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Key Points

• High-dose
alemtuzumab led to
effective suppression
of cGVHD.

• Lymphodepletion
delays naive T cell (Tn)
recovery resulting in
lower T-cell receptor
repertoire and higher
Treg:Tn ratio.
Chronic graft-versus-host disease (cGVHD) remains a significant problem for patients after

allogeneic hematopoietic stem cell transplantation (allo-HSCT). Although in vivo

lymphodepletion for cGVHD prophylaxis has been explored in the myeloablative setting, its

effects after reduced-intensity conditioning (RIC) are not well described. Patients (N = 83)

with hematologic malignancies underwent targeted lymphodepletion chemotherapy

followed by a RIC allo-HSCT using peripheral blood stem cells from unrelated donors.

Patients were randomized to 2 GVHD prophylaxis arms: alemtuzumab and cyclosporine

(AC; n = 44) or tacrolimus, methotrexate, and sirolimus (TMS; n = 39), with the primary end

point of cumulative incidence of severe cGVHD. The incidence of severe cGVHD was lower

with AC vs TMS prophylaxis at 1- and 5-years (0% vs 10.3% and 4.5% vs 28.5%; overall,

P = .0002), as well as any grade (P = .003) and moderate-severe (P < .0001) cGVHD. AC was

associated with higher rates of grade 3 to 4 infections (P = .02) and relapse (52% vs 21%;

P = .003) with no difference in 5-year GVHD-free-, relapse-free-, or overall survival. AC

severely depleted naïve T-cell reconstitution, resulting in reduced T-cell receptor repertoire

diversity, smaller populations of CD4Treg and CD8Tscm, but a higher ratio of Treg to naïve

T-cells at 6 months. In summary, an alemtuzumab-based regimen successfully reduced the

rate and severity of cGVHD after RIC allo-HSCT and resulted in a distinct

immunomodulatory profile, which may have reduced cGVHD incidence and severity.

However, increased infections and relapse resulted in a lack of survival benefit after long-

term follow-up. This trial was registered at www.ClinicalTrials.gov as #NCT00520130.
ary 2024; prepublished online on Blood
il 2024. https://doi.org/10.1182/
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Introduction

For patients with high-risk hematologic malignancies, allogeneic
hematopoietic stem cell transplantation (allo-HSCT) can be a
curative therapy, mediated through immunological graft-versus-
tumor effects. Chronic graft-versus-host disease (cGVHD) is an
important late complication of transplant and a major cause of
nonrelapse morbidity, mortality, and chronic disability, also associ-
ated with fewer malignancy relapses.1 Because current systemic
treatments for patients with cGVHD are unsatisfactory, developing
effective prevention strategies are of major interest.2,3 Patients with
severe forms of cGVHD4 are those who bear the highest mortality
and functional disability and should be the primary target for pre-
vention. Therefore, a better understanding of the in vivo immu-
nobiology associated with the development of clinical cGVHD is an
important clinical research goal.

Methods for pharmacological prevention of GVHD are based on
combinations of a calcineurin inhibitor (cyclosporine or tacrolimus)
plus another agent, most commonly low-dose methotrexate, or use
of high-dose post-transplant cyclophosphamide (PT-Cy).5 With the
recognized role of donor T cells in GVHD, many studies of GVHD
prevention focus on either in vivo depletion of donor T cells by
systemic administration of polyclonal or monoclonal antibodies
(antithymocyte globulin [ATG] and anti-CD52, alemtuzumab,
respectively)6-12 or PT-Cy13-15; or ex vivo graft manipulation via
CD34+ selection16-19 or αβ T-cell depletion.20,21 Antibodies such
as ATG and alemtuzumab exert variable effects based on dosage,
timing of administration, and formulation.22-27 Early studies used
high doses of alemtuzumab (a total dose of 100 mg).28,29 However,
in today’s treatment landscape, safe de-escalation to total doses
ranging between 30 to 60 mg is achievable without compromising
clinical outcomes.30,31 Although higher doses have a strong pro-
tective effect against GVHD,7,8,32-34 this often comes with
increased rates of relapse, graft rejection, infections,35,36 and
Epstein-Barr virus–associated lymphoproliferative disease.37

Furthermore, timing alemtuzumab dosing during conditioning,
proximally or distally, can affect outcomes such as achievement of
full donor chimerism, relapse, and GVHD.38

Benefits of in vivo lymphodepletion, including the reduction in
incidence of both acute GVHD (aGVHD) and cGVHD for allo-
HSCT with myeloablative conditioning using matched unrelated
donors (MUD) have been well established through several large,
randomized controlled trials using ATG.7,8,10,39 However, older
patients cannot tolerate myeloablative conditioning due to frailty or
comorbidity and undergo transplants with reduced-intensity con-
ditioning (RIC) regimens in which efficacy is primarily dependent on
graft-versus-tumor effects from the functional lymphocytes infused
within the graft. Additionally, the risk of cGVHD is increased with
older recipient age, transplantation from unrelated donors, and the
use of peripheral blood stem cell (PBSC) source; the latter 2 of
which are the predominant stem cell source of RIC allografts for
allo-HSCT,40 emphasizing the need for improved understanding
and development of cGVHD prevention strategies in the RIC
setting. Although the introduction of PT-Cy is adopted as the
standard for haploidentical (haplo) allo-HSCT, it is also moving to
the forefront of cGVHD prevention for RIC allo-HSCT using fully
matched donors due to recently presented randomized data41 that
showed effective decrease in cGVHD and improved GVHD-free,
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relapse-free survival (GRFS). Though this did not translate into a
difference in overall survival (OS), and long-term effects on organ
toxicity, infections, and relapse are yet to be seen. Therefore,
exploring alternative approaches for cGVHD prevention and eluci-
dating the immunological mechanisms driving the development of
cGVHD, or lack thereof, remains an important goal for the field.

In this randomized, single-center, open-label, phase 2 prospective
trial, we directly compared the clinical and immunological conse-
quences of 2 strategies to prevent GVHD: post-HSCT in vivo
depletion of donor lymphocytes using high-dose alemtuzumab28,42

vs pharmacological suppression43 of immune activation in the
setting of reduced-intensity PBSC transplants. We further
describe novel immunobiological changes associated with post-
HSCT immune reconstitution in the context of these 2
approaches, as well as that associated with the development of
cGVHD in this prospective, randomized setting.

Methods

Study details

Patients were enrolled between September 2007 and May 2014.
Details on eligibility criteria and donor selection are reported in the
supplemental Method.

Study design

Patients first received disease-specific induction chemotherapy
cycles (range, 1-3 cycles)44,45 for host lymphodepletion aiming for an
absolute CD4+ T-cell target <0.1 x 103/mL before transplant to
accelerate the achievement of full donor chimerism46,47

(supplemental Method; supplemental Figure 1). All patients
received an identical conditioning regimen consisting of concurrent
fludarabine (30 mg/m2 per day for 4 days) and cyclophosphamide
(1200 mg/m2 per day for 4 days),47 followed by infusion of a gran-
ulocyte colony-stimulating factor (G-CSF)–mobilized T-cell replete
peripheral blood allograft from an HLA-matched or -mismatched
unrelated donor procured via the National Marrow Donor Program.
Patients with hematologic malignancy were randomly assigned to
receive either of the following 2 GVHD prophylaxis regimens:
(1) high-dose alemtuzumab and cyclosporine (AC)28,42; or (2) tacro-
limus, sirolimus, and methotrexate (TMS).43 The primary objective
was to determine the cumulative incidence of severe cGVHD per
National Institutes of Health (NIH) global severity score in the 2
arms.48 Secondary objectives were to determine the incidence,
organ severity, and overall severity of cGVHD48 and aGVHD (grades
2-4 and 3-4).49 Statistical methods, end points, and immunological
correlate analyses are described in the supplemental Method.

Treatment arms

TMS arm. Tacrolimus was initiated on day –3 before stem cell
infusion, administered by continuous IV infusion at a dose of
0.02 mg/kg per day with a target serum level of 5 to 10 ng/mL, and
converted to an equivalent oral dose given every 12 hours before
discharge. Sirolimus was initiated on day –3, administered by
mouth with an initial loading dose of 12 mg, and subsequently,
4 mg by mouth each day, with goal trough levels of 3 to 12 ng/mL.
Both were continued and reduced by one-third at days +63, +119
(± 2 days), and then completely discontinued by day +182
(6 months) if there were no signs of GVHD. Methotrexate 5 mg/m2

IV was given over 15 minutes on days +1, +3, +6, and +11.
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AC arm. Alemtuzumab (CAMPATH-1H, humanized monoclonal
anti-CD52 antibody) was administered at 20 mg per day by IV
infusion over 8 hours on days −8 to −4 (total dose of 100 mg,
defined as high-dose alemtuzumab throughout this manuscript)
with premedication per standard of care. Cyclosporine (CsA) was
initiated on day –1 before HSCT and administered by IV infusion at
2 mg/kg per dose every 12 hours, with target serum range of 175
to 250 μg/mL. CsA was converted to an equivalent oral dose given
every 12 hours and continued until day +100 and then was tapered
as long as the severity of GVHD was grade ≤2. CsA was tapered
by reducing the dose by ~10% from the last dose administered
each week to a dose of 25 mg per day and completely dis-
continued by 6 months after HSCT if there were no signs of
GVHD.

The study protocol was approved by the National Cancer Insti-
tute Institutional Review Board, and all patients signed an
informed consent to participate (ClinicalTrials.gov identifier
NCT00520130).
Allocated to intervention AC (n = 45)

• Received allocated intervention (n = 44)
• Did not receive allocated intervention (n = 1)

Lost to follow-up (n = 0)

Completed* (n = 44)

Analyzed (n = 44)
• Excluded from analysis (n = 0)

- Patient withdrew consent (n = 1)

Assessed for eligi

Randomized

Enrollment

Allocat

Follow-

Analys

Figure 1. CONSO
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Results

Patient characteristics

Ninety-two patients were enrolled, 89 patients were randomized,
and 83 (AC, n = 44; TMS, n = 39) ultimately underwent trans-
plantation (Figure 1). Patient and disease characteristics among
both arms were similar, except for a higher number of prior thera-
pies (P = .016) and higher CD34+ cells per kg infused dose in the
AC arm (P = .034; Table 1).

Engraftment and hematologic recovery

Median time to neutrophil recovery was shorter in the AC than in
the TMS arm (9 days [range, 7-36] vs 11 days [range, 3-19]; P =
.02); time to platelet recovery52 was similar (14 days [range, 1-431]
vs 19 days [range, 1-99]; P = .96). In the AC arm, primary graft
failure52 occurred in 2 patients (1 with myeloma and 1 with
myelofibrosis), with the former patient successfully undergoing
engraftment after a second transplant. High donor chimerism
bility (n = 149)

 (n = 89)

ion

Up

is

Excluded (n = 59)
• Not meeting inclusion criteria (n = 40)
• Declined to participate (n = 4)
• Other reasons (n = 15)

- Transplanted elsewhere/other protocol (n = 9)
- No further workup pursued (n = 6)

Allocated to intervention TMS (n = 44)

• Received allocated intervention (n = 39)
• Did not receive allocated intervention (n = 5)

Lost to follow-up (n = 0)

Completed* (n = 39)

Analyzed (n = 39)
• Excluded from analysis (n = 0)

- Progressive/relapsed disease (n = 4)
- Physician decision (n = 1)

RT diagram.
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Table 1. Patient baseline characteristics

Characteristic (n, % unless noted otherwise) All, N = 83 AC, n = 44 TMS, n = 39 P value

Age at transplant, median (range), y 50.3 (34.8-60.9) 51.3 (22.2-69.9) 49.5 (20.9-71.1) .87

Sex .68

Male 53 (64) 29 (66) 24 (62)

Female 30 (36) 15 (34) 15 (38)

Ethnicity .95

Asian 3 (4) 1 (2) 2 (5)

Black 7 (8) 4 (9) 3 (8)

Hispanic 4 (5) 2 (5) 2 (5)

White 68 (82) 36 (82) 32 (82)

Other 1 (1) 1 (2) 0

Disease .74

ALL 4 (5) 2 (5) 2 (5)

AML 5 (6) 2 (5) 3 (8)

MDS 5 (6) 3 (7) 2 (5)

CLL 18 (22) 9 (20) 9 (23)

CML 3 (4) 0 3 (8)

Hodgkin lymphoma 8 (10) 5 (11) 3 (8)

Non-Hodgkin lymphoma 29 (35) 16 (36) 13 (33)

Other 11 (13) 7 (16) 4 (10)

Number of prior treatment regimens .016

0-2 39 (47) 15 (34) 24 (62)

3-5 32 (39) 19 (43) 13 (33)

≥6 12 (14) 10 (23) 2 (5)

Prior transplants .19*

Yes

Autologous 15 (18) 9 (20) 6 (15)

Allogeneic 1 (1) 1 (2) 0

Syngeneic 1 (1) 1 (2) 0

Autologous and allogeneic 1 (1) 1 (2) 0

No 65 (79) 32 33

Disease status at time of transplant .69†

No disease 29 (35) 16 (33) 13 (33)

Active 38 (45) 21 (48) 17 (44)

MRD 13 (16) 5 (11) 8 (21)

Not evaluable 3 (4) 2 (5) 1 (2)

Disease chemotherapy sensitivity .51‡

Chemotherapy-sensitive 49 (59) 27 (61) 22 (56)

Chemotherapy-resistant 30 (36) 14 (32) 16 (41)

Not evaluable 4 (5) 3 (7) 1 (2)

HLA match 1.00

7/8 17 (20) 9 (20) 8 (21)

8/8 66 (80) 35 (80) 31 (79)

Continuous parameters were compared between arms using a t test, and categorical parameters were compared using a χ2 test.
Boldface is if the p-value is significant.
ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; CML, chronic myelogenous leukemia; EPOCH-F, Etoposide, Prednisone, Vincristine,

Cyclophosphamide, Doxorubicin, Fludarabine; FLAG, Fludarabine, Cytarabine, Filgrastim; HCT-CI, hematopoietic cell transplant comorbidity index; MDS, myelodysplastic syndrome.
*Comparison of prior transplant vs no prior transplant by arm.
†Comparison includes “not evaluable”; P = .54, if “not evaluable” excluded.
‡Comparison includes “not evaluable”; P = .47, if “not evaluable” excluded.
§Comparison of no induction chemotherapy vs EPOCH-F(R) vs FLAG.
‖Global P value; P = .93 for match vs mismatch.
¶Global P value; P = .18 for match vs mismatch; P = .25 for female donor, male recipient vs other.
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Table 1 (continued)

Characteristic (n, % unless noted otherwise) All, N = 83 AC, n = 44 TMS, n = 39 P value

Cycles of induction chemotherapy .52§

None 32 (39) 17 (39) 15 (39)

EPOCH-F(R) 37 (45) 21 (48) 16 (41)

Cycles (median, range) 2 (1-3) 2 (1-3) 1.5 (1-3)

FLAG 13 (16) 5 (11) 8 (21)

Cycles (median, range) 1 (1-3) 1 (1-2) 1.5 (1-3)

Pentostatin/cytoxan 1 (1) 1 (2) 0

Baseline CD4 count* (median, range), ×109/L 86 (6-520) 86 (10-388) 82 (6-520) .75

Infusion cell dose, median (range)

CD34+, ×106 cells per kg 7.15 (2.03-11.1) 7.46 (4.09-10) 6.4 (2.03-11.1) .034

CD3+, ×108 cells per kg 2.40 (0.80-8.10) 2.29 (1.07-5.32) 2.44 (0.80-8.10) .75

CMV serology .54‖
Both seropositive 35 (42) 19 (43) 16 (41)

Both seronegative 25 (30) 13 (30) 12 (31)

Seronegative donor, seropositive recipient 12 (14) 8 (18) 4 (10)

Seropositive donor, seronegative recipient 11 (13) 4 (9) 7 (18)

Donor and recipient sex .35¶

Same sex 49 (59) 29 (66) 20 (51)

Female donor, male recipient 13 (16) 5 (11) 8 (21)

Male donor, female recipient 21 (25) 10 (23) 11 (28)

ABO mismatch .93

None 47 (57) 26 (59) 21 (54)

Major 12 (14) 6 (14) 6 (15)

Minor 17 (20) 9 (20) 8 (21)

Bidirectional 7 (8) 3 (7) 4 (10)

HCT-CI score50 .86

Median (range) 3 (0-7) 3 (0-6) 2 (0-7)

0 18 (22) 11 (25) 7 (18)

1 7 (8) 3 (7) 4 (10)

2 16 (19) 7 (16) 9 (23)

3+ 42 (51) 23 (52) 19 (49)

Karnofsky performance status .71

60-80 16 (19) 11 (25) 5 (13)

90 54 (65) 25 (57) 29 (74)

100 13 (16) 8 (18) 5 (13)

Kahl relapse risk51 .37

Low 27 (32) 13 (30) 14 (36)

Intermediate/standard 23 (28) 11 (25) 12 (31)

High 33 (40) 20 (45) 13 (33)

Continuous parameters were compared between arms using a t test, and categorical parameters were compared using a χ2 test.
Boldface is if the p-value is significant.
ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; CML, chronic myelogenous leukemia; EPOCH-F, Etoposide, Prednisone, Vincristine,

Cyclophosphamide, Doxorubicin, Fludarabine; FLAG, Fludarabine, Cytarabine, Filgrastim; HCT-CI, hematopoietic cell transplant comorbidity index; MDS, myelodysplastic syndrome.
*Comparison of prior transplant vs no prior transplant by arm.
†Comparison includes “not evaluable”; P = .54, if “not evaluable” excluded.
‡Comparison includes “not evaluable”; P = .47, if “not evaluable” excluded.
§Comparison of no induction chemotherapy vs EPOCH-F(R) vs FLAG.
‖Global P value; P = .93 for match vs mismatch.
¶Global P value; P = .18 for match vs mismatch; P = .25 for female donor, male recipient vs other.
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(>95%) was achieved early on days +14 and +28 after transplant
and were similar in both arms (supplemental Figure 2).

aGVHD and cGVHD

The cumulative incidence of aGVHD was similar between both
arms for both grade 2 to 4 (32% in AC vs 31% in TMS; P = .75;
Figure 2A) and grade 3 to 4 aGVHD (18% in AC vs 10% in TMS;
P = .52; Figure 2B) at 100 and 180 days after transplant (Table 2).
Organ-specific staging of aGVHD (supplemental Table 1) revealed
that stage 3 to 4 aGVHD most commonly involved the gastroin-
testinal tract (AC, n = 7; TMS, n = 5), followed by liver (AC, n = 4;
TMS, n = 2). Stage 3 skin involvement was seen in 2 patients on
each arm, with no cases of stage 4 skin aGVHD.

The cumulative incidence of severe cGVHD was significantly lower
with AC than with TMS at 1, 2, and 5 years (overall P = .0002): 0%
vs 10% (95% confidence interval [CI], 3.2-22.3), 4.5% (95% CI,
0.8-13.9) vs 25.6% (95% CI, 13.1-40.3) and 4.5% (95% CI,
0.8-13.9) vs 28.5% (95% CI, 23.0-53.7), respectively (Figure 2E;
Table 2). Additionally, significantly lower cumulative incidences of any
grade cGVHD (P = .003; Figure 2C) and moderate-severe cGVHD
(P < .0001; Figure 2D) was seen with AC than with TMS prophylaxis.

Among those who developed cGVHD, the median time to initial
onset of cGVHD was similar; 316 days (182-1031) in AC vs
301 days (72-870) in TMS arms. The maximum National Institutes
of Health cGVHD global severity was mild, moderate, and severe in
5 (11%), 4 (9%), and 3 patients (7%) in the AC arm and in 1 (3%),
9 (23%), and 14 patients (36%) in TMS arm, respectively. Most
patients had cGVHD of the skin (AC, n = 9 [22%] vs TMS, n = 21
[54%]), followed by oral (AC, n = 3 [7%] vs TMS, n = 17 [44%])
and ocular involvement (AC, n = 3 [7%] vs n = 14 [36%];
supplemental Table 2). By multivariable Cox regression, the only
prognostic factor for development of severe cGVHD was treatment
with TMS (hazard ratio [HR], 7.4; 95% CI, 1.7-32.5; P = .008;
supplementary Tables 4-5). Late onset of cGVHD beyond 2 years
after HSCT occurred in 3 patients at a median of 2.4 years (range,
2.3-2.9), with only 1 having a clear trigger with receipt of donor
lymphocyte infusions for relapse.

For patients who developed any GVHD, the cumulative incidence
of immunosuppression discontinuation at 3 years, competing with
death or progression, was similar between both arms (AC, 22.7%
vs TMS, 17.9%; overall P = .55; Figure 2F). At the time of analysis,
7 patients in each arm were permanently off systemic
immunosuppression.

Toxicity and transplant-related mortality

The most common grade 3 to 4 adverse events within 100 days
after transplant were infections, seen in 80% vs 54% of patients in
AC vs TMS arms (P = .019; supplemental Table 3). More grade 3
to 4 bacterial infections were seen with AC (P = .004), with
bacteremia and catheter-related infections being the most com-
mon. In terms of viral infections, a higher incidence of cytomega-
lovirus (CMV) reactivation was seen in the AC arm by day +100:
55% (95% CI, 39-68) vs 21% (95% CI, 10-34) (overall P = .030;
supplemental Figure 3). One grade 3 infusion reaction related to
alemtuzumab occurred.

Treatment-related mortality at day 100 was 6.8% (95% CI, 1.7-
16.9) with AC vs 10.3% (95% CI, 3.2-22.2) with TMS prophylaxis
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(P = .33). Treatment-related mortality in patients aged ≥60 years
was 0% with AC vs 33.3% (95% CI, 9.3%-60.1%) with TMS (P =
.26). Factors associated with increased treatment-related mortality
included higher age at transplant (≥60 years vs <60 years; HR,
2.81; 95% CI, 1.30-6.11; P = .009), positive recipient CMV status
(HR, 3.16; 95% CI, 1.44-6.93; P = .004), and hematopoietic cell
transplant comorbidity index (HCT-CI) score of ≥2 (HR, 7.73;
95% CI, 2.29-26.08; P = .001; supplementary Tables 6-7). Non-
relapse mortality (NRM) at 2 and 5 years was similar in both arms
(P = .33; Figure 3E; Table 2). Causes of late NRM included
pneumonia/respiratory failure (n = 4), metastatic secondary cancer
(n = 2), TMA/respiratory failure due to cGVHD (n = 1), gastroin-
testinal obstruction complication (n = 1), and coronary artery dis-
ease/myocardial infarction (n = 1). Patients who experienced late
NRM had lower absolute CD3 T cells at 1 year (567 vs 1057 cells
per μL; P = .004) than nonlate NRM patients; as well as lower total
CD4– (194 vs 372 cells per μL; P = .02) and CD8– (269 vs 624
cells per μL; P = .01) T-cell subsets.

Subsequent cancers after transplant developed in 13 patients (AC,
n = 7; TMS, n = 6; P = .50) at a median of 4.5 months (range, 1-69)
after HSCT. These included cases of posttransplant lymphoproli-
ferative disorder, nonmelanoma skin cancers, melanoma, thyroid
cancer, lung cancer, and a donor-derived myeloid neoplasm.

Survival and relapse outcomes

With a median follow-up of 9.8 years (range, 5.2-12.6), no statis-
tically significant differences were found in 5-year OS (36% vs
46%; P = .30) or GRFS (14 vs 8%; P = .71) between both
treatment arms (Figure 3A,C; Table 2). There was a trend toward
higher moderate-severe cGVHD-free survival (CFS) in the AC arm
(27% [15-49] vs 8% [1-19]; P = .06; Figure 3D). By Cox model,
adjusting for treatment arm (HR, 0.77; 95% CI, 0.45-1.33; P =
.35), age ≥60 years (HR, 2.27; 95% CI, 1.26-4.07; P = .0062),
HCT-CI score 2 to 4 vs 0 to 1 (HR, 2.71; 95% CI, 1.38-5.34; P =
.0038), and positive recipient CMV status (HR, 2.06; 95% CI,
1.17-3.63; P = .013) were all jointly associated with poorer OS
(supplemental Tables 8-9). A higher HCT-CI score (2-4) was also
associated with poorer GRFS (HR, 2.08; 95% CI, 1.25-3.47; P =
.005) and moderate-severe CFS (HR, 1.90; 95% CI, 1.11-3.26;
P = .02) after adjusting for treatment arm and CD34 cells per kg
(supplemental Tables 10-13). Recipient female sex was found to
be associated with improved moderate-severe CFS (HR, 0.48;
95% CI, 0.28-0.81; P = .006; supplemental Table 13).

Cumulative incidence of relapse competing with death at both 2
and 5 years was twofold higher in the AC arm vs TMS arm (48%
[32-62] vs 21% [10-35] and 52% [36-66] vs 21% [10-35],
respectively; P = .0027; Figure 3F). Sixteen patients (19.3%)
received donor lymphocyte infusions (median, 1 infusion [range, 1-
5]) for relapsed disease, of which 13 (81%) were on AC arm and 3
(19%) were on TMS arm. By multivariable analysis, factors asso-
ciated with higher incidence of relapse included AC treatment arm
(HR, 2.60 [1.22-6.10]; P = .022), ≥3 prior treatment regimens (HR,
2.70 [1.19-6.13]; P = .018), CD34 >8.1 (HR, 2.90 [1.39-6.07];
P = .0046), and intermediate-high Kahl Relapse risk score (HR,
2.32 [1.13-4.79]; P = .023; supplemental Tables 14-15). Late
relapse (>2 years after HCT) occurred in 4% (n = 3) in AC arm at a
median of 3.9 years (range, 2.1-9.2) after HCT; no relapses were
seen beyond 1 year on the TMS arm. Higher relapse-related
AC VS TMS FOR cGVHD PREVENTION AFTER HSCT 4299
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Table 2. Clinical outcomes posttransplant, per arm

Outcome

AC estimate

(95% CI)

TMS estimate

(95% CI)

P
value

Grade 3-4 aGVHD*

100 d 0.32 (0.19-0.46) 0.31 (0.17-0.46) .75

180 d 0.39 (0.24-0.53) 0.41 (0.25-0.56)

Grade 3-4 aGVHD*

100 d 0.18 (0.08-0.31) 0.10 (0.03-0.22) .52

180 d 0.23 (0.12-0.36) 0.16 (0.06-0.29)

cGVHD of any grade*

2 y 0.25 (0.13-0.39) 0.54 (0.37-0.68) .0029

5 y 0.25 (0.13-0.39) 0.59 (0.41-0.79)

Moderate-to-severe

cGVHD*

2 y 0.11 (0.04-0.23) 0.51 (0.34-0.66) <.0001

5 y 0.11 (0.04-0.23) 0.54 (0.37-0.68)

Severe cGVHD*

2 y 0.05 (0.008-0.14) 0.26 (0.13-0.40) .0002

5 y 0.05 (0.008-0.14) 0.29 (0.23-0.54)

Moderate-to-severe CFS

2 y 0.39 (0.25-0.54) 0.18 (0.08-0.31) .06

5 y 0.27 (0.15-0.49) 0.08 (0.02-0.19)

GRFS

2 y 0.18 (0.09-0.31) 0.18 (0.08-0.31) .71

5 y 0.14 (0.06-0.25) 0.08 (0.02-0.19)

OS

2 y 0.48 (0.33-0.62) 0.72 (0.55-0.83) .30

5 y 0.36 (0.23-0.50) 0.46 (0.30-0.61)

Progression-free survival

2 y 0.25 (0.14-0.38) 0.59 (0.42-0.73) .014

5 y 0.18 (0.09-0.31) 0.41 (0.26-0.56)

Nonrelapse mortality†

2 y 0.27 (0.15-0.41) 0.21 (0.10-0.35) .33

5 y 0.30 (0.17-0.44) 0.39 (0.23-0.54)

Relapse‡

2 y 0.48 (0.32-0.62) 0.21 (0.10-0.35) .0027

5 y 0.52 (0.36-0.66) 0.21 (0.10-0.35)

Time to event analyses estimating cumulative incidence with competing risks.
Boldface is if the p-value is significant.
*Cumulative incidence of clinical outcome competing with death, relapse, graft failure,

cGVHD without prior aGVHD (for aGVHD only).
†Cumulative incidence competing with relapse.
‡Cumulative incidence competing with death and graft failure.
mortality was associated with older donor age (≥35 years vs 18-34
years [HR, 2.54 (1.04-6.20); P = .041]), after adjusting for treat-
ment arm and number of prior treatments (supplemental Tables 16-
17). Median progression-free survival was longer in TMS arm vs AC
(41.1 months [6 to NE (not evaluable)] vs 10.9 months [3.3-17.9];
P = .014; Figure 3B).

Effect of baseline ALC on outcomes in AC arm

Among patients randomized to AC (n = 44), median absolute
lymphocyte count (ALC) (day 8 before HSCT, first day of
27 AUGUST 2024 • VOLUME 8, NUMBER 16
alemtuzumab infusion) and pretransplant CD4+ count was 2.85 ×
109/L (0 × 109/L to 37.1× 109/L) and 0.09 × 109/L (0.01× 109/L
to 0.9× 109/L), respectively. The high ALC (HiALC; n = 30; ALC
≥2 × 109/L) and low ALC (LoALC; n = 14; ALC <2 × 109/L)
groups were similar in all examined baseline variables. After a
median follow-up of 1.4 years (range, 0.1-11.5), estimated median
OS was 1.4 years (95% CI, 0.7-7.3). Patients in the HiALC group
had improved OS compared with LoALC group (3.2 years [1.6 to
NE] vs 0.7 years [0.5 to NE]; P = .001) with 1-, 2-, and 5-year OS
of 70% vs 29%, 63% vs 14%, and 47% vs 14%, respectively
(supplemental Figure 7A). Median GRFS was 0.5 years (range,
0.2-1.5) and 0.3 (range, 0.1-3.9) for HiALC and LoALC group (P =
.08), respectively (supplemental Figure 7B).

Immune reconstitution

Absolute lymphocyte count recovery to 500 per μL was signifi-
cantly delayed in the AC arm (median, 76 vs 16 days; P < .0001).
natural killer cell numbers were significantly reduced in AC vs TMS
during the first month (P < .0001) but comparable by 100 days
(Figure 4A). B-cell reconstitution was delayed in both arms but
comparable after day +180. Delays in T-cell repopulation in the AC
arm were profound at 6 months, with 24 months required for
repopulation of CD4+ and CD8+ T cells to levels comparable with
TMS (Figure 4A). Global T-cell receptor (TCR) repertoires after
transplant had significantly less diversity than those of their donors,
consistent with early peripheral expansion of a limited TCR reper-
toire. Furthermore, the early repertoire diversity of most AC patients
was more skewed and oligoclonal than in most TMS patients.

Analyses of T subset reconstitution revealed that the percentages
of Treg cells within the CD4 population did not differ between the
arms at any time point (Figure 4D; supplemental Figure 6).
Because of the marked early disparity in CD4+ T-cell numbers per
μL, however, the number of Treg per microliter in AC was signifi-
cantly lower than that of TMS patients at 6 (P < .0001) and
12 months (P = .003) and became equivalent by 24 months
(Figure 4D; supplemental Figure 5B).

Both the percentages and the total number per microliter of recent
thymic emigrant and naïve Treg and non-Treg CD4+ and naïve
CD8+ T cells were significantly lower in AC than in TMS (all P <
.0001) at 6 months. (Figure 4E; supplemental Figure 5C,6). By
24 months, however, AC naïve populations became comparable
with TMS through renewed thymopoiesis, as indicated by 10- to
100-fold increases in median recent thymic emigrant and naïve T
cells per microliter. In the TMS population, in contrast, no signifi-
cant increase in naïve T cells occurred from 6 to 24 months.

Although the AC arm protocol resulted in severe quantitative
reductions in both Treg and Tnaïve populations, the ratio of Treg
cells per microliter to non-Treg CD4naïve cells per microliter or of
Treg per microliter to CD8naïve per microliter was significantly
higher in AC than in TMS (P = .0001; each for CD4 and CD8 naïve
cells; Figure 4F). Median ratios of Treg to naïve T cells were almost
10-fold higher in AC than in the TMS arms. Onset of most cGVHD
in both arms occurred between 6 and 12 months, that is, in the
months after the greatest disparity in the ratios of Treg and Tnaïve
cells.

At 6 months, the naïve CD8 population in AC patients were mainly
memory stem T cells (Tscms; CD45RA+CCR7dimCD95+;
Figure 4C), but the overall numbers of CD8 naïve and hence CD8
AC VS TMS FOR cGVHD PREVENTION AFTER HSCT 4301
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Tscms per microliter were very low (Figure 4H). In the TMS arm, in
contrast, the Tscm cells were not only present as a visible
component within the total naïve CD8 cell populations (Figure 4G)
but also persisted at increasing frequency and higher numbers
during the main period of cGVHD onset (Figure 4G-H). Finally,
4302 HOLTZMAN et al
when the individual AC and TMS patients at 6 months were plotted
comparing the ratio of Treg to CD8+ naïve cells vs the number of
CD8+ Tscm, the 2 T-cell population parameters were strongly
correlated (ρ = –0.72; P < .0001), but the 2 patient protocol arms
were sharply distinct (Figure 4I).
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Cytokines

Upon evaluation of post-HSCT cytokine levels, patients in the AC
arm had higher levels of tumor necrosis factor α (TNF-α) and
interleukin-6 (IL-6) at 3 and 6 months after transplant, with no dif-
ferences between arms at any time point in levels of ST2, CXCL9,
CXCL10, or BAFF (Figure 5A). Patients who developed aGVHD
within 180 days after transplant, excluding patients with prior
relapse/progression, had significantly higher levels of ST2 at 6 and
9 months (with a trend at 3 months P = .07; Figure 5B). A trend
toward higher CXCL10 at 9 months was associated with moderate-
to-severe cGVHD (Figure 5C). No other difference was found in
levels of cytokines, including BAFF and CXCL9, for patients who
developed moderate-to-severe CGVHD (supplemental Figure 8).
Higher levels of IL-6 and TNF-α at 6 months were strongly associ-
ated with worse OS (Figure 5D) after adjusting for other important
factors including treatment arm, age ≥60 years, recipient CMV
status, and HCT-CI ≥2 (supplemental Table 18).

Discussion

cGVHD remains a major barrier to successful allo-HSCT despite
progress in preventive and treatment strategies over the last 2
decades.1,3 This randomized study using a RIC transplant platform
demonstrates high and clinically significant potency of a lympho-
depleting high-dose alemtuzumab-based regimen in prevention of
severe cGVHD. The described post-HCT immune reconstitution
with alemtuzumab-based lymphodepletion could potentially inform
design of improved future GVHD prophylaxis platforms. Differences
in T-cell repopulation after transplant may have been key factors in
the greater incidence, severity, and persistence of cGVHD
observed in the TMS than the AC arm. The profound depletion of T
cells, particularly naïve cells, in the AC arm limited the numbers of
immunocompetent T cells and early TCR repertoire diversity.
Depletion of naïve T cells also resulted in fivefold to 10-fold higher
median ratios of both Treg to naïve non-Treg CD4 cells per
microliter and of Treg to naïve CD8 cells per microliter in AC than
in TMS at 6 months. The high Treg:Tn ratio in AC may preclude
escape of allo-reactive T cells from Treg control,53 while permitting
Figure 4. Immune Reconstitution. (A) Lymphocyte repopulation. Time course of lympho

24 months. Medians are indicated as circles, 25th and 75th quartiles are shown as error bar

statistical disparity between arms at each T-cell time point, refer to supplemental Figure 5

skewing (oligoclonality) indices (RSI) determined for individual AC (blue circles) and TMS

statistics) and with the RSI of their own allogeneic transplant donors (green triangles) (bot

more repertoire skewing (more oligoclonality) than those in most patients in the TMS arm or

CD8 T cells. (C) Flow cytometry gating profiles of T lymphocytes at 6 months in the AC an

(conventional) CD4 T cells, based on Treg characterization as CD127–CD25++ CD4 cells

(CD45RA+CCR7+; thick outline), central memory (CD45RA–CCR7+), effector memory (CD

the percentage of Treg cells within the CD4 population (left graph) and the total number of T

24 months after transplant. (E) Box and whisker plots of the numbers of naïve CD4 T cells pe

(F) Box and whisker plots of the ratios of the numbers of Treg to the number of naïve CD4 (l

(G) Flow cytometry gating profiles of CD8 Tscm populations. TMS patient flow cytometry

12 months (left column), showing gating on the CD8naïve (arrows) to identify CCR7dimC

moderate cGVHD at 9 months. (H) Box and whiskers plot comparing the number of CD8

Scatterplot of individual AC (blue circle) and TMS (red circle) patients as assessed for the

whisker plots, the number of patients assayed at each time point in each arm is shown in sup

orange box; boxes define the median, 25th and 75th quartiles; and whiskers show minimu

performed to compare AC and TMS lymphocyte numbers, RSI, and lymphocyte subpopula

cell, natural killer cell.
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it in TMS. Finally, a large CD8+ Tscm population emerged in TMS
by 6 months, at the end of immunosuppression, but before most
cGVHD onset. These Tscms expanded and persisted in many
patients with cGVHD, consistent with growing evidence that
Tscms play a role in cGVHD.54,55 Thus, disparities in repopulation
of naïve, regulatory, and Tscm T cells may have mediated the dif-
ferential cGVHD outcome in this trial.

Although no differences were seen in aGVHD between arms, the
incidence of any grade, moderate-severe, and severe cGVHD were
significantly lower with lymphodepletion by alemtuzumab. Despite
the significant prevention of cGVHD seen with AC, the benefit was
offset by increased relapse, as demonstrated by the longer
progression-free survival in the TMS cohort, as well as increased
infection. However, these did not translate into any difference in
OS, GRFS, or NRM between both arms. In terms of infections, this
study was conducted in the era before the regular use of letermovir
prophylactic therapy against CMV,56 and whether the same pattern
of CMV reactivation would be replicated in the current era would
be of interest. In terms of relapse rate, it is noteworthy that the
study population was defined by high-risk characteristics (with
51% having HCT-CI ≥3, 19% karnofsky performance status (KPS)
60%-80%, and 40% Kahl high risk) and diverse underlying
hematologic malignancies. If viral reactivation and relapsed disease
risk can be mitigated, then AC would offer a clear advantage in
terms of cGVHD protection. In transplant settings in which relapse
is not of concern, such as nonmalignant conditions, alemtuzumab
is increasingly being used for this reason.57 The rate of permanent
immunosuppressive therapy (IST) discontinuation at 3 years (with
relapse and death as competing risks) was 22.7% and 17.9% for
AC and TMS arms, respectively, which is comparable with that
reported from similar lymphodepletion (LD)-focused trials of 3-year
IST-free survival of 17%.8 Transplant success should be weighed
heavily upon maximizing this IST-free survival end point.

Patients with aGVHD grade 3 to 4 had higher median levels of
ST2, whereas those with moderate-to-severe cGVHD had higher
median levels of CXCL10. Although elevated ST2 has been pre-
viously associated with aGVHD and NRM,58 cytokine analyses
cyte subsets in AC (blue) and TMS (red) treatment arm patients at 0.5, 1, 3, 6, 12, and

s. Circles placed below the x-axis indicate a median of 0 cells. For patient numbers and

A. (B) Time course of changes in posttransplant TCR repertoire skewing. Repertoire

(red circles) patients at 1, 3, 6, and 12 months were compared between arms (top

tom statistics). Both CD4 (left graph) and CD8 cells (right graph) in the AC arm had

in their donor’s original T cells at 1, 3, and 6 months in CD4 and at 3 and 6 months in

d TMS arms. CD4 cells were gated to distinguish Treg (thick outline) from non-Treg

. The non-Treg and Treg CD4 and the CD8 cells were then gated to assess naïve

45RA–CCR7–) and TEMRA (CD45RA+CCR7–) subsets. (D) Box and whisker plots of

reg per μL (right graph) in AC (blue box) and TMS (orange box) patients at 6, 12, and

r μL (left graph) and of naïve CD8 T cells per μL (right graph) at 6, 12, and 24 months.

eft graph) or to the number of naïve CD8 T cells (right graph) at 6, 12, and 24 months.

panels identifying naïve (CD45RA+ CCR7+) CD8 cells (thick line box) at 6, 9, and

D95+ Tscm at 3 sequential time points (right column). The patient shown developed

Tscm per μL in AC (blue box) and TMS (orange box) at 6, 12, and 24 months. (I)

ratio of Treg per μL to CD8naïve per μL vs the number of Tscm per μL. In all box and

plemental Figure 5C. In all graphs, AC arm patients are shown in blue box and TMS in

m and maximum values. Mann-Whitney unpaired nonparametric statistics were

tions and ratios; shown as stars: ****P < .0001; ***P < .001; **P < .01; * P < .05. NK
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revealed that only patients from the AC arm who developed
aGVHD grade 3 to 4 and moderate-to-severe cGVHD showed a
statistical association with higher ST2 levels at 6 and 9 months,
respectively.

Despite prior described associations of cGVHD diagnosis or
severity with cytokines such as BAFF and CXCL9,59 we did not
find any predictive value or difference among these cytokine levels
in this prospective longitudinal study in patients who did or did not
develop cGVHD, which speaks to the continued challenge of
identifying reliable predictive biomarkers for cGVHD. Finally, when
adjusted for other variables associated with OS (recipient CMV
status, HCT-CI≥2, and age ≥60 years), higher levels of IL-6 and
TNF-α at 6 months for the whole cohort were associated with
worse OS; a finding that warrants further larger scale validation.
Although these correlative cytokine results may not be extrapolat-
able to other lymphodepletive strategies such as PT-Cy, they may
serve as a source of hypothesis generation for future studies of
biomarker development.

This study’s strength as a single-center trial was that it allowed for a
cohesive methodology in a well-controlled setting. Furthermore,
although cGVHD incidence was our primary end point, we report
an extended duration of follow-up, which allows for a definitive
assessment of the impact of cGVHD on other late effects on
critical clinical outcomes This provides valuable insight on the long-
term sequelae related to cGVHD that are crucial to the definitive
success of transplant for survivors, including surveillance and
prevention of late NRM, late relapse, and subsequent malignancies.
Thirteen patients developed subsequent malignancies, including 4
cases of post-transplant lymphoproliferative disorder (3 in AC arm
and 1 in TMS), which has a well-known association with lympho-
depletion.37 Notably, 2 of these second cancer cases developed
into metastatic disease and were an important cause of late NRM,
which emphasizes the need for close monitoring of our HSCT
survivors for subsequent malignancies. Most cases of late NRM,
defined as NRM beyond 2 years after HSCT, occurred in patients
in the TMS arm (n = 9 vs n = 2 in AC arm), and most were due to
pneumonia or respiratory failure.

Limitations of this study include that ~20% of patients received
grafts from 7/8 mismatched unrelated donor (mMUD), which can
increase risk of GVHD; however, this factor was balanced among
arms. Additionally, the distribution of hematologic malignancy
indication for transplant in this study included more patients with
lymphoma than would be expected to in our contemporary trans-
plant landscape, which is predominantly myeloid malignancies and
thus may influence treatment outcomes, because lymphoid dis-
eases are more salvageable to donor lymphocyte infusion and
adoptive cell therapies. However, this study was conducted in the
pre-CAR-T era. Notably, we did not systematically collect data on
pre-HSCT measurable residual disease yet acknowledge that this
should be included in future studies because it can significantly
affect relapse risk in the RIC setting.60,61
Figure 5. Cytokine analysis. (A) Trends in cytokine levels compared between arms AC (

differences between ST2 levels after HSCT among patients who did (orange circles) or did n

circles) develop moderate-to-severe cGVHD. (C) Trend and differences between CXCL10

develop grade 2 to 4 aGVHD; and did (purple circles) or did not (gray circles) develop m

associated with worse OS. TNF-α median, 2.7 pg/mL; IL-6 quartiles: Q1 <0.84 pg/mL; Q2 0

value > 0.05.
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Another limitation is that alemtuzumab pharmacokinetic/pharma-
codynamic (PK/PD) studies were not incorporated into this study.
Compared with proximal dosing, administering alemtuzumab more
distally during transplant conditioning has also been shown to lead
to less mixed chimerism and higher event-free survival in transplant
studies for nonmalignant indications.38 However, because our pri-
mary study goal was cGVHD prevention, we elected a more
proximal approach to maximize the effect on T cells in the graft
rather than in the recipient. Our report provides novel and important
immunological takeaways of the effect lymphodepletion as a
method of cGVHD prevention, with the consideration that some of
the toxicity seen (higher infections and relapse) may be attributed
to the high exposure of alemtuzumab, which could be further
optimized with dosing adjustments either based on weight or other
variables such as ALC. This conclusion is also strengthened by our
ALC subgroup analysis regarding lower ALC (<2.0 × 109/L) at the
time of alemtuzumab infusion associated with inferior survival in the
AC arm than those with higher baseline ALC (≥2.0 × 109/L). This
finding is consistent with other reports10,62,63 of ALC at the time of
conditioning administration influencing transplant outcomes and
warrants further study of ALC-based dosing for alemtuzumab.

In terms of optimal in vivo lymphodepletion strategy, much enthu-
siasm has accompanied the tremendous success of PT-Cy, which
has allowed for safe haplo HSCTs with improved rates of GVHD
and survival and has become standard of care in this haplo
setting.13,38,64 Studies have expanded its use to HLA-matched
related donor (MRD) or matched/mismatched unrelated donors.
PT-Cy compared with ATG in a study using MUDs led to similar
rates of aGVHD, extensive cGVHD, 2-year OS, and relapse among
both cohorts65; whereas a study using MRD66 showed lower rates
of cGVHD among the ATG group and no difference in other out-
comes. No studies have been reported comparing PT-Cy with
alemtuzumab to date. Three recently reported randomized
studies41,67-69 evaluated PT-Cy compared with other standard
prophylaxis after RIC allo-HSCT using a MUD/MRD, in which PT-
Cy led to decreased rates of cGVHD, improved GRFS, but no
difference in OS. PT-Cy has therefore moved to the forefront of
current practice in cGVHD prevention for RIC allo-HCT, although
more data will be needed to better understand the long-term
effects on organ toxicity, relapse, secondary malignancies, and,
ultimately, OS.

In summary, an alemtuzumab-based platform after RIC transplant
using MUD PBSCs robustly reduced the rate and severity of
cGVHD compared with standard pharmacologic prophylaxis. A
distinct immunomodulatory profile after AC may have caused
reduced cGVHD incidence and severity, however, increased
infections and relapsed malignancy resulted in a lack of survival
benefit. Improved strategies to mitigate the associated risks of
relapse and infectious toxicities in RIC allo-HSCT setting are
needed. Future studies should focus on developing better cGVHD
risk-stratification systems to identify those patients who may most
blue circles) vs TMS (red circles) at 3, 6, 9, and 12 months after HSCT. (B) Trend and

ot (gray circles) develop grade 2 to 4 aGVHD; and did (purple circles) or did not (gray

levels after HSCT among patients who did (orange circles) or did not (gray circles)

oderate-to-severe cGVHD. (D) Higher levels of TNF-α and IL-6 at 6 months were

.84 to 1.3 pg/mL; Q3 >1.3 to 2.2 pg/mL; Q4 >2.2 pg/mL. # indicates P value <.05; q
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benefit from antibody lymphodepletion vs other prevention
approaches.
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