
Discovering reaction pathways, slow variables, and committor 
probabilities with machine learning

Haochuan Chen†, Benoît Roux‡, Christophe Chipot†,¶,‡

†Laboratoire International Associé Centre National de la Recherche Scientifique et University of 
Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 
70239, 54506 Vandœuvre-lès-Nancy cedex, France

‡Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA

¶NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced 
Science and Technology, and Department of Physics, University of Illinois at Urbana-Champaign, 
Urbana, Illinois 61801, USA

Abstract

A significant challenge faced by atomistic simulations is the difficulty, and often impossibility, to 

sample the transitions between metastable states of the free-energy landscape associated to slow 

molecular processes. Importance-sampling schemes represent an appealing option to accelerate the 

underlying dynamics by smoothing out the relevant free-energy barriers, but require the definition 

of a suitable reaction-coordinate (RC) models expressed in terms of compact low-dimensional sets 

of collective variables (CVs). While most computational studies of slow molecular processes have 

traditionally relied on educated guesses based on human intuition to reduce the dimensionality 

of the problem at hand, a variety of machine-learning (ML) algorithms have recently emerged 

as powerful alternatives to discover a meaningful CV capable of capturing the dynamics of 

the slowest degrees of freedom. Considering a simple paradigmatic situation in which the 

long-time dynamics is dominated by the transition between two known metastable states, we 

compare two variational data-driven ML methods based on Siamese neural networks aimed at 

discovering a meaningful RC model—the slowest decor-relating CV of the molecular process, 

and the committor probability to first reach one of the two metastable states. One method is the 

state-free reversible variational approach for Markov processes networks (VAMPnets), or SRVs—

the other, inspired by the transition path theory framework, is the variational committor-based 

neural networks, or VCNs. The relationship and the ability of these methodologies to discover 

the relevant descriptors of the slow molecular process of interest is illustrated with a series of 

simple model systems. We also show that both strategies are amenable to importance-sampling 
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schemes through an appropriate reweighting algorithm that approximates the kinetic properties of 

the transition.

Graphical Abstract

1 Introduction

A central problem in computational biophysics is the characterization of the slow 

conformational dynamics of complex molecular processes. Conceptually, long-time-scale 

kinetic processes are expected to evolve according to some rare transitions between 

metastable states of the free-energy landscape. In a general situation, one might not have 

any information about the metastable states involved, i.e., how many there are and what they 

are. Discovering all the relevant metastable states and characterizing all the slow molecular 

processes between them from molecular dynamics (MD) simulations remains a daunting 

challenge, not only from a computational perspective, but also from a theoretical one.

This challenge is deeply rooted in the timescales amenable to MD simulations routinely 

performed on common, unspecialized computer architectures, which are orders of 

magnitude smaller than those spanned by slow molecular processes, like the broad 

conformational transitions undergone by some biological object of interest.1 A molecular 

process assumed to be ergodic will appear somewhat non-ergodic owing to the slow 

diffusion and incomplete sampling imposed by high free-energy barriers demarcating 

distinct volumes of configurational space. These energetic barriers are crossed so rarely 

that the molecular process is trapped kinetically in metastable states of the free-energy 

landscape, rendering the estimation of statistical averages physically meaningless. A 

practical solution to remedy the symptoms of such quasi-non-ergodicity scenarios consists 

in turning to importance-sampling strategies2,3 aimed at overcoming free-energy barriers 

otherwise insuperable over the common lengths of MD simulations.
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Many of these enhanced sampling strategies lean on a low-dimensional, coarse-grained 

model of reaction coordinate (RC) of the molecular process through the introduction of 

collective variables (CVs) defined as functions of the Cartesian variables.4,5 By applying an 

external bias along such CVs, one aims to flatten the free-energy landscape and increase 

the dynamical exploration, yielding a more uniform sampling between the relevant volumes 

of configurational space. Although free energy is a state function, and its determination 

is path-invariant, the efficiency of the biasing scheme is intimately related to the choice 

of the CVs, which are expected to provide a reasonable representation of the free-energy 

landscape, allowing its metastable states to be adequately differentiated, while rendering 

an acceptable picture of the dynamics of the molecular process of interest. For a gamut 

of simple molecular processes, coarse-graining has often relied on human intuition and 

educated guesses, with the assumption of timescale separation, that is, the CV along which 

preferential sampling6 is performed is essentially decoupled from other slow degrees of 

freedom. Under most circumstances, however, guessing the CVs that would depict a faithful 

representation of the underlying dynamics is nearly impossible, in particular when the 

molecular process at hand consists of entangled movements,7 thereby providing the impetus 

for alternate coarse-graining strategies.

In the past twenty years, a variety of approaches aimed at discovering CVs have 

emerged,8–16 leaning on a broad range of dimensionality-reduction schemes, among which 

unsupervised machine-learning (ML) techniques have recently elicited much interest.17–

23 The ever-growing popularity of this methodology can be understood in the promise 

to represent the CVs as the latent space of dimensionality-reduction schemes from 

the configurational space sampled by MD simulations. Towards this end, a number of 

avenues have been explored, training neural-network (NN) architectures with large data 

sets produced by equilibrium, unbiased and biased simulations. Strategies leaning on 

autoencoders24 (AEs) have proven particularly powerful to construct from either generalized 

or Cartesian coordinates a low-dimensional latent space that maximizes the explained 

variance. Yet, classical AEs, agnostic to temporality, have limitations in their own right, 

and in many instances, are unable to discriminate between high-variance and slowly-

decorrelating variables.25,26 The transitions at hand are often burdened by slow degrees of 

freedom (DOFs). One may use these slow DOFs to construct the so-called “slow variables” 

as CVs. From this viewpoint, a variety of schemes have been put forth to account for 

time explicitly in the training of the NN, but mere incorporation of a temporal information 

in the learning process is in general insufficient to preclude encoding of mixtures of high-

variance and slow modes. State-free variational approach for Markov processes networks27 

(VAMPnets), or SRVs,28 which extracts the eigenfunctions from the spectral decomposition 

of the transfer operator, represent a very promising option for iterative learning of CVs 

based on enhanced-sampling simulations, given a suitable reweighting strategy to preserve 

the dynamics of the molecular process at hand.26,29

Ultimately, discovering all the relevant metastable states of a complex multi-dimensional 

system without any prior knowledge can be exceedingly challenging. For the sake of 

clarity, it is instructive to consider a simple paradigmatic situation, in which the long-time 

dynamics is dominated by the transition between two known metastable states, referred 
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to as A and B. In this context, the transitions between the two metastable states can 

be characterized using the framework of transition path theory (TPT).30 An important 

ingredient of TPT is the committor probability, q, that a trajectory initiated at some random 

configuration will ultimately reach state B before crossing state A .30–38 A variety of 

approaches have been devised to model the RC underlying complex molecular processes 

by means of the committor probability. These approaches share the common denominator 

of shooting trajectories, either assuming a stochastic dynamic model, like a Markov state 

model,39 or turning to milestoning40 with a nonequilibrium steady-state distribution from 

weighted-ensemble simulations,41 using extended AEs with extra labeling for the metastable 

states,42 solving the backward Kolmogorov equation,43 or, alternatively, determining the 

committor probability through a variational form of its time-correlation function38,44,45 by 

a nonparametric method.46,47 Such a variational form enables us to optimize any chosen 

function to approximate the actual committor probability.

In the present contribution, we compare the performance of two variational data-driven ML 

strategies based on Siamese NN (SNN) aimed at discovering the relevant descriptors of 

the slow molecular process of interest in a complex system. The first strategy is the state-

free variational spectral decomposition of Markov processes networks8,27,48 (VAMPnets) 

or SRVs.28 The second strategy, coined as variational committor-based neural networks 

(VCNs), relies on a variational formulation of the committor probability within the 

framework of TPT.30,38,44 In both approaches, we optimize the NN-modeled functions based 

on specific time-correlation functions with a reweighting approach, using trajectories from 

biased MD simulations as the training data. The close correspondence between the two 

approaches is illustrated for a series of model systems. We also show that both strategies are 

amenable to importance-sampling schemes through an appropriate reweighting algorithm 

that approximates the kinetic properties of the transition.

2 Theory and Methods

2.1 Effective dynamical propagator, spectral analysis, and committor

The configuration of a molecular system of interest is completly determined by the Cartesian 

coordinates x ≡ x1, x2, …, xN . To reduce the complexity of the problem, one typically seeks 

to represent the molecular system within the subspace of reduced dimension spanned by 

a sub-set of CVs, z x = z1 x , …, zn x  where n ≪ N, i.e., a vector-valued function that 

maps every Cartesian configuration x of the system on a set of values z. Accordingly, the 

equilibrium distribution within the subspace of the CVs is formally written as,

ρeq z* = ∫ dx δ z x − z* e−U x /kBT

∫ dx e−U x /kBT

(1)

where U x  is the microscopic potential energy, kB is the Boltzmann constant, and T  as the 

temperature. The probability density of the system at time t within the subspace of the CVs 

is expressed as ρ z; t . The forward propagation step z z′  of the probability density from 

the time t to the time t + τ is,38
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ρ z′; t + τ = ∫ dz Pτ z′ ∣ z ρ z; t

(2)

where the propagator Pτ z′ ∣ z  represents the transition from z to z′ (n.b., forward time 

propagation is represented according to the right-to-left convention commonly used in 

chemical kinetics and quantum mechanics49 rather than the left-to-right convention used 

in the field stochastic processes50). It is assumed that the dynamics within the reduced 

subspace of the CVs is Markovian with a finite time lag τ, and that the propagator (also 

called the transfer operator) obeys the Chapman-Kolmogorov equation, ρ t + nτ = Pnτ ⋅ ρ t , 

with Pnτ = Pτ
n. It is assumed that the system is in equilibrium and that we have 

microscopic detailed balance, Pτ z′ ∣ z ρeq z = Pτ z ∣ z′ ρeq z′ . Under these conditions, the 

effective propagator Pτ z′ ∣ z  yields a self-consistent representation of the dynamics of the 

system within this subspace (closure of the dynamical propagation).

In practice, one should seek to determine the smallest possible time lag τ that achieves 

Markovianity for the effective propagator. An important framework to examine this issue 

is to rely on a spectral decomposition of the effective dynamical propagator.9,38,51 The 

right-eigenfunction ψk
R z  of the operator are defined as,9,51

λk ψk
R z′ = ∫ dz Pτ z′ ∣ z ψk

R z

(3)

where the eigenvalue λk = e−μkτ. The eigenvalues depend on the time lag τ while 

the constants μk ≥ 0 represents associated τ-dependent intrinsic decay rate of the nth 

eigenmode. The eigenfunction ψ1
R z  with eigenvalue λ1 = 1 μ0 = 0  corresponds to the 

invariant equilibrium vector, ρeq z . The eigenvalues are ordered from the slowest to the 

fastest process, i.e., 1 = λ1 > λ2 > λ3…, and 0 = μ1 < μ2 < μ3… There is also a set of associated 

orthogonal τ-dependent left-eigenfunctions

λk ψk
L z = ∫ dz′ψk

L z′ Pτ z′ ∣ z

(4)

with

δkl = ∫ dz ψk
L z ψl

R z = ψk
L ⋅ ψl

R

(5)

Orthonormalization can also be expressed as,
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δkl = ∫ dz ψk
L z ψl

L z ρeq z

(6)

using the relation ψk
R z = ψk

L z ρeq z , which follows from microscopic detailed balance.52,53 

We also have

λk δkl = ∫ dz ∫ dz′ψk
L z′ Pτ z′ ∣ z ψl

R z

= ∫ dz ∫ dz′ψk
L z′ Pτ z′ ∣ z ψl

L z ρeq z
= ψk

L τ ψl
L 0

(7)

where …  represent an equilibrium average. The first right-eigenfunction is actually the 

equilibrium distribution, ψ1
R z = ρeq z , and its associated left-eigenfunction is uniformly 

equal to unity. Assuming that there are two metastable states A and B, then the second 

eigenvalue and associated eigenfunction should reflect the slow probability flux between A
and B. The equilibrium time-correlation function of an arbitrary function v z  is,

v τ v 0 = ∫ dz ∫ dz′ v z′ Pτ z′ ∣ z v z ρeq z

= ∑
k

v ⋅ ψk
R 2 e−μkτ

(8)

where

v ⋅ ψk
R = ∫ dz v z ψk

R z

(9)

When v z  matches the slowest left-eigenfunction, ψ2
L z , then the time-correlation function, 

v τ v 0 / v 0 v 0 ≈ λ2, reaches a maximum (the relaxation rate μ2 reaches a minimum). 

This allows the formulation of a variational principle for the treatment of the spectral 

analysis.48,54 Accordingly, a trial left-eigenfunction v z  can be variationally optimized by 

seeking to minimize the loss function ℒv,

ℒv = − v τ v 0
v 0 v 0

(10)

A more general treatment can be formulated by expressing the trial left-eigenfunction v z  as 

a linear combination of M basis functions v z = ∑i = 1
M biF i z  with M unknown coefficients 
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bi to be determined. Seeking the minimum of eq 10 with respect to the basis set coefficients, 

∂ℒv/ ∂bi = 0, leads to the generalized eigenvalue problem,55,56

C τ B = C 0 BΛ

(11)

where the elements in C τ  and C 0  are equilibrium averages defined as Cij τ = F i τ F j 0
and Cij 0 = F i 0 F j 0 , respectively. The expansion coefficients of the left-eigenfunctions 

ψk
L z  are in the matrix B, and the associated eigenvalues are in the diagonal matrix 

Λ ≡ diag λ1, λ2, … . In the more general case, we will treat F i z  as unknown kernel functions 

that will also need to be optimized. In the following, the optimal left-eigenfunctions ψ2
L z

will be referred to as the “learned CV” ξ z , which is essentially a model of the RC for the 

A B slow transitions.

A different approach to characterize the kinetics of a slow process proceeds from TPT, 

the starting point being the forward committor q z  probability, which is the sum of the 

probability over all paths starting at z that ultimately reach the state B before ever reaching 

the state A.31–34,38 The probability of each of these paths is expressed as a product of 

discrete propagation steps Pnτ = Pτ⋯Pτ with time lag τ, under the restriction that the 

intermediate states resulting from all these steps are not in A or B. It follows that q z  is 

written explicitly as,38

q z = ∫ dz′q z′ Pτ z′ ∣ z

(12)

with the constraints q z = 0 if z ∈ A, and q z = 1 if z ∈ B. By construction, 0 ≤ q z ≤ 1.
While the equations for the committor probabilities involve only the elementary propagator 

Pτ z′ ∣ z  for the time lag τ, the fundamental validity of these equations is predicated 

upon the necessity to satisfy Markovity of the dynamics as expressed by the Chapman-

Kolmogorov equation, Pnτ ≡ Pτ
n. The steady-state unidirectional reactive flux, JAB, is given 

by,

JAB = 1
2τ (q τ − q 0 )2

(13)

The expression for JAB can serve as a robust variational principle to optimize a trial 

committor q z′ .38,44,45 Minimizing the quantity JAB with respect to the trial function q z
recovers eq 12 that formally defines the committor probability. Thus, defining the committor 

time-correlation function Cqq t = (q t − q 0 )2/2, one can use the loss function to refine a trial 

model function for the committor probability,
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ℒq = Cqq τ

(14)

The committor q z  can also serve as a model of the RC for the A B slow transitions.

The loss functions of eq 10 and eq 14, for the eigenfunction-based spectral analysis and 

the committor-based reactive flux analysis, respectively, are related. Both approaches seek 

to determine a one-dimensional reaction coordinate that represents the slow dynamics of 

the system on a long timescale. While the committor q z  is not quite equal to the left-

eigenvector of the effective propagator, a useful approximate construction can be written 

as,52

q z ≈ − a
b − a ψ1

L z + 1
b − a ψ2

L z

(15)

where ψ1
L z = 1, a = ψ2

L z  with z ∈ A, and b = ψ2
L z  with z ∈ B, where a = − b − a pB, and 

1 = (b − a)2 pApB − q 1 − q . This construction makes a function q z  that is equal to 0 for 

z ∈ A, equal to 1 for z ∈ B, and which approximately satisfies the backward propagation 

condition of eq 12,

∫ dz′ q z′ Pτ z′ ∣ z = − a
b − a ∫ dz′ψ1

L z′ Pτ z′ ∣ z + 1
b − a ∫ dz′ψ2

L z′ Pτ z′ ∣ z

= − a
b − a ψ1

L z + 1
b − a λ2 ψ2

L z

= q z + λ2 − 1
b − a ψ2

L z
≈ q z

(16)

where λ2 − 1 / b − a ≪ 1. The critical difference is that the functional form of the 

eigenfunction-based reaction coordinate determined via eq 10 is unconstrained, whereas 

the committor in eq 14 is constrained in the two metastable states A and B.

2.2 Siamese neural networks

2.2.1 Using SRVs for collective-variable discovery—To identify the slowest 

decorrelating mode of the molecular process at hand, we turn to the state-free reversible 

version of VAMPnets, or SRVs, with a SNN architecture,57,58 as depicted in Figure 1. In a 

nutshell, an SNN consists of two sub-NNs of identical architecture, that is, the same number 

of hidden layers and neurons per hidden layer, sharing the same parameters, specifically 

the weights and biases, and activation functions. It ought to be noted that use is made here 

of an SNN architecture to avoid possible ambiguities in the theoretical discussion. In an 

actual software implementation, the SNN can be simplified (see the Supporting Information 

for more detail). The two sub-NNs are used to model the M unknown kernel functions 

F1 z , ⋯, FM z , and fed with the MD trajectory with and without a time lag, τ. The spectral 
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decomposition of the Markov propagator is achieved by solving the generalized eigenvalue 

problem from eq 11, C τ B = C 0 BΛ. In practice, the elements of the matrices C τ  and C 0
are calculated as,9

Cij τ = 1
Nt − Nτ

∑
n = 1

Nt − Nτ
F i n + Nτ Δt F j nΔt + 1

Nt − Nτ
∑

n = Nτ + 1

Nt
F i n − Nτ Δt F j nΔt

(17)

and

Cij 0 = 1
Nt − Nτ

∑
n = 1

Nt − Nτ
F i n + Nτ Δt F j n + Nτ Δt + 1

Nt − Nτ
∑

n = Nτ + 1

Nt
F i n − Nτ Δt F j n − Nτ Δt

(18)

where it is implied that the time dependence of the functions arises from the trajectory 

in Carterian coordinates via the CVs, i.e., F i t = F i z x t . Δt is the time interval for 

discretizing the trajectory, Nt is the number of snapshots along the trajectory, and τ = NτΔt
corresponds to the time-lag. It should be noted that the matrices are constructed in a 

symmetrized fashion to improve numerical stability. The loss function of the SNN associated 

to the SRVs in our implementation is defined as −∑i = 1
M λi

2, which is tantamount to the 

negative of total kinetic variance,59 and can be considered as a generalization of eq 10 in the 

multidimensional cases. After optimizing this loss function, the slow decorrelating modes, 

mathematically represented as the eigenfunctions, are inferred as linear combinations of the 

components of the basis functions, F i.

The eigenfunctions are sometimes called the “learned CVs”. In the present contribution, 

since our objective is to compare the properties of the committor function with those of the 

slowest decorrelating CV for a simple, two-state molecular process, the dimension of the 

latent space of our NN will be reduced to one.

2.2.2 Using VCNs for collective-variable discovery—Data-driven discovery of 

the committor probability, q, rests on an NN architecture similar to that described in the 

previous section, albeit with a latent space of dimension equal to one (see Figure 1). The 

main difference resides in the loss function, embodied in eq 14, and the identification 

of a scalar function, namely q, as opposed to a multidimensional function in the case 

of learned CVs. In addition, optimization of the committor probability following a 

variational principle incorporates two end-state boundary conditions, such that q z x = 0
when z x ∈ A, q z x = 1 when z x ∈ B, and q z x = F z x  elsewhere. The quantity q t , 

which appears in eq 13 and eq 14, is then computed as,

q t =
0, z t ∈ A
1, z t ∈ B
F z t , z t ∉ A ∪ B
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(19)

In practice, we treat the metastable states A and B as absorbing states, which implies that 

for any short trajectory from z t  to z t + τ , if any configuration sampled corresponds to 

either A, or B, then q t + τ = 0, or 1, respectively. In contrast with the discovery of CVs with 

SRVs, our implementation for the discovery of the committor probability obviates the need 

for solving an eigenvalue problem.

2.3 Biased simulations and enhanced sampling

To enhance sampling and accelerate the slow molecular process that underlies the transitions 

of interest, it may be necessary to introduce a biasing potential to the simulation to flatten 

the free-energy landscape. However, while adopting such a strategy, it is critical to have the 

ability to extract unbiased estimators of the key quantities that enter the analysis elaborated 

in subsection 2.2. This is especially critical in the case of time-correlation functions that 

enter the analysis in eq 10 and eq 14.

A practical approximation can be derived by assuming that the system at hand can 

be represented as a jump-like process on a discrete-state Markov model, in which the 

probability of the transition z ≡ z1, …, zi, …, zn z′ ≡ z1, …, zi + Δz, …, zn  with time lag τ is 

expressed as,60,61

Pτ z′ ∣ z = τ D z + D z′
2(Δz)2

e− W z′ − W z /2kBT

= e−W z′ /2kBT τ D z + D z′
2(Δz)2

e+W z /2kBT

(20)

Here, D z  is the position-dependent diffusion coefficient and W z  is the potential of mean 

force (PMF) in the subspace of the CVs. The jump-like process expressed by eq 20 reduces 

to the familiar Smoluchowski equation in the limit of Δz 0.60,61 By virtue of this simple 

construct, the transition probability is affected by a perturbation biasing potential, δW z , as,

Pτ
p z′ ∣ z = e−δW z′ /2kBT Pτ z′ ∣ z e+δW z /2kBT

(21)

It follows that the unbiased time-correlation function, f τ g 0 , in the unperturbed system, 

can be expressed in terms of the biased time-correlation function calculated in the perturbed 

system as,

f τ g 0 = e+δW /kBT
p

−1
f τ e+δW τ /2kBT g 0 e+δW 0 /2kBT

p

(22)

This approximation for unbiasing a time-correlation function is akin to the simple 

prescription used previously by several authors,29,62 but is different from the dynamic 
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histogram analysis method, which assumes a discretization of the metastable states.63 In the 

present work, it is used to calculate the unbiased time-correlation functions of eq 10 and eq 

14 for the SRVs and committor treatments using biased simulations.

Different strategies are available to construct an effective perturbation, δW z , within the 

subspace of the CVs to improve sampling of slow A B transitions. When dealing with a 

system with two prominent metastable states, a particularly effective approach to enhance 

the sampling along the conformational transition pathway linking them can be built upon the 

string method.64–66 A string pathway consists of a one-dimensional chain of K + 1 copies 

of the system, also called “images”, in the subspace of the CVs, z 0 , z 1 , …, z K  that 

progressively goes from the state A to the state B.67–69 The string can serve to define the 

progress variable s, referred to as path collective variable (PCV),70

s z =
∑k = 0

K k
K e−α z − z k 2

∑k = 0
K e−α z − z k 2

(23)

Since s z  is a differentiable function of the CVs, z, it is amenable to adaptive biasing 

force71,72 (ABF) free-energy calculations. In principle, the one-dimensional free-energy 

profile, or PMF, along s reflects the correct equilibrium probability of the configurations. 

It is, however, important to note that, in practice, to be truly useful, the function s z  needs 

not be a perfect model of the RC. For as long as it reasonable connects the two end-states 

and passes through the kinetic bottleneck—or saddle point—along the transition pathway, 

the function s z  can serve as an effective progress variable to support an enhanced-sampling 

strategy leaning on biased simulations. If needed, one may also introduce additional biasing 

along the orthogonal variable,

ζ z = − 1
α ln ∑

k = 0

K
e−α z − z k 2

(24)

to further control the enhanced sampling. Alternative path-following variables have also 

been considered based on more complicated functional forms.73,74 By construction, eq 23 

does not automatically yield a physically reasonable order parameter of the conformational 

transition from A to B. For example, there are serious issues if the images are scrambled. 

However, if the images are adequately ordered to represent the progress of the transition 

from A to B in a meaningful fashion, and a suitable value for α is chosen, then variable 

s z; α  will vary smoothly from 0 to 1.45 In the applications described hereafter, the biasing 

potential, δW s , was only applied with respect to the variable s, with 1/α chosen to be equal 

to the mean squared distance between adjacent images.
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3 Computational details

In this section, we detail the algorithm developed to learn the committor function from 

biased trajectories, using an SNN,57 and compare this algorithm with the SRVs28 put forth 

to learn CVs, leaning on a similar NN architecture. It ought to be noted that the learned CVs 

can be iteratively improved through the following workflow:26 (i) sampling along a large 

set of candidate CVs, employing a computationally efficient, albeit approximate free-energy 

method, such as extended generalized adaptive biasing force (egABF)75 (ii) learning a small 

set of new CVs from the biased trajectories from the previous step, (iii) sampling along 

the new CVs using an accurate free-energy method, such as well-tempered meta-extended 

ABF (WTM-eABF),76 and (iv) going back to step (ii) until the free-energy calculation is 

converged. Since the unbiased time-correlation function can be computed by the reweighting 

approach embodied in eq 22, it is also possible to use a similar iterative strategy to learn 

the committor probability from biased trajectories. Moreover, since the committor is, by 

definition, a one-dimensional scalar function, to save computational resources and speedup 

the convergence, one could focus sampling along a string, by means of PCV s z 70 as 

defined in eq 23—as opposed to an extensive sampling along q z , which may span the 

entire subspace of the CVs. Here, the string is a committor-consistent one, orthogonal 

to the isocommittor surfaces folliating the reaction pathway, as obtained in the committor-

consistent string variational method (CCVSM).45 In other words, the two cruxes to close the 

loop for an iterative strategy with VCNs are (a) learning the latter scalar function from a 

biased trajectory along s z , and (b) obtaining a committor-consistent string from the learned 

committor probability. In this contribution, the simplicity of the models utilized to illustrate 

the methodology applied to the exploration of transitions between two metastabile states 

obviates the need for additional iterations.

As shown in Figure 1, the SNN features two identical sub-NNs, which work in tandem 

on two different input datasets, namely the trajectory z t  and its time-lagged counterpart 

z t + τ , respectively. For comparison purposes, unless stated otherwise, the sub-NNs used 

in this contribution consist of four intermediate exponential linear unit (ELU)77 layers 

containing each 32 neurons, or computational units, and the linear output layer containing 

one neuron. The number of neurons in the input layer depends on the number of candidate 

CVs. In the course of training, the original data set was divided into a training set and 

a validation set, in a 9:1 proportion. In each training iteration, or epoch, the training set 

was randomly split into batches of size Ntrain
0.5 , where Ntrain

0.5  is the number of samples in 

the training set and …  is the floor function, fed into the sub-NNs for the calculation 

of the values of the loss function. The NN parameters were then optimized by the Adam 

optimizer78 to minimize the average loss. In order to avoid overfitting, training was stopped 

if the loss of the validation set did not decrease within ten epochs (early stopping). The 

time lag, τ, was chosen to be 0.5 ns. The trajectories were 100-ns long for each of three 

illustrative models, namely the simulations of a carbon atom on (i) a one-dimensional 

double-well potential, (ii) the two-dimensional Müller-Brown potential,79 and (iii) the 

two-dimensional Berezhkovskii-Szabo potential,80 with anisotropic diffusion. The length 

of the trajectory of the isomerization of N-acetyl-N′-methylalanylamide (NANMA, also 

commonly known as alanine dipeptide—or dialanine) in vacuum is equal to 500 ns. For the 

Chen et al. Page 12

J Chem Theory Comput. Author manuscript; available in PMC 2024 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biased simulations, since δW z  is required to be converged for the estimation of the weights 

acccording to eq 22, the first 25 ns of each trajectory were discarded.

The simulations of the one-dimensional double-well potential, the Müller-Brown potential 

and the isomerization of NANMA were carried out using NAMD 2.1481 with the Colvars 

module.82 The two-dimensional Berezhkovskii-Szabo potential with anisotropic diffusion 

was simulated, employing an in-house code (available from the authors upon request). 

To illustrate the learning of the committor probabilities from biased simulations, in the 

Müller-Brown potential and the Berezhkovskii-Szabo potential cases, the WTM-eABF 

trajectories along s z  were used. The corresponding strings were constructed from the 

minimum free-energy pathways (MFEPs) determined by the Dijkstra algorithm.83 We also 

succeeded to calculate the transition rates kAB (see section 4 of Supporting Information for 

more detail), employing biased trajectories of the one-dimensional double-well potential, 

the Müller-Brown potential, the two-dimensional Berezhkovskii-Szabo potential, and the 

potential underlying the isomerization of NANMA, with the reweighting scheme of eq 22, 

assuming short time lags. In the NANMA case, use was made of a WTM-eABF biased 

trajectory along the ϕ and ψ backbone dihedral angles. NANMA was described by the 

CHARMM22 force field,84 and the temperature of the simulation was kept at 300K using 

Langevin dynamics.

4 Results

4.1 One-dimensional double-well potential

The first prototypical illustration examined here is the one-dimensional double-well 

potential depicted in Figure 2A, and defined as,

V x = − 4e−(x + 2)2 − 4e−(x − 2)2 + 4

(25)

where the regions around the two basins, namely −2.54 Å < x < − 1.46 Å and 

+1.46 Å < x < + 2.54 Å, are marked as the two metastabile states, respectively. x is the 

atomic coordinate along the abscissa. The units of x and V x  are Å and kcal/mol, 

respectively. We chose x as the input variable of the NNs, namely z ≡ x in this case. Detail 

of the simulation and the calculation of the transition rates between the two metastable states 

can be found in the Supporting Information. The learned committor probabilities, q x , and 

CVs, ξ x , from biased and unbiased simulations along x are shown in Figure 2B and Figure 

2C, respectively. If the reweighting scheme embodied in eq 22 is employed, then the learned 

q x  (orange line in Figure 2B) is in quantitative agreement with the unbiased result (blue 

line in Figure 2B), and both results feature smooth transitions from the two metastable states 

to the barrier at x = 0. Conversely, if the bias is ignored and no reweighting is applied, 

then the result (green line in Figure 2B) bears no resemblance with the unbiased result. 

Moreover, the transition from the metastable states to the barrier is not smooth. Comparing 

the results from CV discovery using the unbiased simulation (blue in Figure 2C), and the 

biased simulation with reweighting (orange in Figure 2C) and without reweighting (green in 
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Figure 2C), there is a clear resemblance in ξ x  from the unbiased simulation and the biased 

one with proper reweighting, and both of them are flat in the two metastable states. It is 

interesting that although the two metastabile states are not explicitly labeled in the learning 

of ξ x , as they are in the learning of q x , they are still adequately identified. Conversely, 

the variable ξ x  learned without reweighting is nearly proportional to x, and fails to render 

a proper depiction of the two metastable states. We can also observe similarities in the 

learned q x  and ξ x . At first glance, when training from the unbiased trajectory or the 

biased one with appropriate reweighting, the committor, q x , correlates almost linearly with 

the slowly-decorrelating variable, ξ x , which is in line with eq 15. Indeed, there are only 

two basins and one slow-relaxation mode in our toy model. It is, therefore, is not surprising 

that q x  coincides with ξ x . It ought to be noted, however, that the learning of ξ x  is similar 

to a blind separation of metastable states without extra labeling. If there are more than two 

metastable states in the free-energy landscape, then the learned CV, ξ x , may not be able to 

separate exactly the two metastable states as desired.

4.2 Müller-Brown two-dimensional potential

The second prototypical illustration examined in the present contribution is the two-

dimensional Müller-Brown potential,,79 which has served as a prototypical model for 

developing new methods, and has been studied extensively.15,85–87 The potential energy 

function, V x, y , is defined as,

V x, y = k ∑
i = 1

4
di eai x − xi

2 + bi x − xi y − yi + ci y − yi

(26)

where the constants take the following values, 

k = 0.05, d1, d2, d3, d4 = −200, − 100, − 170, 15 , a1, a2, a3, a4 = −1, − 1, − 6.5, 0.7 , 

b1, b2, b3, b4 = 0, 0, 11, 0.6 , c1, c2, c3, c4 = −10, − 10 − 6.5, 0.7 , x1, x2, x3, x4 = 1, 0, − 0.5, − 1
and y1, y2, y3, y4 = 0, 0.5, 1.5, 1 . x and y are the atomic coordinates along the abscissa and 

the ordinate, respectively. The units of x, y and V x  are Å, Å and kcal/mol, respectively. 

Both x and y were chosen as the input variables of the NNs, namely z ≡ x, y . The 

two metastable states are defined as the point sets x, y ∣ x ∈ −1.0, − 0.02 , y ∈ 1.0, 2.0 , 

V x, y < 1.0  and x, y ∣ x ∈ 0.2, 1.0 , y ∈ −0.2, 0.2 , V x, y < 3.0 , respectively. The detail 

of the calculation of the transition rates between the two metastable states can be found 

in the Supporting Information. The biased trajectory was obtained from a WTM-eABF 

simulation along the MFEP (shown as green lines in Figure 3A, B, D and E).83 The 

projections of the learned q x, y  onto x, y  from the unbiased trajectory and the biased one 

with appropriate reweighting are shown in Figure 3A and Figure 3B, respectively. In both 

instances, the q x, y = 0.5 isosurfaces go through the barrier, and the committor probabilities 

along the MFEP (Figure 3C) are similar, indicating that the transition between the two 

metastable states are well captured. In addition, we note that the ξ x, y = 0 isosurfaces from 

an unbiased trajectory (Figure 3D) and a biased one with the reweighting embodied in eq 

22 (Figure 3E) also go through the barrier. If the positions of the two metastable states 
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cannot be determined, then the boundary conditions of q x, y  will be missing. Under these 

circumstances, the similarity between q x, y  and ξ x, y  enables us to approximate q x, y  by 

ξ x, y .

In addition, to assess whether the committor isosurface could be potentially improved via 

an iterative approach, we have learned q x, y  for this potential with VCNs, using two 

biased trajectories obtained from WTM-eABF simulations along PCVs, and based on (i) 

a physically meaningful pathway (the MFEP), and (ii) an unphysical one. Unsurprisingly, 

learning from the biased trajectory along the PCV constructed from this unphysical pathway 

supplies a less accurate committor isosurface (see Figure S8 of the Supporting Information). 

Nonetheless, the latter remains qualitatively correct, indicating that an imperfect information 

could be used to improve progressively the initial pathway, and learn a more accurate 

representation of the committor isosurface.

4.3 Berezhkovskii-Szabo two-dimensional potential

To investigate whether the learned committor probabilities and CVs can reflect the effect 

of anisotropic diffusion, as observed with the CCVSM,45 we trained the NNs, using 

both the unbiased and biased trajectories with the Berezhkovskii-Szabo potential,80 under 

three distinct conditions, namely Dy/Dx = δ = 0.1, 1.0, and 10.0, where Dy and Dx are the 

diffusivities along the ordinate and the abscissa, respectively. The Berezhkovskii-Szabo 

potential is defined as,

βV x, y = βV x + 1.01ω2(x − y)2/2

(27)

where V x  is calculated from,

βV x =
−ω2x0

2/4 + ω2 x + x0
2/2, x < − x0/2

−ω2x2/2, −x0/2 ≤ x ≤ x0/2

−ω2x0
2/4 + ω2 x − x0

2/2, x0/2 < x

(28)

where β is equal to kBT −1, ω2 is 4 and x0 is 2.2 Å, respectively. T  was chosen to 300K 

in our simulations. The units of x, y and V x  are Å and kcal/mol, respectively. Both x
and y were chosen as the input variables of the NNs, namely z ≡ x, y . The details of the 

simulations and transition rates are attached in the Supporting Information.

The projections of q x, y  and ξ x, y  onto x, y  in different diffusive conditions obtained from 

the unbiased trajectories are gathered in Figure 4. Similar to the results reported for the 

CCVSM,45 we observe that the q x, y = 0.5 isosurface is nearly parallel to the abscissa when 

δ is equal to 0.1 (Figure 4A), nearly parallel to the ordinate when δ is equal to 10.0 (Figure 

4C), and nearly orthogonal to the MFEP when δ is equal to 1.0 (Figure 4B). These results 

strongly suggest that the committor probabilities learned from our NN models correctly 
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capture the underlying kinetics, just like those obtained with the CCVSM. Similarly, the 

CVs learned from SRVs, as shown in Figure 4E, Figure 4F, and Figure 4G, are also able 

to capture the effect of anisotropic diffusion. The isosurfaces ξ x, y = 0 follow the same 

patterns in the three different diffusive conditions as the isosurfaces q x, y = 0.5, which 

further reinforces the idea that ξ x, y  could be used to approximate q x, y , as previously 

shown for the Müller-Brown potential.

The projections of q x, y  and ξ x, y  onto the x, y –plane obtained from the WTM-eABF 

biased trajectories along a string with our reweighting scheme are shown in Figure 5, and 

resemble the results from the unbiased simulation, as depicted in Figure 4. It can be inferred 

from the similarity between the biased results and the unbiased ones that, here again, 

the kinetic information is adequately recovered from biased trajectories, assuming proper 

reweighting.

4.4 Isomerization of N-acetyl-N′-methylalanylamide

As a final example of biological relevance, we employed VCNs to investigate the transition 

between the C7eq and C7ax conformations of NANMA in vacuum (see Figure S8 for a 

reference free-energy landscape). Due to the periodic nature of the backbone dihedral 

angles, ϕ and ψ, we used sin ϕ, sin ψ, cos ϕ and cos ψ as the input features of the NNs. As 

shown in Figure 6A, the learned committor, q ϕ, ψ , from a 500-ns long unbiased trajectory 

is able to highlight the two saddle points, ϕ, ψ = 0∘, − 67.5∘  and (135°, −115°), on the 

possible transition pathways, which is in agreement with previous studies,34,70,88 wherein 

isomerization of NANMA was examined using PCV free-energy calculations.

The learned committor from a 150-ns WTM-eABF biased trajectory with appropriate 

reweighting (Figure 6B) also features similar isosurfaces, which means that learning the 

committor probabilities from a shorter biased trajectory could achieve almost the same 

accuracy in the identification of the transitions as learning from a long unbiased trajectory. 

We further shortened both the biased and unbiased trajectories used for training and found 

that the committor learned from a 2.5-ns biased trajectory was able to discriminate the 

C7eq and C7ax metastable states, while the one learned from an unbiased trajectory of the 

same length could not, as shown in Figure S1. The committor learned from an unbiased 

trajectory succeeded to discriminate the metastable states only at the price of extending the 

trajectory to 10 ns. In addition, we compared the learned CV from SRVs using the same NN 

parameters with the learned committor, and found that the former can also discriminate the 

C7eq and C7ax metastable states,89 and identify the transitions. The similarity of the learned 

CV and the learned committor from both biased and unbiased trajectories was measured 

using linear regression, and the coefficients of determination are all close to 1, as shown 

in Table S1 in the Supporting Information, indicating that the learned CV and the learned 

committor are highly linear correlated.

4.5 Determination of transition rates

The transition rates are determined assuming a dynamical system with two long-lived 

metastable states, A and B,
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kBA

kAB B

The overall decay rate of the system is kAB + kBA, and the equilibrium state probabilities are 

pA = kBA/ kAB + kBA  and pB = kAB/ kAB + kBA . At equilibrium, the total unidirectional fluxes are 

equal, with JAB = pAkAB = JBA = pBkBA. The mean first-passage times (MFPT) from A to B and 

from B to A are 1/kAB and 1/kBA, respectively.37

In SRVs, the eigenvalue of the slowest eigenmode of interest is λ2 = e−μ2τ, where μ2

represents the overall decay rate or relaxation rate, which can be determined through 

μ2 = − ln λ2 τ /τ .48 The transition rate from A to B is kAB = μ2pB. With VCNs, the transition 

rate from A to B can be determined from the unidirectional reactive flux JAB = Cqq τ /τ
defined in eq 13 in terms of the committor time-correlation function Cqq τ .38 The transition 

rate from A to B is kAB = JAB/pA. For both approaches, the long-time behavior of the 

expression f τ /τ, where f τ  stands for −ln λ2 τ  or Cqq τ , was extracted from the plateau in 

the slope of the numerator f τ  as a function of the time-lag τ .44 The transition rates were 

also determined from the MFPTs using the unbiased trajectories to use as a reference to 

compare with the other estimates.

In practice, to estimate the rates from SRVs and VCNs, the trajectories of z were 

transformed to those of ξ z  and q z  with different time lags, respectively. The eigenvalues, 

λk τ , and the time correlation function, Cqq τ , were then evaluated, as described in section 

2.2 and eq 14, respectively. The rate, kAB, could be determined from either the slope of 

−ln λ2 τ  as a function of τ and pB in SRVs, or the slope of Cqq τ 44 as a function of τ and pA

within the framework of VCNs. When biased trajectories were employed, the slopes were 

determined using the end-point reweighting expression eq 22. (see Figure S2–S7 and section 

4 of the Supporting Information for additional detail).

For all the systems, the transition rate kAB was determined from the MFPT between A and B
using unbiased trajectories, as well as from SRVs and VCNs, using both unbiased and biased 

trajectories. The results obtained for the one-dimensional double-well potential, the two-

dimensional Müller-Brown potential, the two-dimensional Berezhkovskii-Szabo potential, 

and the potential underlying the isomerization of NANMA are gathered in Table 1

As can be seen in Table 1, the rates determined from SRVs and VCNs, using either 

unbiased or biased trajectories, can reproduce, albeit not perfectly, the reference quantities 

determined using mean first-passage times (MFPTs) from unbiased trajectories. It is likely 

that inaccuracies in the determination of the transition rate from the biased simulations are 

due to the limitations of the end-point reweighting based on eq 22.

5 Conclusion

In this contribution, we elaborated variational committor-based neural networks, or VCNs, 

for the determination of the committor probability using a SNN architecture to implement 
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the variational principle from the TPT framework.30,38,44,45 The results from VCNs 

were compared to those from SRVs with an analogous SNN architecture.27,28 A striking 

resemblance between the slowest decorrelating mode from SRVs and the learned committor 

from VCNs was observed for the illustrative models examined herein (see Table S1–S6 for 

a quantitative analysis). This resemblance is explained by the linear correlation between the 

committor probability and the slowest decorrelating mode in the case of a system with two 

metastable states,52 thus highlighting the theoretical linkage between SRVs and VCNs.

It is of interest to consider the relative merits and drawbacks of SRVs and VCNs. 

What circumstances should motivate the usage of one over the other is a key question. 

Unlike SRVs, VCNs require prior knowledge of the two key metastable states, A and B, 

a foundational element of TPT.30 In that sense, VCNs are more “hands-on”, involving 

some deliberate choices made by the end-user. In contrast, this information is not 

needed for SRVs, which are unsupervised. Such differences may have both good or 

bad consequences, depending upon the problem at hand. With VCNs, one must choose 

two meaningful metastable states, so that the learned committor will accurately capture 

the slowest eigenmode in the system as shown by eq 15. An incorrect choice of the 

metastable states is likely to yield a learned committor that is not useful. Nonetheless, if 

one knows with confidence the two states from experiment, which is often the case for 

complex biomolecular systems, then it makes sense to leverage this information and turn to 

VCNs. On the other hand, when the metastable states have not been identified, using the 

unsupervised SRVs may be more advantageous. The method aims at providing a complete 

and objective picture of a dynamical system through an unsupervised discovery of all the 

relevant metastable states. This is, however, truly an ambitious goal. Realistically, SRVs 

may fall short in the case of complicated biological processes. For example, the learned 

transitions may be kinetically slow, but may not be of biological relevance. Ultimately, SRVs 

and VCNs should be considered as complementary approaches. When employed judiciously, 

the two strategies used in combination can help better define the landscape underlying the 

slow transitions for a process of interest.90

Knowledge of the two metastable states could be exploited in the design of an iterative 

strategy. For example, an initial string could be constructed between the two states, and 

the committor can be learned from VCNs using one-dimensional biased trajectory along 

the PCV70 based on this initial string. A new committor-consistent string could then be 

gradually improved by aligning its tangent with the gradient of the committor, ∇q z , at 

each new iteration.44,45 Although the simple examples reported here obviate the need for 

pursuing the optimization beyond the first iteration, multiple iterations are likely to be 

necessary in the case of more intricate molecular processes. It is noteworthy that such 

committor-consistent transition pathway is distinct from those obtained from traditional 

algorithms.6–69 Conversely, as there is no available initial string, the iterative SRVs26 

approach could only use the biased trajectories along the learned CVs, which may require 

multidimensional free-energy calculations that have generally higher computational cost and 

slower convergence rates than the one-dimensional biased simulations along PCV based on 

strings.
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We also illustrated an end-point reweighting scheme for extracting unbiased information 

from biased trajectories. The results show that meaningful models of both the committor 

inferred from VCNs and the slowest decorrelating mode extracted from SRVs could be 

constructed from SNNs trained from enhanced-sampling biased simulations, obviating 

the need for long, unbiased trajectories. The transition rate could be estimated from the 

biased trajectories with reasonable, albeit imperfect accuracy, owing to the limitation 

of the unbiasing scheme. Possible solutions to address this limitation will require more 

sophisticated unbiasing schemes.45,91,92

While the methodology reported herein was devised in the context of slow molecular 

processes, like rare conformational transitions, similar concepts may be effectively applied 

to improve the convergence of free-energy calculations of alchemical transformations. The 

latter are commonly carried out within the chemical subspace, controlled by the force-field 

parameters, as well as the so-called thermodynamic coupling parameters. Identifying the 

optimal reaction pathway along the slowest CV within this subspace of coupling parameters 

could help design a more efficient enhanced-sampling strategy for such alchemical free-

energy calculations.

Lastly, while the data-driven strategy presented in this contribution has been illustrated with 

paradigmatic slow transitions, it is envisioned to be readily applicable to more intricate 

molecular processes, and to possibly significantly larger biological objects, yet at the price 

of increasing the complexity of the dense sub-NNs employed here, or of turning altogether 

to alternate classes of sub-NNs, better suited to address the problem at hand, like those 

employed in probabilistic learning.19
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Figure 1: 
Schematic representations of the Siamese neural networks used for the discovery of 

the slowest decorrelating collective variable (A) and of the committor probability (B). 

Computation of the loss functions is described on the right-hand side of panels A and B. For 

the state-free reversible variational approach for Markov processes networks (VAMPnets), or 

SRVs (A), the dimension of the latent space is n ≪ N. For the variational committor-based 

neural networks (VCNs) (B), the dimension of the latent space is one.
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Figure 2: 
(A) One-dimensional double-well potential V x . (B) Learned committor functions along x
from an unbiased trajectory (blue), a WTM-eABF biased trajectory with reweighting in eq 

22 (orange), and the same biased trajectory but without reweighting (green). (C) Learned 

CVs from SRVs along x from an unbiased trajectory (blue), a WTM-eABF biased trajectory 

with reweighting in eq 22 (orange), and the same biased trajectory but without reweighting 

(green).
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Figure 3: 
The learned committor functions q x, y  for the Müller-Brown potential projected on x, y
from an unbiased trajectory (A) and a biased trajectory along the path collective variable s
(B). The learned CVs ξ x, y  by SRVs of the Müller-Brown potential projected on x, y  from 

an unbiased trajectory (D) and a biased trajectory along the path collective variable s (E). 

q x, y  and ξ x, y  along the MFEP (green lines) are shown in (C) and (F), respectively. The 

contour lines in (A), (B), (D) and (E) in rainbow colors depict the potential energy surface. 

The dashed lines in (A) and (B) highlight the isosurface of q x, y = 0.5. The dashed lines in 

(D) and (E) highlight the isosurface of ξ x, y = 0.
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Figure 4: 
The learned committor functions q x, y  projected on x, y  for the Berezhkovskii-Szabo 

potential from unbiased trajectories with δ = 0.1 (A), δ = 1.0 (B) and δ = 10.0 (C). The 

learned CVs ξ x, y  projected on x, y  from unbiased trajectories with δ = 0.1 (E), δ = 1.0 (F) 

and δ = 10.0 (G). The q x, y  and ξ x, y  from unbiased simulations along the MFEP (green 

lines) in different δs are shown in (D) and (E), respectively. The contour lines in (A-C) 

and (E-G) in rainbow colors depict the potential energy surface. The dashed lines in (A-C) 

highlight the isosurface of q x, y = 0.5. The dashed lines in (E-G) highlight the isosurface of 

ξ x, y = 0.
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Figure 5: 
The learned committor functions q x, y  projected on x, y  for the Berezhkovskii-Szabo 

potential from WTM-eABF biased simulations along the PCV s with δ = 0.1 (A), δ = 1.0
(B) and δ = 10.0 (C). The learned CVs ξ x, y  projected on x, y  from WTM-eABF biased 

simulations along the PCV s with δ = 0.1 (E), δ = 1.0 (F) and δ = 10.0 (G). The q x, y  and 

ξ x, y  from the biased simulations along the MFEP (green lines) in different δs are shown in 

(D) and (E), respectively. The contour lines in (A-C) and (E-G) in rainbow colors depict the 

potential energy surface. The dashed lines in (A-C) highlight the isosurface of q x, y = 0.5. 

The dashed lines in (E-G) highlight the isosurface of ξ x, y = 0.
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Figure 6: 
The learned committor projected on ϕ and ψ for the isomerization of N-acetyl-N′-
methylalanylamide from (A) an unbiased trajectory and (B) a biased trajectory of the 

WTM-eABF simulation along ϕ and ψ. The learned CV projected onto ϕ and ψ for the same 

biological process from (C) an unbiased trajectory and (D) a WTM-eABF biased trajectory 

along ϕ and ψ. The contour lines in rainbow colors depict the free-energy landscape along ϕ
and ψ. The two metastable states, C7eq and C7ax, are highlighted with the orange and purple 

ellipses, respectively.
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Table 1:

Summary of the transition rates kAB

Potential

Transition rate kAB ps−1

MFPT SRVs VCNs

Unbiased Unbiased Biased Unbiased Biased

Double-well 1D 4.93 × 10−4 4.37 × 10−4 4.16 × 10−4 4.07 × 10−4 4.26 × 10−4

2D MB1 5.37 × 10−4 5.45 × 10−4 5.76 × 10−4 4.97 × 10−4 6.12 × 10−4

2DBS2 γx/γy = 0.1 3.37 × 10−3 3.72 × 10−3 3.19 × 10−3 3.70 × 10−3 3.08 × 10−3

2D BS2 γx/γy = 1.0 1.07 × 10−2 1.18 × 10−2 1.95 × 10−2 1.02 × 10−2 1.76 × 10−2

2D BS2 γx/γy = 10.0 1.87 × 10−3 1.90 × 10−3 1.52 × 10−3 1.99 × 10−3 1.50 × 10−3

NANMA3 1.34 × 10−5 1.71 × 10−5 1.09 × 10−5 1.24 × 10−5 1.73 × 10−5

1
Two-dimensional Müller-Brown potential.

2
Two-dimensional Berezhkovskii-Szabo potential.

3
N-acetyl-N′-methylalanylamide (dialanine).
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