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Abstract
Inflammatory markers and mediators that affect the development of car-
diovascular diseases have been the focus of recent scientific work. Thus, the 
purpose of this editorial is to promote a critical debate about the article titled “Nε-
carboxymethyl-lysine and inflammatory cytokines, markers, and mediators of 
coronary artery disease progression in diabetes”, published in the World Journal of 
Diabetes in 2024. This work directs us to reflect on the role of advanced glycation 
end products, which are pro-inflammatory products arising from the metabolism 
of fatty acids and sugars whose main marker in tissues is Nε-carboxymethyl-
lysine (NML). Recent studies have linked high levels of pro-inflammatory agents 
with the development of coronary artery disease (CAD), especially tumor necrosis 
factor alpha, interleukins, and C-reactive protein. These inflammatory agents 
increase the production of reactive oxygen species (ROS), of which people with 
diabetes are known to have an increased production. The increase in ROS 
promotes lipid peroxidation, which causes damage to myocytes, promoting 
myocardial damage. Furthermore, oxidative stress induces the binding of NML to 
its receptor RAGE, which in turn activates the nuclear factor-kB, and conse-
quently, inflammatory cytokines. These inflammatory cytokines induce endo-
thelial dysfunction, with increased expression of adhesion molecules, changes in 
endothelial permeability and changes in the expression of nitric oxide. In this 
sense, the therapeutic use of monoclonal antibodies (inflammatory reducers such 
as statins and sodium-glucose transport inhibitors) has demonstrated positive 
results in the regression of atherogenic plaques and consequently CAD. On the 
other hand, many studies have demonstrated a relationship between mito-
chondrial dynamics, diabetes, and cardiovascular diseases. This link occurs since 
ROS have their origin in the imbalance in glucose metabolism that occurs in the 
mitochondrial matrix, and this imbalance can have its origin in inadequate diet as 
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well as some pathologies. Photobiomodulation (PBM) has recently been considered a possible therapeutic agent for 
cardiovascular diseases due to its effects on mitochondrial dynamics and oxidative stress. In this sense, therapies 
such as PBM that act on pro-inflammatory mediators and mitochondrial modulation could benefit those with 
cardiovascular diseases.
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Core Tip: Increased oxidative stress promoted by pro-inflammatory mediators such as Nε-carboxymethyl-lysine causes 
changes in mitochondrial dynamics and has been associated with insulin resistance and cardiovascular diseases. Therapies 
that promote the health of mitochondria by balancing the mechanisms of mitochondrial fusion and fission may be a path 
forward in the context of coronary artery disease.
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INTRODUCTION
The accumulation of lipids and hypertension associated with hyperglycemia for decades has been the main risk factor for 
reducing cholesterol and developing coronary artery disease (CAD) in patients with diabetes mellitus (DM). However, 
pro-inflammatory agents are now considered the major orchestrators of CAD development and atherosclerotic implic-
ations[1]. Among these agents, Nε-(carboxymethyl) lysine (NML) stands out as a stimulant of macrophage uptake via 
receptors for advanced glycation end products (AGEs). AGEs result from the reaction between reducing sugars and the 
amino group of proteins, leading to dysfunctional glycated proteins[2,3], which play a significant role in diabetes 
pathophysiology. Additionally, NML is associated with atherogenic precursors by stimulating foam cell formation[4]. 
Another mechanism by which these pro-inflammatory mediators cause endothelial dysfunction is through decreased 
nitric oxide (NO) release, increased adhesion molecules, and increased permeability[5]. One of these pro-inflammatory 
protagonists is Pyrin Receptor 3 (NLRP3), which induces the release of pro-inflammatory cytokines. Moreover, the 
thioredoxin (TXNIP)-NLRP3 complex promotes pro-caspase-1 activation and apoptosis. In pathological situations, the 
myocardium increases reactive oxygen species (ROS) production, leading to increased K+ efflux and mitochondrial 
damage. Bisht et al[6] suggested that NLRP3 could be an interesting target in myocardial injury treatment. Recent studies 
have linked high levels of pro-inflammatory agents with CAD development, particularly tumor necrosis factor-alpha, 
interleukins, and C-reactive protein.

OXIDATIVE STRESS, MITOCHONDRIAL DYNAMICS, AND THEIR IMPLICATIONS IN DIABETES
The hyperglycemic state increases oxidative stress, which in turn induces the dissociation of the thioredoxin complex that 
interacts with TXNIP[7]. Concomitantly, NO acts on certain adhesion and pro-inflammatory molecules, decreasing their 
release through an inhibition mechanism of nuclear factor-kappa B (NF-κB)[8]. NF-κB induces the transcription of pro-
inflammatory cytokines and activates NLRP3, thereby increasing the inflammatory response[9]. In conditions where the 
inflammatory process is exacerbated (as in DM), there is an increase in the production of peroxynitrite anion and ROS 
that end up inhibiting the activities of NO[10]. In turn, increased ROS promotes the degradation of tetrahydrobiopterin, 
an important cofactor of NO synthesis. Therefore, there is a decrease in NO production, and endothelial dysfunction 
progresses, progressively affecting the muscle tone of the endothelium[10]. Some authors have argued that the 
therapeutic target in this clinical setting should be the pursuit of mitochondrial health[11,12], as mitochondria mediate the 
conversion of substrates into adenosine triphosphate (ATP), delivering energy to maintain cellular functions. Fur-
thermore, they regulate signaling pathways in the cell and buffer intracellular calcium and apoptosis. These organelles 
have a significant capacity for self-regulation through cycles of fusion and fission, known as mitochondrial dynamics[12]. 
It is important to highlight that insulin resistance (IR) is associated with dysfunctional mitochondria, characterized by 
reduced bioenergetic responses to insulin stimulation and decreased mitochondrial biogenesis[13]. Changes in the 
transcription of mitochondrial genes, lipotoxicity, and glucotoxicity appear to be some of the mechanisms involved in IR
[11]. Additionally, mitochondrial dysfunction promotes a reduction in energy expenditure, overproduction of ROS, as 
well as altered oxidation of fatty acids, thereby aggravating IR. The balance between mitochondrial fusion and fission is 
fundamental for cardiometabolic homeostasis. Mitofusins (MFN1) and (MFN2) are proteins that act in mitochondrial 
fusion, together with dynamin-related protein 1 (DRP1) and fission protein 1 (FIS1)[12,13]. Due to this crucial role of 
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Figure 1 Activation of nuclear factor kappa B by reactive oxygen species modulates inflammatory responses. Illustrative scheme 
demonstrating the activation of the nuclear factor kappa B transcription factor by reactive oxygen species and its modulation in inflammatory responses in vascular 
smooth muscle cells, endothelial cells, and macrophages. FIS: Fission protein; MFN: Mitofusins; NO: Nitric oxide; PBM: Photobiomodulation; ROS: Reactive oxygen 
species; NF-κB: Nuclear factor-kappa B.

mitochondrial dynamics in metabolism, therapeutic approaches aimed at mitochondrial homeostasis could strongly 
impact the treatment of these pathologies. In this sense, some antihyperglycemic drugs have played a modulatory role in 
mitochondrial homeostasis, acting on the cardiovascular system by reducing DRP1 levels and increasing OPA1 and 
MFN2 protein levels in cardiomyocytes[14]. Among these drugs, we can highlight glucagon-like peptide 1 receptor 
agonists and sodium-glucose cotransporter 2 inhibitors (SGLT2i), which act on glycemic control and body weight[15]. 
Shao et al[16] demonstrated that SGLT2i increased the protein expression of OPA1, DRP1, and MFN1, as well as 
mitochondrial respiration, suggesting that SGLT2i could attenuate defects in mitochondrial function in diabetic 
cardiomyopathy by modulating mitochondrial dynamics[16]. According to these authors, several studies[17-19] have 
observed that SGLT2 inhibitors minimize the risks of non-fatal myocardial infarction and non-fatal death or stroke related 
to heart failure. Some theories about the possible mechanisms of cardioprotection by SGLT-2 inhibitors, including 
apoptosis, antioxidant effects, prevention of cardiac inflammation, mitochondrial dysfunction, and ionic homeostasis[20-
22], suggest repolarization through the improvement of mitochondrial health and oxidative stress, as well as prolonged 
ventricular pressure suppression. Other authors, such as Lee et al[23], highlight a late Na+ and Na+/H+ exchange current 
and changes in Ca2+ regulation.

PHOTOBIOMODULATION, INFLAMMATORY MEDIATORS, AND MITOCHONDRIAL DYNAMICS
Photobiomodulation (PBM) is a therapy based on electromagnetic irradiation using a light emitter such as a laser or light-
emitting diode[24]. The effects of this electromagnetic light irradiation primarily target the mitochondrial membrane, 
where it acts on cytochrome c oxidase of the respiratory chain, facilitating electron transport and resulting in increased 
ATP production and transmembrane proton gradient[25]. Previous studies have shown that PBM initially increases ROS 
production, followed by an adaptive decrease in oxidative stress[26,27], and that PBM acts on mitochondrial dynamics
[21], modulating the expressions of MFN2 and FIS1 in diabetic-induced rat models[27]. Furthermore, it activates the 
redox-sensitive transcription factor NF-κB through brief generation of ROS. This modulation of NF-κB attenuates inflam-
matory responses in vascular smooth muscle cells, endothelial cells, and macrophages[28], as well as the production of 
inflammatory cytokines tumor necrosis factor-alpha and NO[29] (Figure 1).

CONCLUSION
The interaction between inflammatory mediators, oxidative stress, and mitochondrial dynamics substantially influences 
the pathogenesis of cardiovascular diseases, especially in the context of DM. Pro-inflammatory agents play a fundamental 
role in the development of CAD and atherosclerosis, contributing to endothelial dysfunction and subsequent 
cardiovascular complications. Mitochondrial dysfunction, exacerbated by hyperglycemia and IR, further intensifies 
oxidative stress and inflammation, leading to compromised cellular metabolism and impaired energy production. 
Therapeutic strategies targeting mitochondrial homeostasis, such as certain antidiabetic medications like SGLT2 
inhibitors, have the potential to mitigate cardiovascular risks by modulating mitochondrial dynamics and oxidative 
stress. Additionally, PBM emerges as a potential therapeutic approach, exerting anti-inflammatory effects and influencing 
mitochondrial function. In light of this, innovative therapeutic interventions can be developed to effectively manage 
cardiovascular diseases associated with DM.
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