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Myeloproliferative neoplasms (MPNs) are chronic bone marrow malignancies characterized by clonal
proliferation of hematopoietic precursors and elevated cell counts in peripheral blood.1 Patients with
MPN are at risk of progression to myelofibrosis or acute leukemia and experience a substantial burden
of microvascular symptoms.2,3 However, thrombosis (both arterial and venous) represents the leading
cause of morbidity and mortality for patients with polycythemia vera (PV) and essential thrombocythemia
(ET).4-6

Translational studies have indicated that the platelet proteome influences pathways relating to immune
response, inflammation, and malignancy.7,8 Thrombocytosis and platelet hyperactivity are hallmarks of
MPN;9 however, platelet count in isolation is not predictive of clinical outcome, and conventional
antiplatelet therapy does not fully mitigate thrombotic risk.10 A comprehensive picture of the MPN
platelet molecular profile is lacking, and to date, no studies have evaluated the unbiased platelet pro-
teome in a sizable clinical cohort of affected patients. Here, we performed untargeted quantitative
profiling of the platelet proteome in a large (n = 140) cohort of patients with PV and ET.

Using standardized platelet isolation protocols (supplemental Methods), we prepared purified platelets
from peripheral blood samples of patients with an established diagnosis of MPN (World Health
Organization defined, n = 59 ET, n = 41 PV) and a cohort of healthy controls (n = 40) recruited across
2 sites: Hospital Papa Giovanni XXIII, Bergamo, Italy and Mater Misericordiae University Hospital,
Dublin, Ireland. Pertinent clinical features are shown in Figure 1 (and listed in supplemental Table 1).
Interpatient variability, including age, sex, and treatment, as well as experimental batch effects, were
adjusted as confounding factors in downstream expression analyses (supplemental Methods). Focusing
on the most prothrombotic subtypes of MPNs, we hypothesized that the platelet proteome differs in
MPN, and its characterization would offer insights into the underlying pathobiology and possible
mechanisms underlying the associated clinical complications.
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Figure 1. Clinical demographics of patients with MPN and healthy controls. (A) Similarity in distribution of MPN subtypes and controls, with slightly higher proportion ET

(PV n = 41, ET n = 59, control n = 40). (B) Comparable and balanced distribution of sex across MPN subtypes and controls. Larger percentage of female healthy controls. (C) All

patients with PV harbored the JAK2 V617F mutation, and in keeping with the general ET population JAK2 V617F was the most common driver mutation followed by CALR and

MPL, with 12 patients with triple-negative ET included in this study. (D) MPN patient therapies reflecting current clinical practice. Most patients with PV and ET were prescribed

aspirin (ASA), with hydroxyurea (HU) as a commonly used cytoreductive therapy. To control for any interpatient variability, all treatment, in addition to patient, sex and experimental

batch are adjusted as confounding factors in downstream differential expression analyses. (E) Comparable distribution of age across MPN subtypes and controls. Violin plots of

patient age from each MPN subtype reflect clinical expectation, with slightly higher median age noted for patients with ET and PV than that for controls. (F) Platelet counts, as box

plots, measured at the same date and time as experimental platelet sampling. As expected, Mann-Whitney U tests marked by asterisks indicate a statistically significant difference

between control and MPN groups (****P ≤ 0.0001; ns, not significant).
Using label-free quantification liquid chromatography mass spec-
trometry (supplemental Methods), we compared proteomic
expression in PV and ET with that of healthy donors. Unsupervised
principal component analysis of patients with MPN and controls
(Figure 2A) confirmed that the collective variability from the first 2
principal components was MPN disease status (26% of total
variance). A total of 1952 platelet proteins (listed in supplemental
Tables 3 and 4) were quantified across MPN and control sam-
ples. Differential expression analysis of proteomic data (volcano
plot, Figure 2B-C) resulted in highly significant expression signa-
tures (false discovery rate <0.05) with 227 proteins differentially
regulated in ET (113 increased and 114 decreased) and 166 in PV
(122 increased and 44 decreased) compared with healthy donors
(see supplemental Tables 5 and 6 for full list).

Differential markers in ET and PV highlight candidate proteins as
potential mediators of the prothrombotic phenotype, including
proteins associated with hypercoagulation (eg, MMP1, SERPINH1,
FcγRIIA, and PDIA6) and inflammation (LGALS1, S100A6,
27 AUGUST 2024 • VOLUME 8, NUMBER 16
SLC25A24, and CD63). Select candidates are highlighted in
Figure 2B-C and discussed in detail in supplemental Table 2.
Furthermore, although the profibrotic phenotype of myelofibrosis is
well understood,12 candidate markers (LGALS1, S100A6) in the
early, more indolent subtypes of chronic MPNs point to potential
platelet mediators of fibrosis of relevance to myelofibrosis. Unsu-
pervised hierarchical clustering further classified the top 10
differentially expressed platelet proteins for MPN, in contrast with
those of healthy donors (Figure 2D). Although patients with MPN
cluster into a group distinct from controls, we also note the overlay
between PV and ET platelet signatures likely reflecting shared
pathobiology.

PV and ET demonstrate overlapping clinical phenotypes; however,
they remain recognized as distinct pathological entities with specific
diagnostic and therapeutic considerations.13 Comparing platelet
proteomic expression between patients with PV (n = 41) and those
with JAK2-positive ET (n = 26) distinguished MPN subtypes and
revealed subtype-specific signatures (supplemental Table 7);
RESEARCH LETTER 4277
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Figure 2. MPN platelet proteome distinguishes disease phenotype. (A) Unsupervised principal component analysis of normalized platelet protein expression adjusted for

age, sex, treatment (antiplatelet and cytoreduction), and experimental batch. PC1 and PC2 colored by MPN subtype; and each contrasted with controls (n = 40, yellow): ET

(n = 59, light green), PV (n = 41, blue). The first 2 principal components account for 26% of total variance in the data. (B-C) Volcano plots (2 panels of ET, PV) of differential

protein expression showing log2 fold change vs statistical significance (negative log10 of P values) of each gene. Significant upregulated and downregulated genes are those with

P values (false discovery rate [FDR]) ≤.05 and absolute value of fold changes ≥1.5. (D) Hierarchically clustered heat map of the top 10 differentially expressed proteins (FDR

<0.01) from control vs MPN patient samples. Colored annotation is provided to indicate MPN subtype, mutation status, and sex. Rows indicate gradation in expression on a yellow

(low) to orange (high) scale. Columns indicate sample type from controls, ET, and PV. (E) Pathway-enrichment analysis of proteins with MPN subtype–specific expression (color
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Figure 2 (continued) indicated; yellow ET, and light green PV). Each point represents a pathway; the x-axis gives the normalized enrichment score, which reflects the degree to

which each pathway is overrepresented at the top of the ranked list of differentially expressed proteins, normalized to account for differences in gene set size and in correlations

between gene sets and the expression data set. The y-axis lists the detail-level node of the most enriched pathways; solid lines mark gene set enrichment analysis–

recommended11 Bonferroni-corrected statistical significance criterion of FDR <0.25 for exploratory analyses.
however, the biologic significance of these observations remains
to be seen. The JAK2 V617F mutation is known to increase the
risk of vascular events in ET, whereas the presence of the CALR
mutation is associated with higher rates of bleeding on aspirin in
low-risk patients.14,15 Upon subgroup analysis of our ET cohort,
no difference was observed in platelet protein expression
between JAK2- (n = 26) and CALR-positive patients (n = 18)
(supplemental Table 8). In contrast, patients with triple-negative
ET are recognized to have low rates of thrombosis and trans-
formation.16 Although the number of patients with triple-negative
ET included in this study was small (n = 12), 90 proteins were
differentially expressed (false discovery rate <0.05; supplemental
Table 9) relative to the mutation-positive ET cohort (n = 47).
Intriguingly, proinflammatory proteins noted to be upregulated in
the MPN platelet proteome (such as LGALS1, PDIA4) are
decreased in our triple-negative population. Although this obser-
vation needs to be confirmed in larger studies, it does appear that
the platelets of patients with triple-negative ET express lower
levels of proinflammatory proteins.

To better decipher the functional significance of the observed
proteomic changes, we performed enrichment analysis and iden-
tified biological pathways that are differentially activated between
MPN and controls (Figure 2E; supplemental Tables 10 and 11).
Gene set enrichment analysis (supplemental Methods) found that
MPN (stratified by subtypes; ET and PV) primarily induces path-
ways associated with the unfolded protein response. Moreover,
among the most enriched gene sets, MPN pathology induces
activation of oxidative phosphorylation and mTORC1 signaling
pathways. Proliferation pathways also reveal significant enrichment
with overexpression of c-MYC target proteins among patients with
PV. The MPN pathways exhibiting significant proteomic regulation
by gene set enrichment analysis are consistent with our observa-
tions at the individual level for increased or decreased protein
expression.

Here, we profile the MPN platelet proteome. Our findings validate
our prior MPN platelet transcriptomic data from an independent
cohort, confirming a strong possible role for platelet biology in
MPN.17 Our data also expand on findings from other smaller or
targeted studies,18-24 thus identifying the platelet proteome as a
potential mediator of MPN proinflammatory, prothrombotic, and
profibrotic processes. In keeping with the knowledge that
vascular risk remains elevated among chronically treated
patients,6 we demonstrate evidence of an altered platelet prote-
ome in patients with ET and PV despite standard therapy. The
observed platelet molecular profile supports our hypothesis that
platelets contribute to remodeling of the circulatory microenvi-
ronment, which could lead to a self-reinforcing inflammatory
milieu, possibly promoting disease progression and associated
MPN vascular complications.

Using label-free, untargeted platelet proteomic profiling, we
discover key potential mediators of immunothrombosis and
proteostasis in patients with ET and PV. We identify significant
27 AUGUST 2024 • VOLUME 8, NUMBER 16
differential platelet protein expression, revealing high-priority
candidate markers for functional evaluation in MPN studies. We
acknowledge that our healthy donor population was not screened
for mutations associated with clonal hematopoiesis of indetermi-
nate potential and recognize that future mechanistic studies are
needed to substantiate our results. In addition, investigation into
the circulatory microenvironment and the MPN megakaryocyte
molecular signature may reveal further insights into the etiology of
these observed proteomic differences. Finally, a longitudinal study
following patients for the development of thrombotic outcomes
would be critical to enabling the development of future risk pre-
diction algorithms. Our ongoing efforts include proteomic analysis
of platelets from prospectively recruited patients at the time of initial
MPN diagnosis to identify candidates for mechanistic interrogation
in treatment-naive patients. Our findings highlight that the circu-
lating platelet molecular profile offers unique insights into MPN
pathobiology, and we demonstrate the immense value of cross-
institutional collaborations in advancing larger-scale translational
studies, particularly for rare disease cohorts.
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