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ABSTRACT

Aging is a high-risk factor for obstructive and fibrotic lung diseases. Fibrotic lung disease leading to decreased
lung function is characterized by interstitial remodeling and tissue scarring (sclerosis), with destruction of alveoli
and excess deposition of type I collagen, an extracellular matrix component secreted by fibroblasts. Therefore,
regulating transforming growth factor-p (TGF-B) as a profibrotic signal is essential to suppress pulmonary
fibrosis. In pulmonary fibrosis, TGF-p signaling is mediated by Smad and YAP/TAZ, and TAZ linked to the pa-
thology of pulmonary function is observed in lung fibroblasts from patients with idiopathic pulmonary fibrosis.
Although fibrosis is thought to be irreversible, it is an interventional condition. Decorin (DCN) blocks TGF-p
signaling in pulmonary fibrosis, although there are no cellular pharmacological methods to stimulate DCN
secretion. We previously showed that chicken eggshell membrane (ESM, a well-known wound-healing material)
promotes dcn gene expression in fibroblasts. In this study, we investigated whether ESM stimulates DCN secretion
as an endogenous mediator and ameliorates pulmonary fibrosis. Decorin secretion was significantly enhanced in
the WI-38 lung fibroblast culture supernatants supplemented with ESM. This effect was increased with major
component lysozyme and maximally promoted in experiments with lysozyme and ovotransferrin (the two main
proteins in soluble ESM) at a 16:1 concentration ratio, the ratio in the ESM extract. Decorin secretion by ESM
modulates TGF-p signaling in lung fibroblasts by reducing TAZ and pSmad2 nuclear localization. Decorin siRNA
experiments confirmed that nuclear localization of TAZ is DCN-dependent. In a mouse model of bleomycin-
induced pulmonary fibrosis, all fibrotic markers of ESM treatment group such as hydroxyproline (a collagen
deposition marker), and both evaluation of fibrosis density by automated thresholding of picrosirius red-stained
lung tissue scan images and Ashcroft fibrosis scores, and also the nuclear localization of TAZ were reduced after 2
weeks compared with control group. Furthermore, long-term (22 week) ESM consumption by healthy individuals
significantly improved vital capacity and the forced expiratory volume in 1 s to forced vital capacity ratio (FEV1/
FVC). This study reveals that ESM, a well-established wound-healing material, may be a potential preventive
medicine for pulmonary fibrosis.

1. Introduction

Respiratory function declines with age, accompanied by structural
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Abbreviations

BLM Bleomycin

COL1 Type I collagen

DCN Decorin

ECM Extracellular matrix

ESM Eggshell membrane

FEV1/FVC Forced expiratory volume in 1 s to forced vital
capacity ratio

HDF High-density frequency

IPF Idiopathic pulmonary fibrosis

LYZ Lysozyme

TAZ Transcriptional coactivator with PDZ-binding motif
TF Ovotransferrin

TGF-p  Transforming growth factor-f

vC Vital capacity

YAP Yes-associated protein

and functional changes in the lungs and decreased function of the dia-
phragm and other respiratory muscles [1]. Age also increases the risk of
primary lung cancer, respiratory infections, and obstructive and fibrotic
lung disease [2]. Fibrosis is a disease that harms the extracellular
environment and can invade all organs, accounting for 45 % of deaths in
developed countries [3]. Fibrotic lung disease is characterized by
interstitial remodeling, destruction of the tissue structure, irreversible
scarring, and decreased lung function. Organ stiffness is regulated by the
extracellular matrix (ECM) secreted from cells. Since downregulation of
type I collagen (COL1) is key to inhibiting fibrosis, it is important to
regulate transforming growth factor (TGF)-p as an upstream chemical
signal [4].

Decorin (DCN) is also known as an antifibrotic proteoglycan in lung
fibroblasts [5,6] and suppresses TGF-p-dependent fibrotic signaling by
binding to and sequestering TGF-p [7]. Mice with bleomycin (BLM)-in-
duced pulmonary fibrosis transfected with DCN expression vector show
reduced fibrosis [5]. However, there are no pharmacological methods to
stimulate DCN secretion. TGF-p signaling is also mediated by Smad and
YAP/TAZ [8-10], with increased nuclear staining of YAP/TAZ in lung
fibroblasts of patients with idiopathic pulmonary fibrosis (IPF) [9,10].
Additionally, nuclear localization of TAZ is more evident in stiff matrices
related to the physiological hallmarks of increased lung stiffness in IPF
[9,10].

The eggshell membrane (ESM) is a well-established wound-healing
material [11] that is attracting attention as a new biomaterial with
nutritional and pharmacological applications, including wound healing
[12]. We showed that ESM promotes dcn expression in human dermal
fibroblasts [13]. Human dermal fibroblasts increase the expression of
ECM genes such as dcn, which is essential for proper fibrillogenesis of
COL1 by ESM covalently bound to the artificial cell membrane bio-
interface using 2-methacryloyloxyethyl phosphorylcholine (PMBN)
[13]. Oral administration of ESM to rats improves liver fibrosis [14].
Proteomic analysis shows that ESM is a complex material consisting of
over 500 proteins [15], although component-activity relationships other
than antioxidants [16] were not explored. Lysozyme (LYZ) [17] and
ovotransferrin (TF) [18] are the two major matrix protein components
with therapeutic interests.

Recently, we reported that oral supplementation with ESM for 8
weeks in healthy subjects significantly increased respiratory function
(forced expiratory volume in 1 s to forced vital capacity ratio [FEV1/
FVC]) compared to that in controls [19], demonstrating the possible
therapeutic use of ESM targeting lung health. The purpose of this study
was to examine the effects of ESM on pulmonary fibrosis by inducing dcn
expression and suppressing pulmonary fibrosis signaling.
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2. Materials and methods
2.1. Invitro cell studies

WI-38 lung fibroblasts (passage 4-7, 2 x 10* cells) were seeded
overnight on 22 x 22 mm? coverslips. For treatment with TGF-p1, the
culture medium was replaced with 2 mL of fresh medium without serum.
WI-38 cells were incubated for 2 h before TGF-f1 addition with hydro-
lyzed ESM, (Almado, Tokyo, Japan), LYZ (L6876-5G, Sigma Aldrich, St.
Louis, MO, USA), or TF (C0755-100 MG, Sigma Aldrich, St. Louis, MO,
USA). Cells were treated with 5 ng/mL recombinant human TGF-p1
(Abcam, Cambridge, UK) for 5 h and culture supernatants were collected
before fixing the cells for DCN quantification using Decorin DuoSet
enzyme linked immunosorbent assay (ELISA) (#DY143; R&D Systems,
Minneapolis, MN, USA). Cell culture, cell fixation, and immunostaining
methods are described in the Supplementary Methods. Quantitative
analysis of the nuclear localization of TAZ and pSmad2 was performed
as previously described [20]. The detailed methods are described in the
Supplementary Methods section.

2.2. Ethical approval

All animal testing procedures were performed in accordance with the
Declaration of Helsinki and were approved by the Tokyo University of
Agriculture and Technology (TUAT) Animal Experimentation Commit-
tee (No. 25-60; updated 2019). This study complied with the principles
and regulations described in Grundy’s editorial (2015) [21].

2.3. Bleomycin-induced pulmonary fibrosis mouse model

The fibrosis mouse model and treatment, once-a-day ESM adminis-
tration, lung tissue removal, sectioning, picrosirius red staining, fibrosis
evaluation by Ashcroft methods, and immunofluorescent staining of
mouse lung sections are described in the Supplementary Methods.
Specifically, a mixture of micronized ESM (Almado, Tokyo, Japan) with
jelly was given at a dose of 7.3 mg/kg/day in the BLM + ESM group
(equivalent to one dose taken twice daily in a previous study in humans
[19] and the amount equivalent to one dose in the current experiment).
Jelly (no ESM) was given for the control group and BLM group.

2.4. Quantifying collagen content in lung tissue

To estimate the amount of collagen in the lungs, 4-hydroxyproline
was quantified using a Hydroxyproline Assay Kit (Sigma-Aldrich,
MAKO008) according to the manufacturer’s protocol. The right lung was
used.

2.5. Automated histological image analysis of BLM-induced pulmonary
fibrosis in mice

Scanning of the picrosirius red-stained lung tissue section slides was
performed using a NanoZoomer-XR (Hamamatsu Photonics, Hama-
matsu, Japan), and individual lung images were extracted using NDP.
view2 software (Hamamatsu Photonics, Hamamatsu, Japan, Ver.
2.9.29). Pulmonary fibrosis density was quantified using open-source
ImageJ (Fiji) software (ImageJ Version 1.53t, Java 1.8.0_322 (64 bit))
based on automated thresholds and the production of 2D-reconstituted
images according to the literature [22] (Supplementary methods and
Supplemental Fig. 1).

2.6. Human study subjects and study design

This study was approved by TUAT Ethics Committee (No. 27-09).
Written informed consent was obtained from healthy Japanese volun-
teers. This study was conducted in accordance with the guidelines of the
Declaration of Helsinki and those established by the TUAT. After the 8-
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Fig. 1. (A-C) Eggshell membrane and its components LYZ and LYZ + TF increase DCN secretion from fibroblasts. Quantifying secreted DCN from human lung fi-
broblasts WI-38 with or without TGF-p (5 ng/mL) stimulation upon addition of ESM (A), LYZ (B), and LYZ + TF (C) by ELISA (n = 3, *p < 0.05, **p < 0.01). The LYZ
in the ESM was about 50 % based on proteomic analysis. The protein content in the hydrolyzed ESM used in (A) was 20 %. Thus, the minimum amount of LYZ added
was set at approximately 10 % of 1 mg/ml (A). (D-I) Eggshell membrane treatment inhibited the TGF-f-induced fibrosis pathway in WI-38. Immunofluorescence
staining for TAZ with or without TGF-f (5 ng/mL) stimulated WI-38 human lung fibroblasts with or without 1 mg/mL ESM in the medium. E. Quantifying nuclear/
cytoplasmic ratios of TAZ staining in WI-38 with or without TGF-p (5 ng/mL) stimulation and with or without ESM (ESM (—): 0 mg/mL and ESM (+): 1 mg/mL). F.
Suppressing DCN secretion by dcn siRNA to WI-38. N = 3. G. dcn knockdown by siRNA causes nuclear localization of TAZ without TGF-f stimulation (n = 15; 3 dish
x 5 observations). H. Eggshell membrane treatment inhibited the TGF-f-induced fibrosis pathway in human lung fibroblasts. Inmunofluorescence staining for
pSmad2 with or without TGF-p (5 ng/mL) stimulated WI-38 human lung fibroblasts stimulated with or without 1 mg/mL ESM in the medium. I. Quantifying nuclear/
cytoplasmic ratios of pSmad2 staining in WI-38 stimulated with or without TGF-p (5 ng/mL) in the presence or absence of ESM (ESM (-): 0 mg/mL and ESM (+): 1

mg/mL). DCN, Decorin; ESM, eggshell membrane; LYZ; lysozyme; TF, Ovotransferrin; TGF-p, Transforming growth factor-p.

week trial [19], only the ESM group continued to examine the long-term
(22 weeks) effect (aged between 21 and 68, n = 9). Detailed method of
human study is described in supplementary method.

3. Results

3.1. Eggshell membrane, LYZ, and TF increases DCN secretion from
fibroblasts

TGF-B promotes fibrosis and proteoglycan DCN is an antifibrotic
agent through binding and neutralization TGF-p. The addition of 1 mg/
ml ESM to the medium significantly increased DCN secretion from WI-
38 by 1.45-fold (without TGF-B) and 1.87-fold (with TGF-B) compared
to that before addition (Fig. 1A). The addition of hydrolyzed LYZ to lung
fibroblast culture medium promotes DCN secretion by lung fibroblasts
(Fig. 1B). Decorin secretion was highest when the ratio of TF:LYZ was
1:16 (Fig. 1C), corresponding to the ratio present in the ESM extract.

3.2. Eggshell membrane treatment inhibited the TGF-p-induced fibrosis
pathway in human lung fibroblasts

Nuclear localization of lung fibroblast TAZ was used as an indicator
of lung fibroblast activation. TAZ localization to the nucleus signifi-
cantly increased when WI-38 cells were stimulated with TGF- (Fig. 1D
and E) but was significantly suppressed in the presence of 1 mg/mL ESM
(Fig. 1D and E). To examine the involvement of DCN, dcn-knockdown
cells (dcn siRNA) were generated, which showed decreased DCN secre-
tion (Fig. 1F). In the absence of TGF-f, dcn knockdown cells (dcn siRNA)
increased TAZ nuclear localization similar to that by TGF-p stimulation
in the absence of TGF-f; therefore, the inhibition of TAZ nuclear local-
ization was DCN-dependent (Fig. 1G). pSmad2 is implicated in pulmo-
nary fibrosis [8]. In this study, TGF-B-stimulated nuclear localization of
pSmad2 was suppressed in the presence of ESM (Fig. 1H and I).

3.3. Oral administration of ESM ameliorated BLM-induced pulmonary
fibrosis in mice

Using a mouse model of bleomycin-induced pulmonary fibrosis, the
amelioration of ESM to pulmonary fibrosis was evaluated by biochem-
ical quantification, histochemical imaging analyses, and TAZ nuclear
localization (TGF-p signaling). After 2 weeks of BLM treatment, BLM +
ESM mice showed significantly lower levels of pulmonary hydroxypro-
line (a collagen deposition marker) than BLM mice (Fig. 2A). Picrosirius
red-stained images of the lung sections are shown in the upper part of
Fig. 2B (Supplemental Fig. 3A). Collagen deposition and fibrosis were
reduced in BLM + ESM mice compared to BLM mice (Fig. 2B, magnified
image). The fibrosis density distribution was classified into 20 classes (5,
10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and
100). A pulmonary fibrosis density of 60-100 was defined as a high-
density frequency (HDF) characteristic of pulmonary fibrosis (Fig. 2C).
The areas of high fibrosis density (orange to yellow, fibrosis density of
60-100) were high in the BLM group, whereas they were lower in the
BLM + ESM group (Fig. 2C). The average HDF significantly increased
with BLM administration (p < 0.01) and significantly decreased with

once-daily ESM intake (p < 0.01) compared with the BLM group
(Fig. 2D). The degree of fibrosis assessed by the Ashcroft score was
significantly lower in the lungs of BLM + ESM mice than in those of BLM
mice after 2 weeks (p < 0.05) (Fig. 2E). Quantification of TAZ staining of
lung tissue sections (Fig. 3A) showed that TAZ nuclear localization was
significantly reduced in the BLM + ESM group compared to the BLM
group (Fig. 3B), which is consistent with the WI-38 results (Fig. 1D and
E).

3.4. Long-term orally ingested ESM improved respiratory function in
humans

ESM supplementation for up to 22 weeks significantly improved
respiratory function, VC, and FEV1/FVC (Table 1).

4. Discussion

Eggshell membrane and its components (LYZ and LYZ + TF) induced
DCN secretion in WI-38 human lung fibroblasts. We also verified the
inhibition of pSmad2 and transcriptional coactivator TAZ nuclear
localization in the presence of the profibrotic cytokine TGF-f using
human lung fibroblasts. Oral ingestion of ESM into BLM pulmonary
fibrosis model mice significantly reduced the amount of hydroxyproline
(an accumulated collagen indicator in fibrosis) and the fibrosis score,
and revealed inhibition of elevated TAZ nuclear localization character-
istic in lung fibroblasts of patients with IPF. Finally, long-term oral
intake of ESM enhanced the respiratory function of the human lung.

In cultured cells, dcn overexpression suppressed the biological ac-
tivity of TGF-B, and simultaneous overexpression of DCN suppressed
pulmonary fibrosis in TGF-p overexpressing mice [7]. This is the first
study showing that ESM stimulates DCN secretion. LYZ and TF are the
two major matrix protein components of the mammillary knob with
antimicrobial and mineralization activities [23]. The mechanism of the
stimulation of DCN secretion from fibroblasts in the presence of LYZ +
TF needs to be determined in future studies. LYZ exhibits antitumor-
[17], growth inhibition- [24], and antimicrobial activities. This study
showed that ESM stimulates endogenous DCN secretion from fibroblasts,
which may provide an innovative antifibrotic strategy.

dcn is an antifibrotic gene in the lungs [5,6] and DCN suppresses
TGF-B-dependent fibrotic signaling [25,26] by binding to and seques-
tering active TGF-p [7,27,28]. In this study, elevated dcn expression
from ESM ingestion may have contributed to the suppression of
TGF-B-dependent fibrotic signaling, thereby alleviating fibrosis. In pul-
monary fibrosis, TGF-f signaling is mediated by YAP/TAZ [8,9].
Crosstalk is suggested between TAZ and other signaling pathways such
as TGF-p/Smad [9]. In this study, ESM suppressed the TGF-f-dependent
activation of TAZ in lung fibroblasts and BLM mice. The ESM signifi-
cantly reduced the nuclear localization of pSmad2 in lung fibroblasts.
Thus, it is implicated in the inhibition of the TGF-p signaling pathway.

In this study, 22 weeks of ESM supplementation significantly
improved VC and FEV1/FVC in humans (Table 1). The application of
ESM to human skin increases arm skin elasticity [29] while affecting the
dermal papillary layer of mice and inducing dcn [29]. After eight weeks
of ESM supplementation in humans, subjects demonstrated significantly
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Fig. 2. Eggshell membranes alleviated pulmonary fibrosis in a BLM-induced mouse model. A. Quantifying hydroxyproline in the lung. Control: n = 8, BLM: n = 8,
BLM + ESM: n = 7. B. Representative images of picrosirius red staining of lung tissue sections (top), magnified image (middle), and 2D reconstructed images
corresponding to fibrosis density (bottom). C. The frequency of fibrosis density determined from the classification of the whole unitary fibrosis density values ob-
tained in each lung section. Representative images of each group of 2D reconstructed pulmonary fibrosis density distribution, a characteristic of fibrosis are shown
(Fig. 2B lower, Supplemental Fig. 3B, Fig. 2C shows a graph plotting fibrosis density frequency according to the pulmonary fibrosis density color chart. Control n = 8,
BLM n = 8, BLM + ESM n = 6 (one sample from the BLM + ESM group was excluded because it was determined as an outlier using the interquartile range)
(Supplemental Fig. 2). D. Average high fibrosis density frequency of each group. E. Fibrosis score by the Ashcroft method. Control: n = 8, BLM: n = 8, BLM + ESM: n
= 6. BLM, bleomycin; ESM, eggshell membrane; HDF, high-density frequency. (For interpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)
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Table 1
The effect of oral intake of ESM on respiratory function.
ESM intake (n = 9) p-value
vC (L) Before 3.23 + 0.89 0.0002
Week 22 3.53 + 0.92
FEV1/FVC (%) Before 87.50 + 5.26 0.030
Week 22 90.33 + 3.98

Pulmonary function tests were performed using a spirometer to investigate the
effects of oral ESM intake on pulmonary function. ESM, eggshell membrane;
FEV1/FVC; forced expiratory volume in 1 s to forced vital capacity ratio; VC,
vital capacity.

increased rates of change in arm skin elasticity, zigzag walking speed,
and respiratory FEV1/FVC compared to the control group [19]. It is
likely that the ingestion of ESM alters the mechanical properties of the
lung interstitium and improves respiratory function. *H- labeled ESM
was orally administered to mice and was digested and distributed in the
blood and various tissues, including the skin and lungs [30]. Thus, orally
ingested ESM is expected to affect the lung cells and induce DCN
secretion. The respiratory function of the lungs is also affected by
changes in the DCN, and mechanics such as lung compliance are
degraded in dcn knockout mice [31]. These results suggest that ESM may
ameliorate lung function by inducing DCN. Detailed signaling and

possible mechanism of improvement respiratory function of healthy
subjects by ESM are described in the Supplemental Discussions.

In conclusion, ESM enhances the secretion of antifibrosis mediator
DCN from fibroblasts, ameliorates BLM-induced pulmonary fibrosis, and
suppresses the TGF-B-dependent fibrosis signaling pathway TAZ in vitro
and in vivo. This study suggests that the effect of ESM on the lungs is
owing to its main components LYZ and TF.
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