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Only a handful of somatic alterations have been linked to endocrine therapy resis-
tance in hormone-dependent breast cancer, potentially explaining ∼40% of relapses.  

If other mechanisms underlie the evolution of hormone-dependent breast cancer under adjuvant ther-
apy is currently unknown. In this work, we employ functional genomics to dissect the contribution of 
cis-regulatory elements (CRE) to cancer evolution by focusing on 12 megabases of noncoding DNA, 
including clonal enhancers, gene promoters, and boundaries of topologically associating domains. 
Parallel epigenetic perturbation (CRISPRi) in vitro reveals context-dependent roles for many of these 
CREs, with a specific impact on dormancy entrance and endocrine therapy resistance. Profiling of CRE 
somatic alterations in a unique, longitudinal cohort of patients treated with endocrine therapies iden-
tifies a limited set of noncoding changes potentially involved in therapy resistance. Overall, our data 
uncover how endocrine therapies trigger the emergence of transient features which could ultimately 
be exploited to hinder the adaptive process.

SignifiCAnCe: This study shows that cells adapting to endocrine therapies undergo changes in the 
usage or regulatory regions. Dormant cells are less vulnerable to regulatory perturbation but gain tran-
sient dependencies which can be exploited to decrease the formation of dormant persisters.
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inTRoduCTion
During development of multicellular organisms, cell 

fate is established through a series of heritable transcrip-
tional changes (1, 2). These changes are orchestrated by the 
interaction of transcription factors (TF) with the regula-
tory portion of the noncoding genome [cis-regulatory ele-
ments (CRE); ref. 3]. CRE activity is largely tissue specific 
and contributes to many aspects of cancer etiology (4–6). A 
large fraction of cancer subtypes displays addiction to the 
activity of TFs. In line with this, active compounds against 
nuclear receptors, a targetable class of TFs, account for 
16% of the total FDA-approved cancer drugs (7). Hormone- 
dependent breast cancer (HDBC) cells are strongly dependent 
on the activity of the nuclear receptor estrogen receptor 
(ERα), pioneer factors FOXA1 and PBX1, and the tran-
scription factor YY1 (3, 8). These TFs collectively control 
many cancer hallmarks through their direct interaction 
with a subset of CREs, including distal enhancers and pro-
moters (8–11). Continuous modulation of ERα activity af-
ter breast surgery (5 years of adjuvant endocrine therapy, 
ET) is one the most successful targeted strategies and it 
represents one of the first examples of precision medicine 
(12–14). Nevertheless, cancer returns in up to 50% of pa-
tients over the course of 20 years postsurgery, suggesting 
that residual tumor cells can undergo prolonged dormancy 
(Fig. 1A; refs. 15–17).

Despite HDBC cells being largely dependent on the ac-
tivity of these TFs, previous perturbation screens focusing 
on ERα or FOXA1 bound CREs found that only a minority 
of binding sites seem to be essential for steady-state prolif-
eration in vitro (18, 19). Yet, TF-centric perturbation likely 
missed CREs driven by additional TFs [i.e., YY1 and GATA3 
(20–22)] and overlooked critical intermediate states in can-
cer evolution such as adaptive dormancy of persister cells 
(16, 17). To functionally explore the contribution of CREs to 
the evolution and adaptation of HDBC tumors exposed to 
ET, we developed a prioritized CREs panel [termed system-
atic identification of epigenetically defined loci (SID)] to in-
vestigate the role they play both in vitro and in vivo. The SID 
panel was built from a patient-derived epigenetic atlas (8) of 
putative enhancers with clonal or subclonal representation 
[i.e., clonal histone 3 lysine 27 acetylation (H3K27ac)] in pri-
mary and metastatic HDBC (see “Methods”). As disruption 
of chromatin topology can also contribute to disease evo-
lution in both developmental and cancer models (23, 24), 
SID includes clusters of CTCF binding sites putatively con-
trolling the integrity of topologically associating domain 
(TAD; Fig. 1A; “Methods”; refs. 25, 26).

ReSulTS
Perturbing SiD Regions via CRiSPRi

To increase the chances of perturbing entire CREs (pro-
moters, enhancers, and TAD boundaries), which often extend 
over 1 to 2 kb and span several TF binding sites, we leveraged 
massively parallelized dCas9-KRAB repression [CRISPRi (27)]. 
We reasoned that KRAB-mediated repression predominantly 
mimics CRE loss of function potentially produced by somatic 
genetic alterations impinging on TF-binding affinity to these 

sites (28–30). We therefore designed 136,118 single guide 
RNAs (sgRNA) to interfere with the activity of 23,765 CREs 
in treatment-naïve MCF7 (HDBC cells grown with estrogen, 
+E2; Fig. 1A; Supplementary Tables S1 and S2; SID Pertur-
bation or SIDP) SIDP covers more than 60% of the clonal 
enhancers active in MCF7 and almost every cluster of CTCF 
binding sites associated with TAD boundaries (Supplemen-
tary Fig. S1A). Nearly 100% of the sgRNAs were captured at 
high coverage (Supplementary Fig. S1B). These sgRNAs were 
then scored based on their relative change after 21 days post-
infection considering both fold change and direction of the 
change in both replicates. This led to the identification of 
individual sgRNAs either increasing frequency (IF) across 
the population, corresponding to a potential fitness advan-
tage after losing the activity of a CRE, decreasing frequency 
(DF), consistent with a fitness loss, or unchanged (neutral; 
Supplementary Table S3).

Both positive and nontargeting sgRNA controls showed 
highly concordant patterns after 21 days postinfection 
(Supplementary Fig. S1C and S1D) with 34% and 0.9% of 
positive controls and nontargeting sgRNAs significantly 
scored, respectively, demonstrating the robustness of the 
approach (FDR ≤ 0.05; fold change ≥ 1.5 or ≤ –1.5; Fig. 1B;  
Supplementary Table S3). Overall, 3,123 SID sgRNAs scored 
by day 21 (2.2%, Supplementary Table S3). Analysis of the 
temporal dynamics (7, 14, and 21 days) of the sgRNAs scor-
ing at 21 days showed robust trends (Fig. 1C) with highly 
concordant replicates (Supplementary Fig. S1D). Interestingly, 
98.4% of CREs showing multiple, reproducible scoring sgRNAs 
(including promoter, enhancers, and insulators) were asso-
ciated with DF sgRNAs, indicating loss of fitness (Fig. 1B 
and C; Supplementary Fig. S1E). The regions scoring in our 
screen showed significant overlaps with observations from 
previous screens (Supplementary Table S3). Motif analysis 
on DF sgRNAs identified YY1 as the only enriched motif, 
in line with its critical role in shaping ERα transcriptional ac-
tivity at clonal CRE in HDBC (Supplementary Fig. S1F; ref. 8). 
Scoring sgRNAs are also associated with many epigenetic fea-
tures, including KDM5A binding (31, 32), promoter-specific  
H3K4me3, and enhancer-specific H3K4me1 (Supplementary 
Fig. S1G). DF sgRNAs were significantly associated with 
CREs near genes controlling metabolic processes (i.e., ox-
idative phosphorylation) and known MCF7 dependencies 
(MYC targets and PI3K and AKT signaling; Fig. 1D; Supple-
mentary Table S3). Albeit many of these dependencies might 
be shared between models and patients, it is expected that a 
subset of these will be exclusive to MCF7 cells. To general-
ize our observations, we then applied SIP to a second inde-
pendent cell line model (T47D, p53−/−), obtaining comparable, 
high-quality libraries (Supplementary Fig. S2A–S2C; Supple-
mentary Table S4). With 92.2% of CREs showing multiple,  
reproducible scoring sgRNA promoting loss rather than 
gain of fitness, our results suggest that these cell lines have 
probably saturated their level of fitness to cell culture con-
ditions (Fig. 1B). More importantly, SIDP exhibited signif-
icant overlap between the two ER+ cell lines, with ∼49% of 
robust DF sgRNAs (multiple hits within the same regions) 
from MCF7 being validated in T47D (Fig. 1E). Direct com-
parison of T47D and MCF7 libraries at 21 days highlighted 
only 26 of these regions as robustly and significantly dif-
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ferent, with 23/26 showing lower frequencies in T47D. 
These genes tend to be related to RNA and protein metab-
olism. Collectively, these data establish SIDP as a powerful 
molecular tool for functional characterization of the non-
coding genome and demonstrate that only a small fraction 
of CREs controls cellular proliferation in treatment-naïve 
HDBC cells.

SiDP identifies De Novo Vulnerabilities in Cells 
Adapting to Treatment

Endocrine therapies target disseminated micrometa-
static deposits by interfering with estrogen receptor activ-
ity, reducing the overall chance of relapse by half in patients 
followed over 20 years (13, 33). This effect is thought to be 
largely unpredictable at a single-patient level (17, 34) by 
virtue of ET ability to induce a transient dormant state in 
persister cells, a process mimicked in vitro by long-term es-
trogen deprivation (−E2; refs. 16, 17). Leveraging long-term 
linear tracing experiments, we have shown that that MCF7 
and T47D evolve in a stochastic fashion, with each lineage 
randomly undergoing either cell death or cell state transi-
tion into a dormant state. More importantly, our data indi-
cate that ET triggers these transitions via epigenetic changes 
that can be antagonized to hinder the formation of dormant 
cells. We then reasoned that the activity of specific CREs 
might contribute to the adaptive process occurring during 
the transition from growth to dormancy entrance. To test 
this, we run SIDP in MCF7 cells deprived of estrogen (−E2; 
Fig. 2; Supplementary Figs. S3–S9).

To test if the stochastic process accompanying dormancy 
entrance and exit (17) also influences the readout of SIDP, 
we tracked individual nontargeting sgRNAs (n = 501; Sup-
plementary Tables S5 and S6) for up to 60 days of hormone 
deprivation (full dormancy; Fig. 2A). Remarkably, 210/501 
nontargeting sgRNAs (42%, compared with 0.9% in SIDP +E2) 
showed a nonneutral change in frequency at day 60. This be-
havior was completely unpredictable as shown by the evolu-
tion of individual nontargeting sgRNA in every replicate (two 
pools and two replicates; Fig. 2D) and by the overall divergent 
trajectories followed by the two replicates as highlighted by 
dimensionality reduction and correlograms (Supplementary 
Figs. S3A–S3D, S4A–S4D, and S5A–S5E). These data there-
fore confirm our lineage tracing results (17) and demonstrate 
that ET induces dormancy in a random subset of cells inde-
pendently in each experiment, which makes the overall inter-
pretation of the results at 60 days subject to extensive noise. 
Additionally, analysis on the long-term arm of the study 
(60 days) also identified stochastic awakenings and failed 
awakening (Supplementary Fig. S4D). This phenomenon 

progressively introduces stochastic deviations with time even 
in otherwise predictable perturbation (i.e., ESR1, and FOXA1; 
Supplementary Fig. S3E; ref.18). This again is expected to 
introduce noise in the system especially after day 30, when 
additional stochastic processes [failed awakening (17)] might 
inflate even further the noise created by dormancy entrance. 
These data indicate that investigating stochastic processes 
like dormancy process via classic CRISPR screens can be chal-
lenging, leading to a potential large number of false negative.

Nevertheless, our data uncovered a small but robust set of 
CREs (i.e., multiple scoring sgRNAs with consistent behavior 
across replicates; Fig. 2B–G) playing a role in the early phases 
of dormancy entrance. To identify those, we systematically 
compared +E2 and −E2 screens to identify regions showing 
context-specific behavior (Supplementary Figs. S6A–S6D and 
S7A–S7B; Supplementary Tables S7 and S8). During dor-
mancy entrance, MCF7 seem to become independent of sev-
eral metabolic dependencies, with CREs associated with genes 
involved in translation, mitochondrial function, and other 
metabolic processes switching from scoring to nonscoring 
(Fig. 2G; Supplementary Figs. S6A–S6D, S7A and S7B, e.g., 
MRPL58 and METTL17, Supplementary Fig. S8A and S8B). A 
significant proportion of these switches were recapitulated in 
the T47D model as well (Fig. 2E; Supplementary Figs. S5 and 
S6). Conversely, a small set of DF sgRNAs is specific to the −E2 
condition, indicating de novo vulnerabilities emerging during 
hormone deprivation (−E2 >> +E2, e.g., USP8 and SYNV1; 
Fig. 2F; Supplementary Figs. S7 and S9A). Finally, the ma-
jority of sgRNAs expanding uniquely under therapy showed 
pronounced enrichment near genes from a single pathway, 
namely, the Toll-receptor activation of the NF-κB pathway 
(FDR = 0.0049; odds ratio = 13.3; Fig. 2F and G; Supplemen-
tary Figs. S7A, S7B, S9B and S9C; Supplementary Table S7). 
Perturbation of these CREs therefore seemed sufficient to in-
fluence the stochastic process controlling dormancy entrance.

Fully resistant clones emerge from a persister pool after 
extensive dormancy in both patients and HDBC cell lines 
models (17, 35, 36). Awakening clones exhibit extensive epi-
genetic reprogramming (35, 36), suggesting that the growth 
of therapy-resistant cells might be driven by a set of CREs 
distinct from that driving the proliferation of the primary 
tumor. To test this, we run SIDP in fully resistant long-term 
estrogen-deprived (LTED) cells (36, 37), which represent one 
fully awakened lineage that emerged from the matched pa-
rental MCF7 (Supplementary Fig. S10A–S10D; refs. 17, 36, 
37). In line with the results of the screens in +E2 and −E2 
MCF7, only a minority of CREs seem to control LTED fitness 
(Supplementary Fig. S10A and Supplementary Table S9). In 
stark contrast to proliferating MCF7, the DF subgroup does 

figure 1.  Defining a comprehensive strategy to functionally annotate the noncoding genome of HDBC. A, HDBC journey is characterized by dis-
tinct phases. Cells must adapt to different niches and treatments. Overcoming these stresses require profound, heritable transcriptional changes. 
Leveraging in vivo and in vitro data we develop SID, a strategy to prioritize HDBC-specific regulatory regions for functional (SID Perturbation) and 
genomic (SID Variants) annotation in cell line models and in patient samples. B, Bar plot showing the relative fraction of scoring sgRNAs and CREs 
bearing scoring sgRNAs, upon perturbation of noncoding genome of estrogen dependent MCF7 cells via SIDP. Scoring sgRNAs showing a signifi-
cantly decreased frequency at 21 days postinfection are referred to as DF, whereas those with a significantly higher frequency as IF. C, Box plots 
showing the log2 fold change of both scoring (either blue or yellow) and nonscoring (white) sgRNAs at 21 days postinfection in estrogen-dependent 
MCF7 cells, at 7, 14, and 21 days, as compared with the initial library. D, Bar plot showing the top 10 hallmark gene sets enriched among the genes 
found in the proximity of the CREs with scoring sgRNAs showing a DF pattern at 21 days postinfection (P value estimated via hypergeometric test). 
e, UpSet plot showing the intersection between the SIDP loci showing two or more concordant significant sgRNAs after 21 days postinfection, in 
either MCF7 or T47D cells (+E2).
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not dominate the scoring sgRNA landscape in LTED (55% vs. 
98.4%, LTED vs. MCF7 +E2), suggesting that LTED have not 
yet fully adapted to cell culture conditions. Next, we examined 
if LTED inherited at least part of the CREs activity acquired 
during dormancy. Eighty percent of the dependencies ac-
quired during dormancy seemed to be inherited in LTED (i.e., 
USP8, Fig. 2F; Supplementary Fig. S10D). Conversely, LTED 
fitness does not improve upon NF-κB suppression, suggest-
ing that this signaling pathway plays a critical but transient 
role during dormancy entrance and exit (Fig. 2F; i.e., MYD88 
and TLR5; Supplementary Fig. S10D). Overall, the applica-
tion of SIDP showed that a relatively small subset of CREs can 
contribute to different phases of the adaptive process during 
breast cancer evolution in vitro.

Targeted CRe Perturbations influences Adaptation 
to Treatment

SIDP demonstrated that cells entering dormancy generally 
decrease their dependencies (DF sgRNAs) on individual CRE 
activity (Figs. 2 vs. 1B; ref. 17) suggesting that adapting cells 
rely on a smaller regulatory network for their survival. These 
observations are consistent with our proteomic data which 
show that therapy induced dormancy involve a significant 
accumulation of heterochromatin (17). One notable exception 
was the USP8 locus, which seem to be either a de novo vulnera-
bility in dormant clones or an essential gene for adaptation.  
The interpretation of IF sgRNAs is more complicated owing to 
the stochastic processes occurring during dormancy entrance 
(Fig. 2D; Supplementary Figs. S3–S5; ref. 17). We hypothe-
sized that the frequency of these sgRNAs (i.e., TLR5 signal-
ing) could have increased in the screen via three alternative 
scenarios: increased plasticity (a larger subset of lineages 
carrying the sgRNA become persister), early awakening and 
clonal expansion (17), or complete dormancy bypass (Supple-
mentary Fig. S11A). To test these hypotheses, we developed 
assays to monitor the growth rates of edited cells (CRISPRi 
for IF TLR5, MYD88, UNC93B1, and DF USP8 vs. nontarget-
ing sgRNA) by live imaging (Fig. 3A) under +E2 and −E2 
conditions. To accommodate and quantify the underlying 
stochasticity of the process, all these experiments were run 
in 10 replicates in the absence of cell passaging (17). sgRNA- 
mediated recruitment of KRAB on promoter CREs efficiently 
led to downregulation of all targets (Supplementary Fig. 
S11B). Interestingly, the UNC93B1 locus was included in 
SIDP as a cluster of CTCFs and ChIP-seq profiling demon-
strated that KRAB recruitment was sufficient to displace 
CTCF, leaving the possibility that the perturbation from 
the sgRNA either interfered with the 3D structure or with 
UNC93B1 expression or both (Supplementary Fig. S11C).

We began by validating our live tracking analysis using 
sgRNAs targeting critical CREs for CCND1 in conjunction 
with a GFP-NLS tracker (Supplementary Fig. S12A–S12E). 
As expected, cells transfected with the targeting sgRNA (green) 
disappear more rapidly in +E2 conditions in competition as-
says (Supplementary Fig. S11D). Conversely, MYD88, TLR5, 
and USP8 targeting sgRNAs do not have any significant impact 
on the fitness of treatment naïve MCF7 (Supplementary Fig. 
S11D) in agreement with MCF7 and T47D +E2 SIDP. We next 
focused our attention on TLR5-mediated signaling in dormancy 
entrance (Fig. 3A). Competition experiment using sgRNA tar-
geting CCND1 confirmed that our assay worked in –E2 condi-
tions (Supplementary Fig. S12A). TLR5 and MYD88 suppressed 
cells exhibited altered pattern in dormancy entrance, with 
GFP-positive cells demonstrating clear fitness advantages in 
some replicates (Supplementary Fig. S12B–S12E). To gain a 
better understanding of the dynamics driving this process 
we switched to clonal populations (either edited with the 
target sgRNA or the nontargeting sgRNA). These experi-
ments showed that cells with suppressed TLR5, MYD88, or 
UNC93B1 expression have increased fitness when exposed to 
the estrogen depleted conditions (Fig. 3A). Collectively, these 
live cell imaging experiments also confirmed the stochastic 
nature of the process and suggest that functional TLR signal-
ing might be required for the formation of dormant persisters 
(Fig. 3A; Supplementary Fig. S12B–S12D). To explore the rele-
vance of these observations in the clinical setting, we stratified 
independent retrospective cohorts containing only aromatase 
inhibitor (AI)-treated patients based on pretreatment expres-
sion of MYD88 and TLR5 expression. We found that patients 
with low MYD88 and TLR5 expression relapsed significantly 
earlier than those with high expression when treated with ad-
juvant endocrine therapy (AI; Fig. 3B). Of note, low expres-
sion of MYD88 and TLR5 was not significantly associated with 
shorter recurrence-free survival in untreated cohorts [Molec-
ular Taxonomy of Breast Cancer International Consortium 
(METABRIC), MYD88 HR = 1.56, P = 0.29; TLR5 HR = 1.42,  
P = 0.35, log-rank, Mantel–Cox test] or ER negative cohorts 
(The Cancer Genome Atlas (TCGA): MYD88 HR = 0.74,  
P = 0.47; TLR5 HR = 2.22, P = 0.03, log-rank, Mantel–Cox test).  
On the other hand, TRAF6 was also associated with earlier 
relapse in AI-treated cohorts (Supplementary Fig. S9D). One 
caveat of this analysis is that bulk RNA sequencing profiles 
are derived from heterogeneous tissues. We therefore tested if 
MYD88 and TLR5 expression are driven by different levels of 
immune infiltration, because immune cells are known to ex-
press high levels of these transcriptions. Using de-convolved 
bulk RNA sequencing from TCGA we show however that 
MYD88 and UNC93B1 levels do not track immune infiltration  

figure 2.  Adaptation to treatment exposes hidden roles for the noncoding genome. A, Experimental design. B, Bar plot showing the relative fraction of 
scoring sgRNAs and CREs bearing these sgRNAs, upon perturbation of the noncoding genome of estrogen deprived MCF7 cells via SIDP. Scoring sgRNAs 
showing a significantly decreased frequency at 21 days postinfection are referred to as DF, whereas those with a significantly higher frequency as IF. For 
the total numbers of sgRNAs and CREs, refer to Fig. 1B. C, Box plots showing the log2 fold change of both scoring (either blue or yellow) and nonscoring 
(white) sgRNAs at 21 days postinfection in estrogen-deprived MCF7 cells, at 7, 14, and 21 days, as compared with the initial library. D, Longitudinal track-
ing of individual non-targeting sgRNAs in four replicates during dormancy entrance (black dots highlight 7, 14, 21, and 60 days postinfection) support 
stochastic behavior of cells during dormancy entrance. e, UpSet plot showing the intersection between the SIDP loci showing two or more concordant 
significant sgRNAs after 21 days postinfection, in either MCF7 or T47D cells (−E2). f, Summary of the results for the sgRNAs targeting critical CREs of 
the USP8 and TLR5 genes. g, Bubble plot highlighting the enrichment of distinct biological functions, when considering sets of genes near CREs showing 
context-specific responses to perturbation.
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(as opposed to CD19 and CD69, two markers associated 
with immune cells, Supplementary Fig. S12F). Interestingly, 
UNC93B1 is more strongly associated with epithelial cells, sug-
gesting that the prognostic signal might be compatible with a 
cell intrinsic mechanism originating from ER+ breast cancer 
cells. This conclusion was supported by H3K27ac epigenetic 
profiling of primary and metastatic ER+ patient samples (8), 
which shows that MYD88, TRAF6, UNC93B1, and TLR5 pro-
moters are active in most patients (Supplementary Fig. S13). 
Additionally, TLR5 expression is most abundant in breast can-
cer (TCGA dataset) and ER+ cells from normal breast (Sup-
plementary Fig. S14A–S14B). Although MYD88 and TLR5 
gene CNAs are rare, patients characterized by heterozygous 
deletion also show shorter responses to endocrine treatment  
(Fig. 3C). To further support the role of TLR-MYD88 signal-
ing, we leverage chemical probes which interfere with TLR–
MYD88 complex formation [MyD88-IN-1(38)]. This inhibitor 
has no significant impact on cell proliferation in treatment 
naïve conditions in six independent breast cancer cell lines at 
concentrations below 100 nmol/L (Supplementary Fig. S15A 
and S15B). However, low dose of MyD88-IN-1 led to an in-
crease formation of dormant persister or increase the chance 
of early awakening in a subset of replicates specifically in ER+ 
cells (Fig. 3D). Collectively, these data suggest that functional 
TLR signaling is important for therapy-induced dormancy.

Next, we became interested in the potential upstream driv-
ers of TLR5/MYD88 in adapting ER+ cells. Cell-intrinsic acti-
vation of innate immune signaling is significantly associated 
with ER+ patients with residual disease after neoadjuvant 
therapy (39), suggesting a critical but unexpected association 
between innate immunity, dormancy, and persister cells. We 
find significant evidence that cell-intrinsic activation of this 
pathway is triggered during active dormancy and suppressed 
at final awakening in single lineages adapting to therapy 
(Supplementary Fig. S16A and S16B; ref. 17). In our system 
this signal can only be provided by other cancer cells, consid-
ering the absence of tumor microenvironment or immune 
system. Toll-like receptors (TLR) are essential components of  
the innate immune system that respond to endogenous 
molecules that are released during host tissue injury/death 
[damage-associated molecular patterns (DAMP); ref.40]. 
A recent report demonstrated that TLR5 can function as 
a receptor for HMGB1, a nuclear histone line protein with 
DAMP function (41–43). Absence of HMGB1 and HMGB2 is 
a critical feature of preadapted cells, a cell state which shares 

many features with therapy induced dormancy (16). We thus 
hypothesized a potential crosstalk between adapting cancer 
cells via HMGB1/2-TLR (Supplementary Fig. S17A). First, we 
looked for evidence of additional TLRs activity in ER+ cells in 
patients but extensive analysis of our epigenetic atlas shows 
that TLR5 promoter is the only clonal CRE specifically active 
in ER+ breast cancer (Supplementary Fig. S13; ref. 8). Meta- 
analysis of donor-derived single-cell datasets from normal 
breast cells show that TLR5 is expressed in ER+ glandular cells 
(Supplementary Fig. S14A), whereas patients with breast can-
cer display the highest TLR5 level among all cancers despite 
being generally resistant to immune infiltration (Supplemen-
tary Fig. S14B). Collectively these data suggest TLR5 might 
have a role in ER+ cancer cells. Next, we sought to understand 
the dynamic of HMGB1 loss in ER+ cells. Immunofluores-
cence analysis showed that HMGB1 loses nuclear localiza-
tion in response to estrogen starvation (Supplementary Fig. 
S17B). HMGB1 is then released in the media in a population 
size–dependent manner (Supplementary Fig. S17C). Accumu-
lation of HMGB1 begins around the time cells begin to either 
enter dormancy or become apoptotic (17). HMGB1 activity 
as a DAMP molecule is dependent on its redox status [fully 
oxidized = Off; disulfide = On (44)]. When we exposed adapt-
ing cells to increasing doses of both forms, only the disulfide 
HMGB1 led to increased formation of dormant persister in a 
dose-dependent manner (Supplementary Fig. S17D). Collec-
tively, these data suggest that TLR5 activation via paracrine 
HMGB1 signaling contribute to therapy-induced dormancy.

Our screen showed that adapting cells lose most vulnerabil-
ities while entering dormancy (Fig. 2G). Conversely, there was 
more limited evidence for dormancy-specific vulnerabilities 
(DF sgRNA in −E2 but not in +E2 conditions). Considering 
the experimental design, these hits should represent factors 
which are intrinsically important for cells to transition to 
the dormant cell state but not necessarily important for the 
maintenance of a dormant phenotype. The most significant 
SIDP region having multiple differentially scoring sgRNA 
was USP8 promoter (Fig. 2F; Supplementary Fig. S9A). Val-
idation experiments confirmed that treatment-naïve MCF7 
cells with heritably repressed USP8 transcription do not ex-
hibit any decrease in fitness (Supplementary Fig. S11D). On 
the other hand, USP8 suppression significantly interferes with 
MCF7 adaptation to −E2 conditions leading to almost com-
plete eradication (Fig. 3E; Supplementary Fig. S12C–S12E). 
Repeating the long-term competition experiment using a 

figure 3.  Targeted CRE perturbations facilitate or disturb the adaptive processes. A, Overview of the experimental design. A, Cell growth dynamics of 
MCF7 cells under estrogen deprivation (−E2) were monitored by tracking the total number of GFP-positive nuclei with continuous live imaging over the 
course of 21 days. Cells carrying sgRNA for MYD88, TLR5, and UNC93B1 have a significant higher chance of avoiding therapy induced dormancy B and 
C, Retrospective patient stratification based on RNA expression (B) or CNVs (C) for MYD88 and TLR5. Log-rank P values calculated with a Mantel–Cox 
test. D, Cell growth dynamics for a panel of estrogen dependent (MCF7, T47D, CAMA1, and EFM-19) and estrogen independent (MDA-MB231 and MCF7 
Y537S) breast cancer cell lines under estrogen deprivation (−E2) were monitored with continuous live imaging over the course of 60 days in presence of 
a low dose of MYD88 inhibitor (MyD88-IN-1). Chemical MYD88 perturbation increased the number of dormant persister and in turn the chances of early 
awakening. The same concentration did not have any significant effect in +E2 condition. e, Same as A but targeting the USP8 gene promoter. Cell growth 
dynamics of MCF7 cells under estrogen deprivation (−E2) were monitored by tracking the total number of GFP-positive nuclei with continuous live imaging 
over the course of 21 days. Cells carrying sgRNA for USP8 have a lower chance of adapting to therapy. f, CRISPR-Cas9 knockout of USP8. FACS sorting 
was used to quantify green (USP8 sgRNAs carrying cells) and red (nontargeting sgRNAs). FACS analyses were carried out at three specific timepoints. 
g, Cell growth dynamics for a panel of estrogen dependent (MCF7, T47D, CAMA1, and EFM-19) and estrogen independent (MDA-MB231 and MCF7 Y537S) 
breast cancer cell lines under estrogen deprivation (−E2) were monitored with continuous live imaging over the course of 60 days in presence of low dose 
of USP8 inhibitor (DUB-IN-2). Area under the curve during the entire length of experiment was compared with the average of the controls to quantify the 
overall impact of USP8 inhibition. Chemical inhibition of USP8 significantly impact the survival of cells adapting to long term −E2 conditions. *, P < 0.01;  
**, P < 0.001; ***, P <10−5 (Mann–Whitney test).
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figure 4.  Noncoding variants contribute to heritable transcriptional changes during tumor progression. A, Schematic showing the rationale and 
implementation of SIDV. B, Overview of the clinical cohorts and the associated features. C, Pathogenic classification of noncoding variants identi-
fied by SIDV. D, Scatterplot summarizing the potential of the profiled SIDV variants to alter transcription factor binding. Each dot represents a TF. 
TFs are sorted based on their propensity to either increase (top) or decrease (bottom) the affinity to each TF. Values significantly larger than zero 
indicate a propensity to alter the binding that is higher than expected by chance. Those significantly smaller instead indicate a depletion of variants 
potentially altering the affinity for a given TF. P values estimated via χ2 test. e, Scatterplot showing the number of SNVs in the SID regions (each 
dot is a region) across 551 ER-positive, HER2-negative metastatic breast cancer samples, vs. the estimated background mutational rate. Regions 
showing an excess of functional variants are highlighted in red. The blue line represents a linear fit of the data. (continued on following page) 
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genetic CRISPR-Cas9 system to knock-out USP8 further 
confirms its vital role in MCF7 adaptation to endocrine 
therapies (Fig. 3F). To expand on these observations, we 
inhibited USP8 activity using a chemical probe (45) in a 
panel of ER+ and ER− cell lines. Low doses of USP8 inhib-
itor (10 and 100 nmol/L) did not affect the proliferation 
of treatment-naïve ER+ cells (Supplementary Fig. S15A). 
Conversely, 100 nmol/L completely blocked the formation 
of dormant persister in most MCF7 and EFM-1 replicates 
and severely impaired CAMA1 adaptation as well (Fig. 3G; 
Supplementary Fig. S15B). Of note, it neither affected per-
sister formation in T47D, in agreement with T47D SID-P 
results, nor affected ER− cells (MDA-MB-231) and ER mutant 
MCF7 (Y537S). Finally, we stratified independent retrospec-
tive cohorts containing only AI-treated patients and found 
that tumors with low levels of USP8 mRNA pretreatment 
relapse significantly later (Supplementary Fig. S15C and 
S15D), in agreement with a potential need for USP8 during 
therapy-induced dormancy entrance or maintenance. Over-
all, SIDP data show that emergent but transient phenotypes 
can be exploited to disrupt or accelerate HDBC cells adapta-
tion to treatment. In vitro, these transitions are not the results 
of Darwinian selection of preexistent epigenetic clones but 
are rather induced and become heritable through therapy- 
induced dormancy (8, 16, 17).

SiD Variants identifies Patterns of CRe Mutations 
in Longitudinal Cohorts

SIDP is designed to model CRE loss of function via her-
itable epigenetic repression of CRE activity [KRAB-mediated 
heterochromatin formation (46)]. Somatic genomic alter-
ations can also strongly influence the activity of individual 
CREs as well as chromosomal architecture (23, 47). We rea-
soned that high-depth genomic sequencing of SID CREs in 
matched pretreatment and relapsed samples might shed 
some insight on the role of the noncoding genome during tu-
mor evolution. For this purpose, we developed SID variants 
(SIDV, Fig. 4A; Supplementary Fig. S18A–S18F) and profiled 
300 matched samples (normal, primary, and relapse biopsies). 
All patients received either adjuvant tamoxifen (a selective 
estrogen receptor modulator) or AI (Fig. 4A; Supplementary 
Table S10). The median age of diagnosis was 46 for tamoxifen 
and 58 for AI. Grade and Ki67 status of the primary lesions 
were similar between cohorts (Fig. 4B; Supplementary Fig. 
S18B, S18E, and S18F; Supplementary Table S10). For 58 
patients we could also co-profile variants in protein-coding 
regions, which identified de novo drivers of treatment fail-
ure (by comparing primary vs. matched relapse) at frequen-
cies comparable with previous studies [i.e., ESR1 mutations 
(48–50); Supplementary Fig. S19A–S19E; Supplementary 
Table S11]. Using a highly stringent computational pipeline 

(see “Methods” and Supplementary Fig. S18A), we identified 
a total of 3,369 single-nucleotide variants (SNV) and 2,311 
INDELs across the cohort, with a median coverage of 117× 
(Supplementary Table S12). Relapsed samples covered a wide 
spectrum of anatomic sites and despite showing comparable 
purity with matched primaries (P value = 0.088, paired two-
tailed t test), show significantly less genomic alterations (P 
value = 0.0007, paired two-tailed t test), potentially indicating 
decreased genetic intratumor heterogeneity due to the bottle-
neck induced by metastatic seeding (Supplementary Figs. S18 
and S19). The mutational burden from SIDV regions is highly 
consistent with previous WGS (Supplementary Fig. S18D). 
Interestingly, the mutational burden is higher in tumors 
showing high Ki67 and lower in those positive for the proges-
terone receptor (Supplementary Fig. S18E and S18F). Ther-
apy choice (AI vs. tamoxifen) did not seem to impact the num-
ber of SNVs at relapse (P value = 0.21; Mann–Whitney test; 
Supplementary Fig. S19D). We then extended and integrated 
several machine learning approaches to prioritize the identi-
fied SNVs and short INDELs based on their predicted effect 
on TF binding (51), chromatin state (52), accessibility (53), 
and splicing (54) using only models derived from relevant, 
HDBC-specific genome-wide measurements (Supplementary 
Fig. S18A and “Methods”). A model-specific P value for each 
prediction was derived either using permutation-based 
approaches or by generating a null distribution from the 
noncoding alterations across all cancer types available in 
COSMIC (see “Methods”; ref. 55).

We predict that ∼up to 30% of SIDV calls might have a 
functional impact on chromatin (Fig. 4C; Supplementary 
Table S13). The disease impact score [(DIS) as predicted by 
DeepSEA (56)] of called SIDV variants showed significantly 
higher values than noncoding variants across different cancer 
types in COSMIC (P value < 1e−16; KS test; Supplementary 
Fig. S19F). We also observe enrichment for SNVs with a neg-
ative impact on chromatin accessibility [as predicted by Sas-
quatch (53); Supplementary Fig. S19G]. Variants predicted 
to exert pathogenic impact on splicing seemed to be under 
negative selection (our set: 2.28% vs. expected: 4.71%, P value = 
9.4e−15, χ2 test). We then focused on those alterations with 
predicted impact on HDBC-specific TF-binding [as predicted 
by deltaSVM (51); see Supplementary Table S14 for the com-
plete information about the TFs considered]. Our data show 
that SNVs potentially altering the binding of several critical 
HDBC TFs are less frequent than expected (i.e., GATA3 and 
PBX1; Fig. 4D; Supplementary Table S15) with the notable 
exception of SNVs increasing the binding affinity of the 
HDBC cancer driver RUNX1 or decreasing SREBP1 binding. 
Interestingly, SNVs with predicted activity (increased or 
decreased) against ERα binding sites do not seem to be un-
der any selective pressure, supporting the notion that most  

figure 4. (Continued) f, Integration of SIDV and SIDP identify critical regulators of HDBC biology. SIDP log2 fold changes (for the indicated sam-
ples, in black; blue fold changes indicate an increased frequency compared with the control library, yellow ones indicate a decrease; scale is [−3; +3]) 
and SIDV calls (in dark red) at the indicated loci are shown (IGV genome browser). Dark red and black boxes indicate regions with clusters of mutations 
or with multiple scoring sgRNAs, respectively. For both loci, different zoomed-in regions are shown, separate by vertical, black, dashed lines (precise 
coordinates of each region are indicated on top). g, Bar plot showing enrichment of SIDV-identified alterations at sets of regions showing condition- 
specific patterns upon perturbation (SIDP). P values estimated via χ2 Test. H, Kaplan–Meier plot showing that genes near CREs with an excess of 
SIDV mutations and overlapping IF sgRNAs upon estrogen deprivation (−E2) are associated with prognostic expression levels (HR = 1.85, P value = 0.01; 
log-rank Test).
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ESR1-bound CREs are not functionally significant (8, 9, 18). 
These data suggest that there is an overall negative selection 
on the binding sites of key TFs. However, when comparing 
the HDBC-specific alterations to those reported across dif-
ferent cancer types (COSMIC), a residual enrichment for 
functional alterations was spotted (Supplementary Fig. S19F  
and S19G).

Degeneration and redundancy in the genetic grammar gov-
erning cis-regulatory element activity have strongly limited 
our ability to spot recurrent noncoding mutations (57). Nev-
ertheless, we hypothesized that by integrating the results from 
SIDV and SIDP we could gain more specific insights into the 
role of noncoding genetic alterations in HDBC (see Extended 
“Methods”). Using a lenient threshold (n > = 2; P value ≤ 0.05; 
binomial test), 63 SIDP CREs showed a significant excess of 
functional alterations (Supplementary Tables S16 and S17). 
These included one CRE falling in a cluster of CTCF binding 
sites within the UNC93B1 gene, which is part of the genes of 
the Toll receptor cascade in which downregulation leads to 
an advantage in −E2 (Fig. 4E). Interestingly, both UNC93B1- 
associated SNVs are predicted to alter splicing, whereas sgRNAs  
targeting this CRE or UNC93B1 promoter are significantly  
expanded in either −E2 or LTED screens (but not in +E2 
conditions, Fig. 4F). Other regions showing both excesses 
of mutations and SIDP significant scores include CREs near 
FOXA1, a critical TF involved in many aspects of HDBC bi-
ology (Fig. 4E-F; ref. 9). Interestingly, integration with data 
from a large cohort of metastatic breast cancer samples (n = 551;  
ref. 58) confirmed an overall larger number of genetic al-
terations at the UNC93B1 and FOXA1 loci, than would be 
expected by chance (Fig. 4F; Supplementary Table S18). 
Intersection of the 63 loci mentioned above with SIDP re-
sults and previously identified noncoding putative driver loci 
highlighted once again FOXA1 (Supplementary Table S19).  
Furthermore, collapsing the predicted functional mutations 
at the level of pathways identified an interesting set of bio-
logical processes, suggesting that noncoding variants might 
contribute to promoting cancer evolution by suppressing dif-
ferentiation and G1 arrest (Supplementary Table S16). Finally, 
we observed a significant overlap between SIDV mutations 
predicted as potentially pathogenic and SIDP but only when 
considering CREs bearing expanding sgRNAs under −E2 con-
dition or in LTED cells, suggesting that mutations in these 
CREs have the potential of conferring a heritable fitness ad-
vantage to cells under treatment (Fig. 4G; Supplementary  
Table S16). Mutations found in these CREs tend to show a 
slight increase in cancer cell fraction (CCF) in matched met-
astatic deposits (P value = 0.08; paired Wilcoxon test). Low 
expression of genes associated with these CREs is associated 
with poorer prognosis in HDBC (Fig. 4H; HR = 1.85; P value 
= 0.01; log-rank test). This suggests that cells losing the ex-
pression of the target genes due to loss of function of the 
corresponding CREs might have increased fitness under the 
selective pressure imposed by endocrine therapies. In sup-
port of this, 4/6 of the SNVs in this set show a higher CCF in 
matched metastatic samples (P value = 0.03; χ2 test with Yates  
correction). Taken together, our results demonstrate that 
nongenetic and genetic mechanisms targeting CREs might 
significantly contribute to tumor evolution by modulating 
therapy-induced dormancy.

diSCuSSion
The role of the noncoding genome in cancer has been under 

intense debate (30, 59, 60). In this work, we have (i) established 
a HDBC-specific cistrome (8); (ii) systematically perturbed it via 
targeted epigenetic repression, and (iii) profiled a large set of 
somatic alterations accumulated at these regions during tumor 
evolution. We ran three large-scale perturbation screens against 
the critical portion of the HDBC noncoding genome at an un-
precedented depth and resolution. We also leveraged a unique 
patient cohort to profile noncoding genetic alterations longi-
tudinally and at high coverage. Finally, we applied machine 
learning approaches to systematically dissect the functional 
consequences of these variants on regulatory potential. Sys-
tematic integration of results from these orthogonal exper-
imental and computational strategies led to the conclusion 
that genetic variation at CREs do not display the strong signa-
ture associated with coding drivers and that noncoding varia-
tion, when taken in isolation, do not provide a strong fitness 
advantage to adapting cells. Conversely, our study highlights 
that nonmutational context-specific changes in the activity of 
a defined set of CREs might play a role during therapy-induced 
dormancy. Our results stand out considering the stochastic 
processes dominating dormancy entrance and exit (Fig. 2C; 
Supplementary Figs. S3–S5; ref. 17). For example, our SIDP 
screens strongly suggest that signaling converging on NF-κB 
activation plays a central role in acquiring long-term dor-
mancy. This prediction is corroborated by our transcriptional 
tracking of single lineages, which shows NF-κB activity being 
induced in dormant cells but reversed in awakened lineages 
(Supplementary Fig. S16; ref. 17). We hypothesize that TLR 
signaling suppression increases the chance of escaping therapy 
induced dormancy. Of note, mutations on CREs associated 
with NF-κB regulation are surprisingly infrequent consid-
ering the potential benefit to cancer cells under AI pressure 
(Fig. 3B). This suggests that transcriptional switches are the 
preferred route to adaptation for HDBC cells, possibly because 
of their reversible nature. In agreement, we could not identify  
recurrent genetic mechanisms leading to awakening (17). 
Although profiling primary and secondary lesions as an evolu-
tionary endpoint did not reveal many additional therapeutic 
entry points, transient dormancy might offer an attractive and 
unexplored stage with potentially actionable transient depen-
dencies. As a proof of concept, we indeed show that targeting 
USP8 can actively eradicate HDBC once cells commit to dor-
mancy. As such, we anticipate that our results will also have 
critical relevance for the design of future screens that will help 
expand our knowledge on the regulatory networks underlying 
therapy-induced dormancy, which we propose as the critical tar-
getable bottleneck in the adaptive journey of breast cancer cells.

MeThodS
SID Panel Design

Previous epigenomic annotation of primary and metastatic luminal 
breast cancer tissues led to the identification of 326,729 putative en-
hancer regions (8). Most of these regions were private or poorly shared 
amongst individual tumors. However, an overall correlation between 
the activity of an enhancer in an individual tumor [low ranking index 
(RI)] and the pervasiveness of its activity across tumors (high sharing 
index, or SI) was observed. Thus, putative enhancer regions for the 

http://AACRJournals.org


Systematic Perturbation of ER+ Breast Cancer Cells RESEARCH BRIEF

SEPTEMBER 2024 CANCER DISCOVERY | 1623

panel were biased for those showing a low RI. Starting from the ∼326 
K regions mentioned above, we first excluded all the private enhancers 
(RI ≥ 80). 19,482 enhancers were retained and evaluated in terms of 
their delta of activity between primary and metastatic tumors. The 
average RI of each enhancer in the primary and metastatic cohorts 
was calculated (termed RI_Prim and RI_Met, respectively). These two 
numbers were then used to calculate a region-specific log2(RI_Met/
RI_Prim). Putative enhancers showing either higher enrichment in 
the primary or metastatic samples were selected (regions with RI ≤ 
50 in both primary and metastatic, and either in the top positive or 
negative log2(RI_Met/RI_Prim)). This resulted in 8.05 Mbps covering 
regions with higher RI in the metastatic samples and 3.7 Mbps show-
ing higher RI in the primary samples. Finally, 2.5 Mbps was assigned 
to private enhancers being clonal in only one or two samples. As an in-
ternal control, 800 putative enhancer regions were randomly selected 
among those showing extremely low sharing (SI = 1) and ranking (RI 
= 100) index. To reduce the required coverage and to increase the en-
richment for potentially functional regulatory regions, DNase-I ac-
cessible regions available in ENCODE (61) were then used to restrict 
the area of investigation to the subregions within the selected puta-
tive regulatory regions. These are more likely to represent clusters of 
TF-binding sites. To this aim, the regions resulting from the analysis 
described above were intersected with the DHS from HoneyBadger2 
(https://personal.broadinstitute.org/meuleman/reg2map/), which 
effectively lowered the coverage to ∼9 Mbps. Based on an initial it-
eration of the capturing strategy, these 9 Mbps were further reduced 
to about 7, by excluding those regions with either a very low or an 
extremely high coverage (i.e., the bottom and top 1% in terms of nor-
malized coverage, considering a previous iteration of the design that 
was applied to a small, pilot cohort). This resulted into a higher and 
more even coverage on the majority of the targeted elements Putative 
insulator regions were selected through a meta-analysis of previously 
published human ChIP-seq profiles, namely 161 for CTCF (in 89 cell 
lines or primary cells), 46 for subunits of cohesin (8 targeting SMC3 
and 38 targeting RAD21, corresponding to multiple profiles across 5 
and 11 cell lines or primary cells, respectively, for SMC3 and RAD21), 
and 8 for ZNF143 (in 4 cell lines or primary cells). ZNF143 has been 
shown to bind together with CTCF and cohesin and to be specifically 
enriched at domain boundaries (62). Briefly, to identify the strongest, 
most conserved insulator sites in the human genome, site-specific 
scoring and spatial clustering of CTCF, cohesin, and ZNF143 binding 
across different cell types were calculated and combined. First, con-
sistently derived, enriched regions from ENCODE datasets (61) were 
downloaded from the UCSC genome browser on July 16, 2016. ChIP-
seqs for the same protein in the same cell line (or primary cells) were 
considered as replicates. Narrow peaks from replicates were merged. 
The union of the peaks was then computed, and each peak was  
re-annotated to the sum of the corresponding −log10(P value) of the 
overlapping peaks across replicates. To compare the binding profiles 
across cell types, the obtained scores were converted to percentiles. 
Given a cell type, percentiles from overlapping CTCF, cohesin, and 
ZNF143 peaks were then summed, resulting in site-specific scores. 
Separately for each cell type, nearby CTCF-bound regions were then 
clustered together if found within 10 Kbp from each other. Given each 
cluster, site-specific scores for each constituent region were combined, 
first for each cell type, and eventually across all the cell types consid-
ered, obtaining an overall score for each cluster. For the final design, 
the clusters were sorted according to this score, and starting from the 
highest scoring cluster, the top clusters covering 3 Mbp of the genome 
were considered. This way, >95% of previously annotated TAD bound-
aries (63) were covered by one or more clusters (keeping in mind the 
resolution limit of the corresponding HiC datasets, namely 40 Kbp). 
Promoter regions were selected according to the following strategy. 
Genes that are either annotated as ERα targets [from the MSigDB Hall-
mark datasets (64)], found in the PAM50 signature (65) or being anno-
tated as cancer genes [Network of Cancer Genes version 6.0 (66)] while 

showing an FPKM ≥ 50 (FPKM = Fragments Per Kilobase of Exons per 
Millions sequenced) in bulk RNA sequencing data from either LTED-, 
TamR-, or FulvR-resistant cell lines (36) were considered. From this  
initial list, genes annotated as housekeeping (67) were excluded. Pro-
moter regions [(−750, +250) from annotated transcriptional start sites] 
were derived from the refGene table of the UCSC genome browser on 
December 13, 2018. Within these regions, only those DNA stretches 
overlapping DHS (as described above for the putative enhancer re-
gions) were retained. Regions of low mappability along with those 
mapping to either chromosome Y or the mitochondrial chromosome, 
as well as those overlapping segmental duplications, were excluded 
from the design. Regions of unique mappability were defined accord-
ing to the UCSC genome browser track k50.Unique.Mappability.bb in 
the Hoffman Mappability collection. After performing an initial, small 
set of captures, the overall design was further improved by excluding 
the top and bottom 1% regions. The top 1% regions were responsible 
for ∼21% of the signal, and the bottom 1% for just ∼0.03% of the signal. 
Omission of these regions resulted in a more uniform coverage.

SIDP Screens
Two oligo pools for the SIDP library (n = 67,839 and 69,569 oli-

gos respectively, see design information below) were synthesized by 
Twist Bioscience. Each 60 bp ssDNA oligos contained a 20 bp sgRNA 
sequence flanked by these sequences 5′-gccatccagaagacttaccg-3′ and 
5′-gtttccgtcttcacgactgc-3′ used for PCR amplification and BbsI re-
striction enzyme-mediated cloning. The oligo pools were cloned 
into a modified pLKO-TET-ON plasmid by the Golden Gate method 
and the resulting product was used to transform Endura electro-
competent cells (Lucigen) according to the manufacturer’s protocol. 
The transformation efficiency was ≈500 fold higher than the SIDP 
library size and complete and even oligos representation was con-
firmed by NGS. Large-scale preps of bacteria cultures containing the 
sgRNA plasmid library were harvested using the Genopure plasmid  
maxi kit (Roche). SIDP library was packaged in lentiviral particles 
by large scale co-transfection of HEK293T cells with CELLECTA 
ready-to-use packaging plasmid (Cellecta—cat.no CPCP-K2A) using 
TRANSIT-LT1 transfection reagent (Mirus Biologicals—cat. no. MIR 
2300) according to manufacturer guidelines.

MCF7, LTED, and T47D cells were engineered to stably express 
dCas9-KRAB by lentiviral transduction and selected using 10 μg/mL 
blasticidin (Invitrogen) and initially maintained in EMEM (Amimed 
#1-31S01-I; for MCF7 and LTED) or RPMI (Amimed # 1-41F01-l), 
10% FBS (Seradigm #1500-500, Lot:077B15), 2 mmol/L L-glutamine, 
1 mmol/L sodium pyruvate, 10 mmol/L HEPES, and 1% P/S. Ho-
mogeneous dCas9-KRAB expression was confirmed by intracellular 
staining using Cas9 antibody (Cell Signaling Cat-14697) according 
to the manufacturer’s protocol.

MCF7-dCas9-KRAB, LTED-dCas9-KRAB, and T47D-dCas9-KRAB 
cells were then infected with SIDP lentiviral particles at low MOI 
(≈0.3) in two independent replicates. We transduced ≈1,000 cells per 
plasmid present in the library to guarantee a good representation of 
all sgRNAs in the population of cells under screening. The cells were 
selected using 2 μg/mL puromycin (Invitrogen) starting at 24 hours 
posttransduction and maintained in culture in CellStacks (Corning) 
in the described conditions and for the indicated time points. Cells 
were then harvested and gDNA isolated using the QIAamp DNA maxi 
kit (QIAGEN). Amplicons containing the sgRNA sequences were 
amplified using NEBNext High-Fidelity (NEB) and their representation 
was analyzed by next-generation sequencing (HiSeq2500, Illumina). 
During SIDP, for +E2 condition (full growth media +estrogen) cells 
were maintained in DMEM (Gibco #11885-084; for MCF7) or RPMI 
(Gibco #11875093) supplemented with 10% FBS (Seradigm #1500-
500, Lot:077B15), 10 mmol/L HEPES, 1 mmol/L sodium pyruvate, 
and 1% P/S. For −E2 (estrogen-deprived media) cells were maintained 
in phenol-free DMEM (Gibco #11880-028; for MCF7 and LTED) or 
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phenol-free RPMI (Gibco #11835030) supplemented with 10% FBS, 
charcoal-stripped, USDA-approved regions (Gibco #12676029),  
2 mmol/L L-glutamine, 10 mmol/L HEPES, 1 mmol/L sodium pyru-
vate, and 1% P/S.

Flow Cytometry–Based Cell Competition Assays
MCF7-dcas9KRAB cells were infected with a modified pLKO-TET-ON 

lentiviral vector to deliver constitutively expressed sgRNAs in the target 
cells. Cells transduced with targeting sgRNAs (expressing mCherry) or 
nontargeting sgRNAs (expressing GFP) were mixed (ratio 2:1 mCherry: 
GFP) and maintained in culture as described above. At each time point, 
cells were harvested and analyzed by flow cytometry using CitoFLEX S 
(Beckman Coulter). We recorded at a minimum of 2,000 single cells for 
each condition, and the results were analyzed using FlowJo.

IncuCyte-Based Competition Assays
MCF7-dCas9-KRAB cells were engineered by lentiviral transduction 

containing a vector expressing NLS-eGFP (kindly provided by  
Dr. Chun Fui Lai, Imperial College London). Transduction efficiency 
was evaluated with EVOS XL Core Imaging System microscope 
(Thermo Fisher—AMEX100), and a population of bright GFP-positive 
cells was obtained by FACS. Sorting was performed by the Flow 
Cytometry facility at MRC London Institute of Medical Sciences. 
MCF7-NLS-eGFP-dCAS9KRAB cells were then transduced with 
lentiviral particles containing plasmids expressing individual sgRNAs 
and selected with puromycin (Sigma-Aldrich cat no. P8833). For 
each gene of interest, 150 eGFP-positive (targeting sgRNA) and 150 
transparent (NTC-sgRNA) MCF7-dcas-9KRAB cells were seeded per 
well in a 96 wells ImageLock plate (Sartorius—cat no 4379) both in 
the presence and absence of estradiol [Complete medium with 10% 
FCS ± 17-ß estradiol 1 × 10–8 mol/L (Sigma-Aldrich cat no. E-060)] 
in parallel, for a total of 10 replicates per condition. The plate was 
routinely media changed and imaged daily with IncuCyte (IncuCyte 
ZOOM—Sartorius) using a Dual Color 10× 1.22 μm/pixel Nikon Air 
Objective (Sartorius cat no 4464). (Green filter: Ex 440/480 nm, Em 
504/544 nm). The IncuCyte ZOOM Live-cell analysis system software 
was used to perform automated cell imaging over time and to cal-
culate cell-by-cell segmentation employing a manually adjusted seg-
mentation mask used to train the images taken at each time point. 
The total percentage of confluency and the total GFP-positive area 
percentage were automatically registered by the software and used to 
calculate the ratio between the two parameters normalized to day 0, 
to highlight an increase (>1: fitness) or a decrease (<1: vulnerability) 
in the trend of GFP-targeting representation over the non-targeting 
one. Numbers of green nuclei were also automatically counted by the 
software to obtain the GFP+ only cell count.

qPCR Analysis
RNA was extracted from dcas9-KRAB-MCF7 cells transduced 

with targeting and nontargeting sgRNA (Qiagen, cat no. 74016). 
RNA was retrotranscribed using iScript (Bio-Rad, cat no. 1708891). 
Quantitative PCR was performed with QuantStudio3 Real-Time 
PCR instrument (Applied Biosystems, cat.no A28567) using an 
SYBR-green PCR master mix reporter (Applied Biosystems, cat no. 
4309155) and the following primers, designed around the promoter 
of the repressed genes. USP8 fwd: GGGTCTTGGGCCCTAGCA, rvrs: 
CAGAGCTTGTCTCCGGGGTA—MYD88 fwd: CTGCTCTCAACAT-
GCGAGTG,rvs: CAGTTGCCGGATCTCCAAGT—TLR5 fwd: GCGC-
GAGTTGGACATAGACT, rvrs: GAGGTTTTCAGGAGCCCGAG).

Tissue Specimens
Longitudinal formalin-fixed paraffin-embedded (FFPE) HDBC 

samples were retrospectively collected from 100 patients. Samples 
from 61 patients were collected from Professor Giancarlo Pruneri 

at The European Institute for Oncology, Milan. Samples from 26 
patients were collected from Professor Andrea Rocca at The Cancer 
Institute of Romagna, Meldola. The remaining 14 patient samples 
were collected from Professor Maria Vittoria Dieci at The Institute 
of Oncology Padova. We have obtained written informed consent 
from all patients. This study was conducted in accordance with rec-
ognized ethical guidelines (Declaration of Helsinki). Tissue collection 
was approved by each respective institutional review board. Germline 
DNA was extracted from normal lymph nodes (FFPE). The material 
was collected in the form of 10-µm slices. Detailed clinical notes were 
provided for each patient including age at diagnosis, tumor grade, 
percentage of ER-positive cells, percentage of PR-positive cells, per-
centage of Ki-67 high cells, percentage of HER2-positive cells, years 
until relapse, metastatic site, type of chemotherapy, and type of 
hormonal therapy. A full summary of the clinical data can be found 
in Supplementary Table S3.

Sample Preparation Workflow Extraction
DNA was extracted from 10-µm slices using the Qiagen Gene-

Read DNA FFPE extraction kit (Qiagen, Catalog no. 180134) which 
includes a Uracil N Glycosylase enzyme treatment to reduce FFPE 
artifacts. DNA quality and quantity were assessed using an Agilent 
Tapestation 2200 using the Genomic DNA screentape and reagents 
(Agilent, Catalog no. 5067-5365 and 5067-5366). Samples were 
sonicated custom number of cycles to achieve fragments of uniform 
length. Postsonication samples were quality controlled using the 
Tapestation 2200 instrument with a threshold set for samples to have 
at least 60% of fragments between 100 and 500 bp to proceed with 
processing. DNA underwent a second treatment with NEBNext FFPE 
DNA Repair Mix (NEB, Catalog no. M6630) to further reduce FFPE 
artifacts.

Library Preparation and Capture
DNA libraries were prepared from 30 ng to 1 μg of DNA using the 

NEBNext Ultra 2 DNA library kit for Illumina sequencing. Unique 
dual 8 bp indexes were used for each sample (a gift from Paolo Piazza 
of the Imperial British Research Council Genomics Facility). DNA 
libraries from 15 samples were pooled and captured with the SIDV 
capture probes produced by Twist Biosciences (ratio of 1.5 μg DNA li-
braries, 100 ng each, to 800 ng of capture probes). Noncaptured DNA 
was recovered using SPRI size selection beads to be used for a second-
ary capture. Postcapture amplification was performed using the KAPA 
HiFi Hot Start PCR ReadyMix Kit (KAPA Biosystems, Catalog no. 
KK2601). Postcapture amplified libraries were quality controlled and 
quantified using a Tapestation 2200 with the High Sensitivity reagents.

Sequencing
The initial 40 patients were sequenced on an Illumina HiSeq 4000 

Instrument (Standard mode, 2 × 150 bp). After sequencing the initial 
40 patients, sequencing was then performed by Novogene on an Illu-
mina NovaSeq 6000 using paired-end 150bp reads. An average of 176 
million reads per sample was achieved.

Raw Data Processing of the Captured DNA
First, paired-end reads from each sample were trimmed for adapter 

sequences and based on quality using Trim Galore (version 0.6.4; 
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) 
in –paired mode. Alignment to the hg38 genome was then performed 
using bwa mem (version 0.7.15; https://arxiv.org/abs/1303.3997) us-
ing default parameters. The hg38 reference genome along with the 
corresponding annotation and known variant files mentioned in 
this and the following paragraphs were part of the Broad Institute 
Bundle, as per download from the Broad FTP on February 5th, 2018. 
Sambamba [version 0.7.1 (68)] was then used to convert the resulting 
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SAM to a BAM file (using Sambamba view -S -h -F “not unmapped” 
-f bam). Sambamba sort and index were then used for sorting and 
indexing the resulting BAM file. The markdup function from Sam-
bamba was used to mark potential PCR duplicates. Recalibration of 
base quality scores was performed using GATK4 [version 4.1.3.0 (69)]. 
The BaseRecalibrator function was run (providing dbSNP version 146 
via the parameter –known-sites) followed by ApplyBQSR. The result-
ing BAM file with recalibrated scores was indexed using Sambamba. 
Final metrics for each sample were computed using the CollectHsMet-
rics function of the Picard tools (version 2.20.6; http://broadinstitute.
github.io/picard/).

Mutational Calling Pipeline
To robustly identify SNVs and short INDELs, a pipeline deriving a 

consensus between three independent tools (Mutect2, Platypus, and 
Strelka) was deployed. Mutect2 [part of GATK4 version 4.1.3.0 (70)] 
was run individually on each primary and metastatic sample using 
the matched normal as reference. The -L option was used to specify 
the targeted regions. The file af-only-gnomad.hg38.vcf.gz acted as 
the source of germline variants with estimated allele frequency (as 
specified via the –germline-resource option). Parameters –af-of-alleles-
not-in-resource 0.001, –disable-read-filter MateOnSameContigOr-
NoMappedMateReadFilter and –f1r2-tar-gz were also specified. The 
output from running the –f1r2-tar-gz option was then used to learn 
an orientation biased model (separately for each sample), leveraging 
the LearnReadOrientationModel function of GATK4. This allows esti-
mating the substitution errors occurring because of damage induced 
by FFPE, by identifying residues showing a significant bias of sub-
stitutions on a single strand. The resulting model was then fed into 
the FilterMutectCalls function of GATK4 so that potentially affected 
residues can be flagged for subsequent filtering (see the bullet points 
later in this section for details about filtering).

Platypus [version 0.8.1.2 (71)] was run on each patient, jointly con-
sidering the normal as well the primary and metastatic profiles. The 
union of the variants called by Mutect2 separately on the primary and 
metastatic samples was used as prior (-source option). Option -min-
Reads was set to 4.

Strelka [version 2.9.10 (72)] was run independently for each 
primary and metastatic sample using the matched normal as a refer-
ence, with default parameters. Although both Mutect2 and Platypus 
jointly identify SNVs and INDELs, Strelka relies on Manta [version 
1.6.0 (73)] for the detection of INDELs. Manta was run first, and the 
resulting list of candidate INDELs was then provided to Strelka via 
the –indelCandidates option.

Considering the resulting lists of SNVs and INDELs, both com-
mon and tool-specific filters were applied to the lists generated by the 
different tools. General filters included:
 

 •  A minimum depth of 20 reads was applied to both normal and 
tumor samples.

 •  A minimum alternate allele coverage of two reads.
 •  Exclusion of variant overlapping known SNPs (dbSNP version 146).
 

Tool-specific filters were set as follows:
 

 •  Mutect2: after running FilterMutectCalls (GATK4) which also 
considered FFPE artifacts as estimated by the orientation bias 
model, only those variants marked as PASS were retained.

 •  Platypus: all variants flagged by the tool were discarded, except 
those marked as PASS or including just one or more of the following 
flags: badReads, HapScore, alleleBias.

 •  Strelka: only variants marked as PASS were kept for further 
analyses.

 •  Of the resulting filtered variants, only those SNVs or short INDELs 
that were consistently identified by at least two out of three calling 
algorithms, very retained for further investigation.

Copy Number Calling Pipeline
CNVkit [version 0.9.7 (74)] was run in batch mode on the tumor 

bam files, using all normal bam files of each capturing-sequencing 
batch as input for the option -normal. SIDV3 intervals were specified 
under option—targets. The reference genome used for mutational 
calling was employed (Broad Bundle).

Purity and CCF estimation
To estimate the CCF of each SNV, only SNVs with an estimated 

copy number of two were considered. Separately for each sample, the 
SNVs fulfilling this criterion were hierarchically clustered based on 
their VAF (using Euclidean distance and complete linkage). The den-
drogram was then cut at a fixed height of 0.15, and the cluster with 
the larger mean VAF was identified. This mean VAF was then used 
to estimate the purity of the sample: purity = VAFmean * 2. The CCF 
of each variant was then calculated starting from its VAF and the es-
timated purity for the sample, using the following formula: CCF = 
VAF * (2 * (1 − purity) + CNA_TOT * purity)/(CNA_MUT * purity) 
(75). Although CNA_TOT was known (2, see above), each variant was 
assumed to be heterozygous, with CNA_MUT set to be 1 (75).

Data Collection and Preprocessing to Train the DeltaSVM 
Models

A manually curated list of previously published, high-quality human 
ChIP-seq datasets from luminal breast cancer cell lines was compiled. 
Only those having a high-quality model (position weight matrix or 
PWM) describing their binding preferences were considered. The rea-
son behind this choice is that knowing the binding preferences was 
a prerequisite to generate well-controlled negative sets for the delt-
aSVM models. Briefly, each PWM was used for genome-wide predic-
tions of binding sites specific for each TF, to then derive a positive 
(predicted TF-binding site showing a ChIP-seq peak) and a negative 
(predicted TF-binding site, that could be in principle be contacted 
by the TF, but without a ChIP-seq peak) training set. This selection 
resulted in 72 ChIP-seq, corresponding to 43 transcription factors. 
Peaks in BED format were downloaded from the Gene Expression 
Omnibus (76). Regions in hg18 or hg19 coordinates were converted 
to hg38 using liftOver (77) and then filtered against the ENCODE 
blacklists (78) using BEDTools (79).

Predicting the Functional Effects of the Identified Variant
Available, precomputed genome-wide predictions were used to 

assess the impact of somatic variants on chromatin accessibility  
[Sasquatch (53)], mRNA splicing [Splicing Clinically Applicable 
Pathogenicity prediction or S-CAP (54)], and protein-coding se-
quence [Cancer Genome Interpreter or CGI (80)]. Available models 
based on deep learning [DeepSEA (56)] were used to compute the 
overall DIS of each variant. Support vector machines (SVM) were in-
stead trained to predict the impact of somatic variants on the binding 
affinity of luminal breast cancer-relevant TFs. For each one of the dif-
ferent functional categories, the predictions were obtained as follows:
 

 •  Chromatin Accessibility: The Sasquatch R package version 0.1 
(https://github.com/Hughes-Genome-Group/sasquatch) was used 
to assess the impact of the identified somatic variants using the 
available model pre-trained with ENCODE_DUKE_MCF7_merged 
DNase-seq dataset. Briefly, hg38 coordinates were converted to 
hg19 using liftOver (77). Analysis of multiple reference-alternative 
alleles pairs was then performed using the RefVarBatch wrapper, 
using DNase as fragmentation type: (frag. type = “DNase”) and 
human as propensity source (pnorm.tag = “h_ery_1”). Empirical P 
values were estimated separately for observing a predicted increase 
or decrease in accessibility. A null distribution was derived from 
the COSMIC noncoding database (55), which contains millions 
of variants from different cancer types. Version 92 (08.2020) was 
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downloaded as a flat file on October 12th, 2020. Sasquatch was 
run on the entire set of variants, but only those overlapping with 
the SIDV3 intervals were retained to compute the null.

 •  mRNA splicing: Full S-CAP predictions (scap_COMBINED_
v1.0.vcf) were downloaded from http://bejerano.stanford.edu/
scap/ on August 27th, 2019. A custom Python script was prepared 
to annotate the somatic variants with these predictions.

 •  Protein-coding sequence: The list of candidate somatic muta-
tions was submitted to the CGI webserver on December 1, 2020 
(https://www.cancergenomeinterpreter.org/). Also, in this case, 
hg38 coordinates were converted to hg19 using liftOver (77).

 •  DIS: models from DeepSEA version 3 were used to estimate this. 
Hg38 coordinates were converted to hg19 using liftOver (77) and 
a corresponding null distribution leveraging COSMIC was com-
puted as described above for chromatin accessibility.

 •  TF-binding affinity: deltaSVM (51) was used to predict significant 
effects of a somatic variant in decreasing on increasing the affin-
ity of the region for a given TF. First, for each considered PWM a 
genome-wide map of the high-affinity sites in the human genome 
(hg38) was predicted using FIMO((81)81). FIMO was run with 
the following parameters: –thresh 1e-4 –no-qvalue –max-stored-
scores 10,000,000, separately for each motif. Regions of unique 
mappability (as defined according to the UCSC genome browser 
track k50.Unique.Mappability.bb in the hoffmanMappability 
collection) were defined using BEDTools (79), and only those 
were retained for the next steps. This information was coupled 
to the corresponding TF-ChIP-seq, to derive a positive (predicted 
TF-binding site showing a ChIP-seq peak) and a negative (pre-
dicted TF-binding site, that could be in principle be contacted by 
the TF, but without a ChIP-seq peak) training set. Each region in 
these two sets was defined as the 100 bps of genomic DNA cen-
tered on the predicted, high-affinity site. The actual training set 
used were randomly subsampled versions of these two sets (n = 
10,000). Training of the SVM discriminating the positive from the 
negative examples was performed by running gkmsvm_kernel (with 
option -d set to 3) followed by gkmsvm_train. After that, gkmsvm_
classify was used to generate a weighted list of all possible 10-mers, 
in which each 10-mer is assigned a SVM weight corresponding to 
its contribution to the prediction. With this list of weights, it was 
possible to predict (using the script deltasvm.pl) the impact of 
any sequence variant on the regulatory activity of a given region. 
One limitation of this approach when comparing models gener-
ated with very different data (like in this case for different TFs) is 
to define model-specific thresholds. To overcome this, the set of 
genomic regions under investigation was randomly mutagenized, 
resulting in a dataset in which every sequence was mutagenized 
at five residues (to all the three possible variants). The resulting 
values were used to compute model-specific null distributions that 
were used to estimate empirical P values for the predicted effects 
of the real set of mutations.

Variant Classification
A variant was classified as potentially pathogenic if meeting at least 

one of the following conditions:
 

 •  Annotated as either Missense, Nonsense, or Frameshift by the 
CGI.

 •  Showing an empirical P value equal or lower than 0.05 in terms of 
either DIS (DeepSEA) or predicted increase or decrease in chro-
matin accessibility (Sasquatch), or for the affinity of any of the 43 
transcription factors considered in the deltaSVM models.

 •  Showing any of the following S-CAP scores: (i) score ≥ 0.006 in 
case of mutations in the introns upstream of a 3′ SS or down-
stream of a 5′ SS; (ii) score ≥ 0.033 in case of a mutation in the 3′ 
AG (3′ SS core); (iii) score ≥ 0.009 in case of synonymous exonic 
mutation; (iv) score ≥ 0.034 for a mutation in the 5′ GT (5′ SS 

core); (v) score ≥ 0.005 in case of variants lying in the canonical 
U1 snRNA-binding site, excluding the 5′ SS core (5′ extended); (vi) 
score ≥ 0. 006.

Identification of Regions Showing an Excess of Regulatory 
Mutations in the Tumor Samples Cohort

Given a regulatory element targeted by the enrichment strategy, 
the probability of a given region to show an excess of mutations pre-
dicted as pathogenic was evaluated based on a binomial distribution. 
The expected probability P was estimated as the fraction of variants 
predicted as pathogenic in the entire datasets. The pbinom function 
from R was used to calculate the probability of seeing a better number 
of q pathogenic variants in the region, given the expected probability 
P and the total number of variants n identified in the region [pbinom 
(q, n, P, lower.tail = FALSE)].

Recurrence Analysis Using the HMF Metastatic, Breast 
Cancer Cohort

SNVs from 551 ER-positive, HER2-negative metastatic breast can-
cer samples from the Hartwig Medical Foundation (HMF; ref. 58) 
were used for the analysis. Each SID locus was enlarged by 1 kbp each 
side and then the mutational burden of each region was estimated as 
the total number of SNVs in the cohort overlapping the interval. To 
control for local differences in the propensity of each region to ac-
cumulate a different number of SNVs, the number of SNVs per base 
pair in a 1 Mbp window centered on the SID locus was used as proxy 
for the background (expected) mutational rate. After that, the SID 
regions were split into deciles based on their background mutational 
rate, and the number of SNVs at each locus was converted to a P value, 
as the fraction of loci in the decile showing an equal or higher number 
of SNVs. These P values were used as proxy for how good each region 
ranked in each respective decile, and then specifically to rank the 63 
regions identified with an excess of alterations in SIDV that were pre-
dicted as functional.

Coding Variants Panel Design
To profile the coding genome in these patients, a refined panel of 

genes known as the Oncomine panel was utilized, specifically designed 
to cover key areas of mutation in luminal breast cancers (82). The panel 
targets 6,812 coding regions selected by compiling commonly mu-
tated sites identified in up-to-date studies, sequencing both primary 
and metastatic luminal breast cancer tumors. The panel utilized data 
from an array of databases and studies including: TCGA database, the 
METABRIC database (83), Lefebvre and colleagues (84), the MSKCC 
IMPACTTM study (85), the AACR GENIE database (86), the COSMIC 
database, the Cancer Gene Census, and the Pharmacogenomics Knowl-
edgebase (PharmKGB; ref. 87). In total, these datasets included 1,673 
primary and 1,596 metastatic luminal breast cancer cases. Mutated 
genes identified in these datasets were compiled and refined using the 
following criteria. Sites that were mutated in at least 2% of primary or 
metastatic samples and CNVs with a frequency of more than 5% or 
with a fold change of more than 5% in either primary or metastatic 
tumors were compiled. All breast cancer genes reported in the Cancer 
Gene Census and all pharmacogenomic SNPs related to breast cancer 
in the PharmKGB database were compiled. Finally, some manual cu-
ration was included, adding in the CYP19A1 and SQLE amplification 
(88, 89). After refinement, the panel included 6,812 regions covering 
134 genes, 27 CNV sites, 37 germline cancer genes, and 59 germline 
loci, with associations to pharmacogenomic interactions.

Sample Preparation and Sequencing
Secondary captures, on SIDV, captured DNA libraries, was carried 

out using the Oncomine panel. After hybridization of SIDV capture 
probes to complementary DNA and purification, noncaptured DNA 
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was recovered and concentrated using SPRI size-selection beads. 
Quality control assessment using a Tapestation 2200 instrument was 
performed reporting that, in all cases, at least 50% recovery of initial 
DNA concentrations before the SIDV capture had been achieved. A 
custom set of capture probes for the Oncomine regions were pro-
duced by Twist Biosciences. Pools of DNA were captured using the 
Oncomine panel and quality controlled as previously described with 
the SIDV panel. Pools of 10 patients were sequenced at Novogene 
on an Illumina NovaSeq 6000 (150 bp paired-end), with 700 million 
reads per pool.

Computational Analysis of Coding Variants
Variant calling was initially performed for all 100 patients that 

were sequenced—matched normal, primary, and metastatic samples. 
Adapter trimming was performed using Trim Galore version 0.6.4 
(https://www.bioinformatics.babraham.ac.uk/projects/trim_ga-
lore/). Bwa-mem version 0.7.15 was used for alignment to the hg38 
human genome reference. Sambamba (68) version 0.7.0 was used for 
conversion to binary, removal of PCR duplicates, sorting and index-
ing. Preprocessing before variant calling was performed using GATK 
(90), version 4.1.3.0: read groups were added using Picard version 
2.20.6 (https://sourceforge.net/projects/picard/files/picard-tools/), 
base quality recalibration using GATK BaseRecalibrator and GATK 
ApplyBQSR. Mutect2 was used for somatic variant calling against the 
matched normal bam samples: using the germline resource from the 
GATK resource bundle af-only-gnomad.hg38.vcf.gz with option –af-
of-alleles-not-in-resource set as 0.001 and with MateOnSameContig-
OrNoMappedMateReadFilter disabled. To flag possible FFPE artifacts, 
GATK LearnReadOrientationModel was run, using output during the 
filtering of variants with FilterMutectCalls. Only PASS mutations were 
further processed. Depth was checked at 500 mutated loci [variants 
with a FATHMM score ≥ 0.8 and a variant allele frequency (VAF) of 
at least 0.1 from the pool of de novo metastatic mutations] in all 100 
patients—across normal, primary, and metastatic—using Samtools 
depth. This analysis revealed that in 42/100 patients, depth was lower 
than 10 in most of the loci, in at least one of the normal, primary, or 
metastatic bam files. As this low number of reads could affect variant 
detection generally or affect the identification of de novo metastatic 
variants (i.e., impossible to discern whether a mutation found in the 
metastatic sample was not present in the primary if the depth at that 
locus is low in the primary). As depth was sufficient across all variants 
in the other 58 patients, these were further processed. Variant anno-
tation was performed using OpenCRAVAT, filtering for mutations 
only found in established breast cancer driver genes (91). To discover 
potential de novo driver variants of metastasis in these patients, we 
filtered for non-synonymous coding variants, with ≥0.1 VAF, private 
to metastasis or with an allele frequency at least five times higher than 
in the primary. ComplexHeatmap version 2.9.3 was used to generate 
an OncoPrint heatmap of these de novo, possibly pathogenic variants.

CRISPRi Screen: sgRNA Design
First, promoter-associated SIDV3 regions were excluded (a more 

tailored design of sgRNAs guided by available CAGE tags data in 
MCF7 was performed instead, see below for details). After enlarging 
each region to be at least 500 bps in size, the command-line version 
of the CRISPR-DO (92) tool [version 0.04 (93)] was then run sepa-
rately for each one of the considered regions (with –spacer-len = 20), 
and the predicted sgRNAs stored. Only sgRNAs showing efficiency 
between 0.4 and 1.3, and specificity ≥ 80% were retained for further 
analyses. One G nucleotide was then added at both 5′ and 3′ of each 
sgRNA, and the resulting guides predicted to be digested by endonu-
clease BbsI were discarded. In silico digestion was performed using the 
digest package in R. After that, to obtain a more uniform distribution 
of sgRNAs, an iterative pruning procedure was applied until no two 
guides were found within 50 bps from each other. This resulted in 

62.2% and 79.7% of the putative insulators and enhancers showing 
three or more sgRNAs targeting them, respectively. Only the sgRNAs 
targeting those regions were retained. hg19 coordinates for CAGE 
tags peaks from FANTOM5 (93) were downloaded from the consor-
tium website (https://fantom.gsc.riken.jp/5/datafiles/latest/extra/
CAGE_peaks/). Briefly, starting from hg19.cage_peak_phase1and-
2combined_tpm_ann.osc.txt.gz, only those expressed at least with a 
TPM ≥ 1 in unstimulated MCF7 were considered further. For each 
gene (after filtering for blacklisted regions in ENCODE and for pro-
moters of antisense, noncoding RNAs) the dominant transcription 
start site (TSS; based on highest CAGE TPM) was identified. Only a 
single, dominant TSS for each expressed gene was retained. Of those, 
only those corresponding to promoters of genes with at least one 
overlapping putative insulator or enhancer in SIDV3 were considered 
for sgRNA design. Considering the directionality of transcription at 
each CAGE tags cluster, each region was standardized to [−100, +300] 
bps from the dominant position in the cluster. Design and filter-
ing of the sgRNAs were then performed as described in the previous 
paragraph.

CRISPRi Screen: Data Analysis
Count data were normalized according to the weighted trimmed 

mean of the log expression ratios [trimmed mean of M values 
(TMM)] normalization (94), using the calcNormFactors function 
from edgeR (95). Initial principal component analysis and cluster-
ing analyses indicated high similarity between the 7 days samples 
and the initial library. For this reason, the replicated 7 -day sam-
ples were used as a reference to identify statistically significant 
changes in abundance of sgRNAs at later time points, using edgeR 
(95). Briefly, after estimating dispersion using the estimateDisp func-
tion, generalized linear models (GLM) were fit separately to each 
condition (full and estrogen-depleted medium), using the glmFit 
function. Coefficients were retrieved with glmLRT, and significant 
changes were retained as those showing a Benjamini–Hochberg cor-
rected FDR ≤ 0.05 and a linear fold change of at least 1.5, in either 
direction. This procedure was applied to MCF7 and LTED samples, 
and also to T47D data with minor modifications, that is, a replicate 
of the initial library was used as baseline. The same computational 
strategy was applied to compare the sgRNAs counts in full (+E2) 
versus estrogen-depleted media (−E2), at any given time point, for 
both MCF7 and T47D.

Survival Analyses
Kaplan–Meier analysis was performed as described previously (96). 

Three main cohorts were considered for this manuscript. A meta-co-
hort including several Affymetrix profiled individual cohorts, which 
were reprocessed as a single cohort, the TCGA cohort and the ME-
TABRIC cohort (97). For the analysis, patients were dichotomized 
based on the median expression of MYD88, TLR5, or USP8 and a Cox 
regression analysis was run (where possible, using covariates). The 
Kaplan–Meier survival plot and hazard ratio with 95% confidence in-
tervals and log-rank P value were calculated and plotted in R using 
Bioconductor packages.

Statistical Analyses and Plotting Using R
Unless indicated otherwise, all the described statistical analyses 

and preparation of plots were performed in the statistical computing 
environment R v4 (www.r-project.org).

Data Access
SIDP CRISPR screen results are accessible following this link: 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197504. 
SIDV sequencing data have been deposited at EGA: http://ega- 
archive.org/studies/EGAS00001006340.
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Data Availability
The R, Python, and bash scripts to reproduce analyses and figures 

have been deposited in Zenodo: http://zenodo.org/record/8097853.
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