 12.3 11.4 10.5 8.9 6.2 4.1 10.5

ASFD72 24.2 23.1 22.6 22.2 21.9 20.4 18.9 12.2 9.0 19.3

SRN51 25.1 24.0 22.7 21.7 20.1 18.2 16.7 15.9 10.4 19.4

TSP73 26.9 25.6 24.1 23.0 22.5 20.4 17.1 13.0 10.1 20.3

G-TAD37 25.1 24.1 23.9 23.0 22.1 21.1 18.5 14.1 11.8 20.4

AGT38 27.3 26.0 25.7 24.5 23.4 21.5 19.4 15.9 12.4 21.9

ActionFormer39 30.4 27.1 25.3 25.1 24.5 22.7 20.6 16.1 12.0 22.6

LocATe 43.5 41.1 41.0 38.2 35.1 30.5 23.7 16.4 9.99 31.1

LocATe w/ tricks 46.6 45.5 43.0 40.2 36.0 30.5 23.7 15.9 9.78 32.0

We report the APwith the tIoU in the range [0.1, 0.9] aswell as themAP. LocATe represents our single-stage transformer-based approach,while LocATew/ tricks refers to ourmethod enhancedwith tricks,
including iterative boundingbox refinement anda two-stagedecoder40. Notably, our approachLocATeoutperforms thepreviousmethodBeyond-Joints,withparticularly substantial improvementsat lower
tIoU thresholds when compared to other benchmark methods. AP Average Precision, tIoU threshold IoU,mAPmean Average Precision.
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baselines and our LocATe model from scratch on the BT-20 dataset and
evaluate their performance (Table 2). To better understand the differences
betweenBT-20 and previous 3Dbenchmarks, we also train and evaluate the
baselines and LocATe from scratch on PKU-MMD, a popular 3D-TAL
benchmark prior to BT-20 (Table 3).

Comparative analysis
Performance of baselines. Table 2 shows the experimental results of
baseline models and LocATe on the BT-20 dataset. Firstly, it is evident
that all baseline models yield notably low mAPs when evaluated on the
BT-20 dataset. All models, including the baselines and our LocATe, are
trained and evaluated from scratch on BT-20. For instance, considering
the Beyond-Joints31model, which achieves an impressive 91.1%mAP in a
cross-view setting on the PKU-MMD dataset, it completely fails on the
BT-20 dataset, with a mAP of only 10.5%. This substantial drop in per-
formance underscores the considerable challenge posed by the BT
benchmarks. Besides, we observe that the G-TAD baseline37 outperforms
the RNN-based prior work Beyond-Joints31. This suggests that modeling
global context, including background, is more effective than only mod-
eling local temporal neighborhoods. Graph-based approaches such as
AGT38, which can also model long-term context, outperform Beyond-
Joints by larger margins. While ActionFormer39 utilizes Local Self-
Attention, we believe LocATe’s Deformable Attention is more effective,
as it captures local information with variable receptive fields. Further-
more, the multiscale approach of ActionFormer is less applicable to 3D
data, which is different from 2D images and does not require scaling.

Performance of LocATe. LocATe w/ tricks denotes the proposed
method using tricks of iterative bounding box refinement and a two-stage
decoder40, whereas LocATe is the plain version. We can observe that our
approach LocATe outperforms the prior method Beyond-Joints. The
performance increases of LocATe over other comparative methods are
evident for lower threshold IoU (tIoU) thresholds. For downstream tasks
such as recognition and retrieval, a detection model with a high recall is
more important than achieving high precision. Furthermore, we observe
that iterative bounding box refinement and two-stage decoders can
further improve the performance of the algorithm. The two-stage
decoder first proposes action spans, which are then provided as action
query features to the decoder. These improvements present an interesting
trade-off between model complexity and performance. It also suggests a
potential direction for improvement by learning better action features.

Analysis of Different Actions
Temporal action localization involves two sources of error: localization and
recognition. To further understand the recognition error, we visualize the
confusion matrix of action classification on predicted spans in Fig. 2. We
find that the action “stand” is confused with many other actions. This is
understandable since in the ground-truth data, a person is rarely labeled as
“stand” when other actions are present. This shows that our dataset is
challenging and diverse, and our annotation is fine-grained and accurate.
Besides, we alsofind that the actions “throw” and “catch” are often confused

by themodel, as they frequently occur in succession in themotion sequence.
The recognition error may be largely due to the localization error, which
causesmisalignment between predicted and ground-truth action spans.We
find that despite the low precision, “grasp something” is in fact, predicted
frequently, and often confusedwith “lift something” because theymay share
similar motion patterns, features, and temporal context.

Figure 3 shows how the Average Precision (AP) for each action varies
across different tIoU thresholds. We observe a large variance in the AP of
each class, both in terms of absolute values and sensitivity to tIoU settings.
For example, we find that “run” and “walk” achieve the highest AP scores,
while “touch body part” has the lowest AP scores. This may be because the
former actions are easier to distinguish from others, while the latter actions
are more ambiguous and complex. “exercise/yoga” and “touch body part”
are highly context-dependent, meaning their correct identification relies
heavily on the surrounding context. Without clear contextual cues, the
model may struggle to accurately predict these actions. We also notice that
increasing the number of samples per class improves the performance, as it
provides more training data for the model. However, other contributing
factors, such as the intra-class variance, also affect the AP of each class. For
instance, LocATe achieves reasonable AP for “place something”, despite
having fewer labeled data than some other classes.

Human Experiments
Different from labeling theboundingboxof anobject, labeling anactionand
marking its precise start and end frames in a video is a highly subjective task.
Invariably, there exists disagreement between human labels for the same
motion sequence. However, the definition of “ground-truth” labels typically
only considers an annotation from one person. This implies that although
the upper bound of the mAPmetric is 100.0%, an approachmight perform
quite well even if its mAP ≪ 100.0%.

Experiments of Human Evaluation. To address the above limitation of
automatic evaluation of themAPmetric for 3Daction localization,we use
an evaluation method that directly compares the performance of two
approaches via a head-to-head human evaluation. We simultaneously
present an evaluator with two videos of the same motion sequence.
Human evaluators are recruited from the crowdsourcing platform
Amazon Mechanical Turk. The task interface is illustrated in Fig. 4. The
evaluator answers the following question –Which labels bettermatch the
motion (left or right)? The task interface for the human study is provided
in the Supplementary human_eval/task.html. Note that the sequence and
labels are random in the provided sample. The order in which the labels
from the different methods appear (left or right) is randomized across
trials. As an example, we compare LocATe with Beyond-Joints31 and
G-TAD37, respectively. We collect votes from 5 unique evaluators for
each motion sequence to account for subjectivity. We observe that
human evaluators prefer labels from LocATe 69.20% of the time, higher
than 30.80%of Beyond-Joints.We also observe that LocATe outperforms
G-TAD with 55.31% vs. 44.69%. It is encouraging that the mAP metric
and human evaluation appear to be correlated. The differences between
Beyond-Joints and LocATe are larger than the differences between
G-TAD and LocATe under both metrics.

Results on PKU-MMD
PKU-MMD32 is a large-scale dataset for 3D action localization and is
recorded using Kinect v2. It contains 1076 long videos performed by 66
subjects from 3 different camera views. Each video has more than 20 action
instances from 51 action categories. We follow the same cross-subject and
cross-view evaluation settings32 and compute the mAP of different actions.
Table 3 shows the comparison of the proposed method with previous
methods. LocATe achieves state-of-the-art performance and in particular, it
outperforms prior arts by nearly 10% in cross-subject evaluation.

We further conduct experiments that only use a fraction of training
data to train 3D action localization models. We compare the results with
Beyond-Joints31 under the same settings in Fig. 5. We find that the

Table 3 | Comparison of the proposed method with previous
methods on the PKU-MMD dataset (mAP@tIoU = 0.5)

Method Cross-view Cross-subject

JCRRNN77 53.3 32.5

TAP-B-M78 48.6 35.2

Beyond-Joints31 91.1 81.1

Cui et al.30 93.3 83.5

LocATe 94.6 93.2

LocATeattainsstate-of-the-art performanceandstandsoutbysurpassing thepreviousmethodsby
almost 10% in the context of cross-subject evaluation. PKU-MMD Peking University Multi-Modal
Dataset,mAP mean Average Precision, tIoU threshold IoU.

https://doi.org/10.1038/s44172-024-00272-7 Article

Communications Engineering |           (2024) 3:125 4

www.nature.com/commseng


Fig. 2 | Confusion matrix for action recognition on the predicted spans on the
BABEL-TAL-20 (BT-20) dataset. A cell contains the number of samples that are
wrongly predicted in action classification. The color of a cell along the diagonal
represents the precision of a particular class. Notably, we observe that the action
“stand” is frequently mistaken for several other actions, highlighting the challenging
and diverse nature of our dataset, as well as the precision of our annotations.

Additionally, we have noticed that the actions “throw” and “catch” are often mis-
classified by the model, which can be attributed to their frequent occurrence in
sequence, likely leading to localization errors causing misalignment between pre-
dicted and ground-truth action spans. Furthermore, despite its lower precision, the
action “grasp” is frequently predicted and commonly confused with “lift” because
they may share similar motion patterns, features, and temporal context.

Fig. 3 | Average Precision (AP) for each action
across varying threshold IoU (tIoU) thresholds on
BABEL-TAL-20 (BT-20). The number of samples
per class is annotated in parentheses beside actions
in the legend. We notice a disparity in the AP scores
for each class, both in terms of their absolute values
and their sensitivity to changes in tIoU settings.
Specifically, we observe that “run” and “walk”
achieve the highest AP scores, whereas “touch body
part” exhibits the lowest AP scores. This divergence
might stem from the former actions being relatively
more distinguishable from other actions, while the
latter ones are characterized by greater ambiguity
and complexity.
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performanceof our approachdoesnot evendecreasewhenusingonlyhalf of
the training data. When using 10% for training, our approach still achieves
91.9% mAP in cross-view evaluation. In contrast, the performance of
Beyond-Joints drops sharply when using small fractions of training
data. This experiment demonstrates the consistency and scalability of the
proposed approach when only a small amount of labeled data is available.
It also indicates the low intra-class variance among the action categories
in the PKU-MMD dataset, suggesting a new and challenging 3D
action localization benchmark is needed to advance future research in
this area.

Visualization of Predictions
We provide html files in the Supplementary viz/ folder that visualize results
from different approaches on the BT-20 benchmark. Note that these are

fully self-containedfiles that do not contain external links and do not collect
any information about the user.

We render videos from the 3D mocap sequences from AMASS26, and
overlay action labels on the videos. The human labels (ground-truth)
derived from BABEL34, are visualized in viz/human_label.html. The pre-
dictions from the prior RNN-based approach Beyond-Joints31 are in viz/
beyond_joints.html.

In viz/LocATe_opt.html, we visualize the predictions from our
approachwhere the spans correspond to the optimalmatchwith the human
labels.While the raw predictions from LocATe are reasonable, they include
many short, overlapping spans that are false positives. To enable use in
downstream applications, we apply Non-maximum Suppression (NMS) to
the predictions from LocATe. The results from LocATe with NMS are
visualized in viz/LocATe_nms.html.

Fig. 4 | The interface of head-to-head human
evaluation for two 3D action localization
approaches.The evaluator responds to the question:
“Which labels better match the motion, left or
right?” We conduct a head-to-head comparison
between the labels generated by LocATe and those
produced by othermethods through a human study.
It is important to note that the sequence and labels in
the provided sample are randomized, and the
arrangement of labels from various methods, whe-
ther on the left or right, is also randomized across
trials.

Fig. 5 | Performances using fractions of training data on the PKU-MMDdataset.
We observe that the performance of our approach remains robust even when uti-
lizing only half of the training data. Impressively, with just 10% of the training data,
our approach maintains a performance level of 91.9% in the relatively straightfor-
ward cross-view evaluation. In contrast, the performance of Beyond-Joints dete-
riorates when working with reduced fractions of training data. This experiment
highlights the scalability of our proposed approach, demonstrating its efficacy even

when only a limited amount of labeled data is accessible. It also underscores the low
intra-class variance among the action categories within the PKU-MMD dataset.
Thus, the creation of a new and challenging 3D action localization benchmark
becomes imperative to drive future research in this domain. a Cross-subject eva-
luation. b Cross-view evaluation. PKU-MMD: Peking University Multi-Modal
Dataset.
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In addition to visualizing results from different methods, we also
visualize the different human labels for the same sequence, in viz/
human_var.html. We observe that the human-provided labels vary both in
terms of the actions that are named and the spans of actions. For instance,
some complex activities like ‘stretch or yoga’ are composed of simpler
actions like ‘stand’, ‘turn’, or ‘bend’.While somehuman annotators label the
simpler actions as well as the overall activity, other annotators only label the
latter. This variance in semantic labels motivates us to consider human
evaluation as an alternative to automatic metrics like mAP.

Non-maximum Suppression (NMS)
The ‘raw’ predictions from LocATe consist of many short, and overlapping
spans of the same action. This formof output is acceptable when computing
performance using automatic metrics (like mAP). However, the over-
lapping predictions could potentially distract a downstream human user,
and severely affect the usability of the system. In the object detection lit-
erature, overlapping predictions are handled via NMS. We apply a simple
algorithm for the NMS of overlapping spans. NMS eliminates low-
confidence predictions for an action that overlaps with a higher confidence
span of the same action. Note that the spans themselves are predicted by the
regressionhead, anddonothave confidence estimates associatedwith them.
We use the recognition confidence estimate for NMS.

We observe in visualizations (see viz/LocATe_nms.html) that NMS
eliminates many short spans, resulting in more coherent predictions. As a
consequence, the overall recall of LocATe is lower with NMS than without
NMS. In our human studies, we utilize the predictions from LocATe after
applying NMS.

Sources of Error
We presented the different loss functions that comprise our overall objec-
tive. Temporal Action Localization involves solving two sub-tasks – loca-
lization and recognition. Hence errors in the final performance can
propagate from either of these tasks.

The first question regarding the overall objective is about the relative
weighting of the losses for the two tasks.We present the overall objective as
simply a sum of the recognition loss and localization loss. In experiments
with an earlier LocATe w/ GATmodel, we attempt to train the model with
larger weights on the classification loss because we observed some room for
improvement in recognition. Specifically, we tried weights in the range
[1, 10], but this didnot improveperformance.However,wenote that amore
thorough hyper-parameter search could indeed improve the overall per-
formance of LocATe.

Another consequence of using multiple loss functions is that models
with different classification and localization losses can achieve similar
overall performance as measured by mAP. When comparing Graph
Attention (GAT) and Deformable Attention (DA) in LocATe, the relative
performance improvement with DA is more evident due to better recog-
nition rather than better temporal localization (refer to Table 4).

While there does exist a correlation between task loss andmAP– larger
recognition or localization losses imply lowermAP – at a fine-grained level,
this relationship is imprecise. This is to be expected, given the procedure to
calculate mAP.

Influence of Input Features
2D Features. As a sanity check, we first ask the following question –
given 3D data, does 3D action localization really shows better perfor-
mance than 2D-TAL on the same data? To answer this question, we
consider a baseline model38 that takes 2D videos as input. We utilize the
rendered 2D videos of the mocap sequences in BT-20 as input. The
human bodies are animated using the SMPL41 body model. We extract
I3D42 features for the BT-20 videos, using an I3D model that was pre-
trained for activity recognition on real videos from the Kinetics42 dataset.
To obtain I3D features corresponding to an input videowithT frames, we
first divide the video into short overlapping segments of 8 frames with an
overlap of 4 frames resulting in T 0 chunks. In other words, we extract

features in a sliding-window fashion, with a filter size = 8 frames and
stride = 4 frames.We obtain a tensor of sizeT 0 × 2048 as features for these
T 0 chunks. Each video feature sequence is rescaled to 100 × 2048 (input
size of the transformer) using linear interpolation along the temporal
dimension.

3D Action Recognition Features. State-of-the-art 2D-TAL methods38

utilize features from a video recognition backbone (e.g., I3D42) as input to
the model. Compared to raw pixel values from the videos, these features
are lower-dimensional and semantically more meaningful. Although
using the representation from a feature extractor increases the compu-
tation and memory requirements compared to using the ‘raw’ joint
positions as input, we attempt to determine if action recognition (AR)
features to improve performance in 3D action localization. First, we train
a popular action recognitionmodel, 2S-AGCN43, to classify the 20 actions
in the BT-20 dataset. To maximize the discriminativeness of the input
feature, we train the recognitionmodel with 8 frames – the size of a single
input snippet to the LocATe transformer encoder. The model achieves a
top-1 accuracy of 63.41% and a top-5 accuracy of 85.83%, demonstrating
that it successfully captures some semantic information, despite being far
from perfect. We then experiment with features extracted from two
different layers of the 2S-AGCN model – after the second graph-
convolution layer (Early-layer AR feat.) and after the last graph-
convolution layer (Later-layer AR feat.).

Results. Table 5 shows the results from our experiments with different
input representations. Unsurprisingly, the 2D features extracted from the
rendered videos, underperform the 3D joint features. This is because the
3D representation contains more information than 2D, which demon-
strates the superiority of 3D representation. We observe that the 3D
action recognition features do not improve performance compared to
joint position information. This implies that 3D input feature repre-
sentation is still an open problem to explore. Note that we performed the
experiments with LocATe w/ GAT, i.e., LocATe with sparse Graph
Attention, which is an earlier model. Since we observed the best per-
formance with joint positions as input, we employed the same in our final
model LocATe.

Table 4 | We investigate the source of improvement with
Deformable Attention in LocATe, compared to Graph
Attention (GAT)

Method Rec. loss ↓ Loc. loss ↓ mAP ↑

LocATe w/ GAT 0.671 0.395 23.4

LocATe 0.362 0.374 36.0

We break down the sources of error into two components: recognition loss (column 2) and
localization loss (column 3). It is essential to recognize that lower loss values indicate superior
performance. We gauge performance using the metric mAP@tIoU = 0.5, where higher values
indicate better performance.mAPmean Average Precision, tIoU threshold IoU, Rec recognition,
Loc localization.

Table 5 | Ablation Study

Method mAP @ 0.5 tIoU

2D Features38 14.5

Joint pos. 23.4

Early-layer AR feat. 21.3

Later-layer AR feat. 20.4

Joint pos. + Early + Later AR feat. 21.4

Effect of different 3DHumanRepresentations on BABEL-TAL-20 (BT-20). The 2D features obtained
from the rendered videos exhibit inferior performance compared to the 3D joint features. This
discrepancy arises from the 3D representation’s ability to encapsulate a richer information set
compared to the 2D representation, underscoring the superiority of the 3D approach.mAPmean
Average Precision, tIoU threshold IoU.
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Discussion
3Daction localization is a pivotal computer vision taskwithdiverse practical
applications. In this study, we have explored various aspects of 3D action
localization, from dataset challenges and model performance to the impact
of different evaluation metrics.

Dataset Challenges and Diversity
Our investigation into existing datasets, such as PKU-MMD, revealed
several challenges in 3D action localization.Notably, we observed a variance
in class distribution, with certain actions being more easily distinguishable
than others. Actions like “run” and “walk” consistently achieved high AP
scores, whilemore complex actions like “touch body part” posed challenges.
Actions like “touch body part” are extremely difficult for LocATe, which
demonstrates poor performance across all tIoU thresholds. Activities like
“dance” typically exhibit larger intra-class variance than other “simpler”
actions like “run”. Learning to accurately recognize and localize actions that
have limiteddataand large variance, is anopenchallenge. Poorperformance
in classes like “touch body part” suggests that our current data repre-
sentation – joint positions in a skeleton – lacks the expressiveness to capture
this subtle action. Improving performance on understanding this action in
3D, is an interesting future direction, as social touch is an important com-
ponent of human interactions44,45. Thesefindings emphasize the importance
of fine-grained and accurate annotations, as well as the need for challenging
and diverse datasets that better reflect real-world scenarios.

Model Performance
Our study involved the evaluation of different approaches for 3D action
localization. Notably, the comparison between our proposed LocATe
approach and existing techniques yielded promising results. LocATe
exhibited state-of-the-art performance, with a particularly remarkable
improvement of nearly 10% in cross-subject evaluation compared to the
previous method Beyond-Joints. These results highlight the potential for
advancements in this field, as well as the importance of robust algorithms
and models.

Data Scaling and Low Annotation Availability
An intriguing aspect of our investigation was the scalability of our proposed
approach. We demonstrated that our method remained robust even when
trained with a reduced amount of labeled data, showing its adaptability and
effectiveness under resource constraints. This finding is of particular
importance in scenarios where obtaining large labeled datasets is challen-
ging. It also underscores the need for a new and challenging benchmark
dataset to foster future research in 3D action localization.

The Superiority of 3D Representation
One of the key takeaways from this study is the advantage of 3D repre-
sentation over 2D features. We found that 3D joint features consistently
outperformed 2D features, underscoring the value of capturing three-
dimensional spatial information for accurate action localization. This
highlights the need for more advanced techniques in leveraging 3D data for
this task.

In conclusion, in light of the saturating performance of existing 3D
human action recognition and localizationmethods on simple benchmarks,
we introduce BABEL-TAL, an unconstrained and substantially more
challenging, complex benchmark, to further the research in this field. We
also present LocATe, a Transformer-based single-stage method that learns
to jointly perform localization and recognition. Representative strong
baselines are examined on BT-20 and LocATe outperforms all of them.
Further analyses of the confusion matrix and performances on different
actions indicate that there is room for improvement for 3D action locali-
zationmethodsonour challengingBT-20benchmark.One limitationof our
work is that we have not yet explored the integration of RGB and motion-
captured data for motion analysis. In future research, we plan to investigate
the potential benefits of leveraging these multiple modalities together. We
believe that the dataset, method, and findings in this work will be beneficial

to the community and our contributions will have practical applications in
fields such as human-computer interaction, animation, AR/VR systems,
and LLM-integrated 3D human behavior understanding. Studying 3D
action localization is not just an academic pursuit but has a direct social
impact. For example, augmenting healthcare and wellness. With the ability
to precisely track and understand human motion, our research can con-
tribute to advancements in telerehabilitation, monitoring elderly popula-
tions, andproviding early intervention inmedical conditions.The scalability
of our proposed approach, evenwith limited data, holds promise in regions
with limited healthcare resources, improving access to healthcare and
enhancing the quality of life. For individuals with disabilities, 3D action
localization can be useful. The ability to understand and interpret gestures
and movements provides the foundation for assistive technologies that
empower those with limited mobility or communication abilities. Whether
it is controlling a wheelchair, operating household appliances, or commu-
nicating with others, these technologies can improve the independence and
quality of life of people with disabilities. By advancing the accuracy, scal-
ability, and understanding of human actions, it offers us with new oppor-
tunities for human-machine interaction and healthcare enhancement. As
researchers in this field, our responsibility is not only to achieve technolo-
gical milestones but to channel our discoveries toward the broader benefits
of human life and society. It is through this lens that we advocate for
continued innovation and research in 3D action localization.

Methods
Related Work
3D Action Localization Datasets. Over the years, datasets have driven
progress in 3D action localization. G3D46, one of the earliest datasets of
this area, aims at understanding the gestures of a person in real-time for
video-game applications. CAD-12047 contains daily activities performed
in different environments, but is composed of simpler actions. Watch-n-
Patch48 is a dataset of daily human activities, and can be used for the
application called “action patching”. Action patching primarily aims for
unsupervised action segmentation and recognition, and also serves to
detect forgotten actions during long-term activities. Similarly, Lillo et al.49

focus onmodeling spatial and temporal compositions of simple actions to
detect complex activities. Unlike these datasets, SBUKinetic interaction50

contains eight two-person interactions such as “approaching”, “hug-
ging”, etc. PKU-MMD32 consists of 51 simple actions such as “putting on
glasses”, “shaking hands” specifically performed by actors. Wei et al.51

curate an expanded 3D dataset for concurrent activity detection,
encompassing skeletal sequences and corresponding RGB-D videos that
encompass a broader spectrumof simultaneous activities. In contrast, the
recently introduced BABEL dataset34 is constructed by amalgamating
motion capture (mocap) sequences from the extensive AMASS data
archive26, which encompasses a diverse compilation of mocap datasets.
As opposed to previous datasets, BABEL-TAL exhibits a higher degree of
complexity and features a long-tailed distribution of actions, and hence it
is more challenging for 3D-TAL. We emphasize the significance of
developing and utilizing relatively challenging datasets to foster
advancements in the field of 3D-TAL. Such datasets serve as indis-
pensable catalysts for pushing the boundaries of research and the
invention of more robust and effective algorithms to tackle real-world
scenarios.

Transformers for 3DActionRecognition. Transformers52 have recently
been extended for 3D skeleton-based human action recognition. Shi
et al.53 present a decoupled spatial-temporal attention network based on
the self-attention mechanism and combine spatial transformer with
temporal convolution. Stacked Relation Networks (SRN)51 use a specia-
lized relation network for decompositional design to enhance the
expressiveness of instance-wise representations via inter-instance rela-
tionship modeling. Sequential Correlation Network (SCN)54 combines a
recurrent neural network and a correlationmodel hierarchically tomodel
the complex correlations and temporal dynamics of concurrent activities.
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Plizzari et al.55 propose a two-stream Transformer-based model by
employing self-attention on both the spatial and temporal dimensions.
Zhang et al.56 introduce a spatial-temporal specialized transformer to
model the skeleton sequence in spatial and temporal dimensions,
respectively. Recently, Pang et al.57 design aTransformer-basedmodel for
skeleton-based human interaction recognition by learning the relation-
ships of interactive persons fromboth semantic and distance levels. There
are also some Transformer-based approaches for unsupervised or self-
supervised skeleton-based action recognition. Chen et al.58 design a pre-
training scheme to train a hierarchical Transformer-based encoder for
skeleton sequences. Kim et al.59 propose a transformer architecture for
unsupervised skeleton-based action representation learning with global
and local attention mechanisms to model joint dynamics and temporal
contexts, respectively.

BABEL-TAL
Compared with 3D action recognition which relies on trimmed videos, 3D
action localization from the original untrimmed video aligns much better
with realistic scenarios. However, the research in this area is still at an early
stage, partly due to the shortage of appropriate and large-scale benchmarks.
Reviewing existing action and pose-related datasets, we find these datasets
are either inapplicable for 3D-TALorneed further improvement tomeet the
demands of real-world applications. For instance, Human3.6M60 is suitable
for human pose estimation, but cannot be used for temporal action locali-
zation. Besides, it is recorded in constrained environments. Likewise,
PKU-MMD32 is collected in indoor environments with limited subjects,
views, and classes. NTU RGB+D61 is a much larger dataset for human
action recognition, but only contains a single action for a video and is also
captured in constrained environments. As a result, neither action sequences
nor categories are varied enough to meet the real demand. There are also
some datasets that are captured in the wild but can only be used for 2D
action localization, such as THUMOS62, MultiTHUMOS63, and
ActivityNet64.

To facilitate the research progress, we aim to introduce a new large-
scale dataset for 3D action localization with a wide variety of action cate-
gories and high intra-class diversities. Here, we base on the recently released
BABEL dataset34 to carefully construct a benchmark BABEL-TAL (BT) for
3D action localization, which includes three sets, BABAL-TAL-ALL,
BABEL-TAL-60, and BABAL-TAL-20. We will introduce BT from the
following three aspects: data processing, labels, and data distributions.

Data Processing. The mocap sequences in BABEL-TAL are derived
from AMASS dataset65, which are generated by mocap actors and col-
lected through their performances. To create a robust temporal locali-
zation dataset, we first filter those sequences of extremely short duration,
which often lack sufficient temporal context. We use the modified VIA
annotation software66 provided by BABEL to verify and refine the frame
annotation of the motion sequences to maintain accurate temporal
references. As a result, after careful data processing and refinement, we
obtain the BABEL-TAL-ALL.

Labels. BABEL-TAL exhibits diversity in the types of actions. After data
processing, BABEL-TAL includes 102 diverse action classes, which
contain both commonplace activities such as “walk”, “jump” and spe-
cialized activities such as “yoga” and “cartwheel”. The variability in action
types across datasets within BABEL-TAL permits a broad spectrum of
action diversity, catering to various domains and levels of proficiency, but
also poses a formidable challenge to methods’ robustness and general-
ization. To provide a more realistic training and evaluation environment
for 3D-TAL, we select the most frequent 60 actions in BABEL to build a
subset of BABEL-TAL-ALL, called BABEL-TAL-60 (BT-60).

Nevertheless, according to our experiments, BT-60 is still challenging
for existing 3D-TAL methods, leading to only 3.0% mAP for a recent
methodofAGT38.Wefind that there are a fewfine-grained and semantically

similar categories among themost frequent actions. For instance, “run” and
“jog”, which depict the same action, belong to different categories in the
BABEL. The detailed category merge process is presented in Table 6. By
organizing the raw labels into sets of higher-level labels, BT-20 provides
researchers with a more manageable and meaningful label set that strikes a
balance between specificity and practicality. This organization enhances the
feasibility of action localization tasks and enhances the usability of the
dataset. The resulting dataset BABEL-TAL-20 (BT-20) contains a total of
5727 sequences with 20 classes.

DataDistributions. Samples of action categories in BABEL-TAL follow a
pronounced long-tailed distribution to closely resemble real-world sce-
narios. As illustrated inTable 6, for BT-20, the sample count for each class
ranges from 102 to 4671 for the training set and from 25 to 1615 for the
validation set. Furthermore, as shown in Fig. 6, compared with the
existing dataset PKU-MMD32, both training and validation samples in
this newdataset exhibitmore evident long-tailed class distribution, which
fits visual phenomena in real-world applications.

To ensure ample availability of data for learning methods, we
have developed the BABEL-TAL-20 (BT-20) Benchmark and
expanded versions, namely BABEL-TAL-60 (BT-60) Benchmark and
BABEL-TAL-ALL (BT-ALL) Benchmark. These benchmarks provide
extensive datasets to facilitate the training and evaluation of various
learning algorithms in the field of 3D action localization. By offering
a diverse range of labeled sequences, these benchmarks aim to sup-
port the development of robust and effective techniques for under-
standing and analyzing human behavior. In the main part, we
detailedly introduce the BABEL-TAL-20, in the following, we will
introduce BABEL-TAL-ALL and BABEL-TAL-60.

Table 6 | BABEL-TAL-20 (BT-20) has 20 actions (column 1),
where each is a superset of BABEL actions (column 2)

BT-20 BABEL # Train # Validation

Turn Turn, spin 2044 837

Run Run, jog 750 261

Lift something Take/pick something
up, lift something

709 244

Jump Jump, hop, leap 700 214

Stretch
(exercise/yoga)

Stretch, yoga, exercise/
training

601 237

Scratch (touch
body part)

Scratch, touching face,
touching body parts

310 137

Hit Hit, punch 206 105

Walk Walk 4671 1591

Kick Kick 347 144

Throw Throw 460 128

Catch Catch 193 59

Step Step 1097 458

Greet Greet 179 70

Dance Dance 189 89

Bend Bend 468 161

Stand Stand 4193 1615

Sit Sit 512 181

Kneel Kneel 102 25

Place something Place something 510 161

Grasp object Grasp object 247 105

The number of samples in the training and validation set of BT-20 is in columns 3 and 4. The
distribution of action categories in BT-20 samples closely mirrors real-world scenarios with a
pronounced long-tailed pattern.
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Fig. 6 | Class frequency distributions of typical 3D action localization datasets. In
contrast to the pre-existing dataset PKU-MMD32, our new dataset BABEL-TAL-20
(BT-20) demonstrates a more pronounced long-tailed class distribution in both
training and validation samples, aligning better with visual patterns encountered in

real-world applications. a Class frequency distributions of PKU-MMD. b Class
frequency distributions of the introduced BT-20. PKU-MMD: Peking University
Multi-Modal Dataset.
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BABEL-TAL-ALL (BT-ALL). After data processing onBABEL, we build a
large and challenging dataset, namely BABEL-TAL-ALL (BT-ALL), for
3D action localization. In Fig. 1c, we plot the sorted distribution of
samples per category in BT-ALL, the corresponding BABEL categories
that constitute the action, and the number of samples in the training and
validation set of BT-ALL. The comparison of existing 3D action locali-
zation datasets is shown in Table 1. The results demonstrate the con-
siderable challenge posed by these benchmarks, primarily due to the
inclusion of a larger number of action categories. The expanded set of
action categories requires models to possess enhanced generalization
capabilities and improved discrimination among diverse actions. The
increased difficulty of these benchmarks encourages the development of
more robust and sophisticated algorithms to address the complexities of
3D action localization tasks.

BABEL-TAL-60 (BT-60). We also create the BABEL-TAL-60 (BT-60)
benchmark for 3Daction localizationwith the 60-class action recognition
subset of BABEL34. The action recognition task involves predicting the
action class of the given “trimmed” span of movement. The movement
spans in the BABEL-60 subset belong to the most frequent 60 actions in
BABEL34. Given the full mocap sequence, the task is to localize and
recognize all of the 60 actions. This is extremely challenging, especially
due to many infrequent actions. Due to the expensive nature of (dense)
annotation required for TAL tasks, we believe that learning efficiently
from limited amounts of fully annotated data is an important problem for
the community to solve in the long run. In Fig. 7, we plot the sorted
distribution of samples per category in BT-60, the corresponding BABEL
categories that constitute the action.

In summary, we propose a new benchmark for 3D-TAL, namely
BABEL-TAL, including three sets: BT-20, BT-60, and BT-ALL. The BT
dataset differs from existing 3D action localization datasets in at least four
aspects. First, it is thefirst 3Dmotion-capture datasetwith precise body joint
movements for temporal action localization. Second, this dataset enjoys a
wide variety of action labels and exhibits high intra-class diversity. Third, the
action data follows a long-tailed distribution. Finally, continuous actions in

the long motion sequence are unconstrained by environments or actors.
Table 1 shows the comparison between previous datasets with our dataset.

LocATe
We propose a strong baseline model for temporal action localization,
namely LocATe. 3D action localization involves predicting the action label,
start time, and end time of every action occurring in a 3Dmotion sequence.
Specifically, givena3Dmotion sequence fxtgTt¼1, the goal is topredict a set of
N action spansΨ ¼ fðcn; tns ; tne ÞgNn¼1,where c

n is the action category of then-
th span and ðtns ; tne Þ denote the start and end times of the n-th span. For
simplicity, the 3D joint skeletons are used as the input. Figure 1b shows the
overall architecture of LocATe. Given a sequence of human poses, LocATe
functions as follows: First, a skeleton-based sampling strategy is used to
convert the raw 3D skeleton sequence to a fixed set of joint snippets. Then, a
projection of the 3D pose features is summed with positional (time)
information and input to the transformer. Next, the transformer encoder
models the global context across all temporal positions to produce the
feature hLe that encodes action span information in the sequence. After that,
the decoder transforms a fixed set of action queries into action query
representations yLd based on the encoding hLe . Finally, the prediction head
outputs the temporal localization results.

Our Transformer-based architecture for action localization contains
three main components: Transformer Encoder, Transformer Decoder, and
Prediction Heads.

Deformable Attention. As shown in Fig. 1b, we utilize deformable
attention (DA)40 in our encoder and decoder. Given a feature x of a
certain transformer layer at a particular position, DA aims to attend to a
small set of relevant elements from x. It learns K (K ≪ T) relevant
sampling locations from x based on a reference location.

Given a feature x 2 RC ×T at a certain transformer layer and the fea-
ture at a particular position zq 2 RC , DA aims to attend to a small set of
relevant elements from x. It identifiesK relevant sampling locations from x
based on a reference location pq (the q-th position of the query feature zq),
and K ≪ T. The sampling locations are predicted relative to the reference

Fig. 7 | Class frequency distributions of the introduced BABEL-TAL-60 (BT-60).

https://doi.org/10.1038/s44172-024-00272-7 Article

Communications Engineering |           (2024) 3:125 11

www.nature.com/commseng


location pq, and denoted as Δpqk, where k indexes the sampled keys. The
model learns parameters WV to project the features of the sampled keys
x(pq + Δpqk). Mathematically, DA for one attention head is expressed as

DAðzq; pq; xÞ ¼
XK

k¼1

Aqk �WVxðpq þ ΔpqkÞ; ð1Þ

where,Aqkdenotes the scalar attentionweight of the k-th sampled key,Aqk is
in the range [0, 1] and normalized over K to sum to 1, and Δpqk is a real
valued number. Both Aqk and Δpqk are obtained by a linear projection over
zq. A bilinear interpolation is performed to compute x(pq+Δpqk). Formore
details, please refer to the DA for object detection40. As presented in Eq. (1),
the overall feature with different attention heads is a weighted sum over the
DA representation.

Transformer Encoder. 3D human joints at each time step are repre-
sented by a joint vector xt. A joint embedding which consists of a linear
projection with the parameter ofW is used to embed xt to a feature space
of size C. Each position (time-step) t is associated with a positional
encoding pt 2 RC , where t∈ {1,…, T}, obtaining a new sequence of joint
representation f~xtgTt¼1 which can be denoted as a matrix ~X 2 RC ×T ,
where ~xt ¼ W � xt þ pt .

The transformer encoder consists of Le identical encoder layers. A
single encoder layer Eℓ involves the following operations: (1) Self-attention
computation, (2) Concatenation of features from different heads, (3) Pro-
jection back into the original feature dimension, (4) Residual connection67,
(5) Layer Normalization68. Overall, the encoder feature hLe ¼
ELe ° . . . °E1ð~XÞ is the resulting output from all the layers.

The self-attention operation effectively models context across features
in all T temporal positions. DA is properly used for both accuracy and
efficiency. Each transformer head projects features from the previous
position into a different feature space, capturing different signals among
different scale levels. In an aggregation step, features from all heads are
concatenated and projected back into the original feature dimension, fol-
lowed by residual connection. Overall, the encoder feature hLe ¼
ELe ° . . . ° E1ð~XÞ is the resulting output from all the layers.

Transformer Decoder. Inspired by previous works36,40 that use object
queries as input to the decoder for object detection, we introduce action
queries Q 2 RC ×Na as input to the decoder for action localization. The
transformer decoder contains Ld decoder layers, and each decoder layer
Dℓ performs two attention computations: self-attention, and cross-
attention. The decoder transforms action queries into action query
representations yLd , which are then fed into prediction heads to obtain
final localization results.

Prediction Heads. The Prediction head comprises two network bran-
ches: regression and recognition. The regression network consists of a
3-layer fully connected network (FC) with ReLU activation that predicts
the start time t̂s and end time t̂e of the action. The recognition network is a
single fully connected with a softmax function that scores the set of
actions (including a “no action” class).

Loss Functions
Action localization is trained with two objectives: action classification and
temporal boundary regression. Similar to Carion et al.36, bipartite matching
is used to match the ground truth and predictions. For classification, we
utilize a class-balanced focal loss to address the issue of imbalance between
action classes.

We use bipartite matching to match the ground-truth Ψ and predic-
tions Ψ̂. Since jΨj<Ψ̂; Ψ̂ ¼ Na, we augment the ground-truth Ψ with “no
action” spans such that the augmented ground-truth ~Ψi has Na spans. We
then compute an optimal match between ~Ψi and Ψ̂i. The optimal

permutation σ* among the set of all permutations ΣNa
defined as

σ� ¼ argminσ2ΣNa

XNa

n¼1

Lð~Ψn
; Ψ̂

σðnÞÞ: ð2Þ

The optimal permutation can be efficiently computed via the Hungarian
algorithm. The formula of loss functions is described as follows.

Regression Loss. The regression loss Lr measures the localization
similarity between the predicted and ground-truth action spans and is a
weighted combination of two terms. For the n-th pair in the matched
permutations σ, the formulation is

Lr ¼ λiouLiouðsn; ŝσðnÞÞ þ λL1 jjs
n � ŝσðnÞjj1; ð3Þ

where sn is the start and end times ½tns ; tne � of the n-th span, and λiou and λL1
are scalar hyperparameters.

Classification Loss. In an attempt to effectively model the heavy class
imbalance, we exploit class-balanced focal loss Lc

69 for action localiza-
tion. Different from focal loss70, the class-balanced focal loss incorporates
a class-weighting term, which is a non-linear function of the class fre-
quency. Given predicted class scores z, we define ~zj as

~zj ¼ zj; if j ¼ cn

�zj; otherwise

�
ð4Þ

Under the match permutation p̂σðnÞðcnÞ, the lossLc is computed between
the ground truth-class cn and the predicted class scores,

Lcðcn; p̂σðnÞðcnÞÞ ¼ � 1� β

1� βf ðc
nÞ
XC

j¼1

1� p̂jσðnÞðcnÞ
� �γ

log p̂jσðnÞðcnÞ
� �

;

ð5Þ

where p̂j ¼ sigmoidð~zjÞ, f(cn) is the frequency of the ground-truth class cn,
β ∈ [0, 1) and γ are scalar hyperparameters, and C is the total number of
classes.

For class-balanced action localization, focal loss up-weights the cross-
entropy loss for inaccurate predictions, resulting in a larger training signal
for difficult samples.

Overall Objective. The bipartite matching loss L is a sum of the clas-
sification and regression losses:

Lð~Ψn
; Ψ̂

σðnÞÞ ¼ Lcðcn; p̂σðnÞðcnÞÞ þLrðsn; ŝσðnÞÞ: ð6Þ

After obtaining the optimal permutation σ*, the overall objective loss
functionLF over all the matched pairs of action spans are defined as:

LF ¼
XNa

n¼1

Lðψn; ψ̂σ�ðnÞÞ: ð7Þ

Architecture and Hyper-parameters of LocATe
We implement LocATe using PyTorch 1.4, Python 3.7, and CUDA 10.2.
There are 4 transformer encoder heads, and 4 decoder heads. For class-
balanced focal loss, we set β = 0.99 and γ = 2. For LocATe, both the
transformer encoder and decoder consist of four layers, i.e., Le = 4, Ld = 4.
The deformable attention has four heads in parallel. The default sequence
length T before sending to the transformers is 100, and the feature
dimension C is 256. The networks are trained with the Adam optimizer71,
and the learning rate is 4e−3.
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Baselines
Here, we present baseline methods for comparison. To have a thorough
evaluation, we revise some public implementations of RGB-based temporal
action localization methods and slightly modify their input block to
accommodate 3D skeletons as input. The baseline methods are listed as
follows: (a) Beyond-Joints31 is one of the state-of-the-state 3D action loca-
lization methods. It mainly consists of an RNN-based per-frame action
classifier. We benchmark the performance with publicly available imple-
mentation. (b) SRN51 uses a specialized relation network for decomposi-
tional design to enhance the expressiveness of instance-wise representations
via inter-instance relationshipmodeling. (c) ASFD72 is a purely anchor-free
RGB temporal action localization method. We re-implement ASFD and
adapt it to 3D skeleton input. (d) TSP73 is a temporally sensitive supervised
pretraining method for RGB video that considers global information to
improve temporal sensitivity. We modified the original implementation to
fit for 3D skeleton input. (e) G-TAD37 is an RGB temporal action locali-
zation approach whose key idea is to effectively model the context around a
short spanof video. (f)AGT38 is a Transformers-basedRGB temporal action
localization method that employs a Graph Attention (GAT) mechanism74.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The datasets are available for download from our project GitHub75.

Code availability
Code is available on our project GitHub75.
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