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Abstract

Pelizaeus-Merzbacher disease (PMD) is a rare childhood hypomyelinating leukodys-

trophy. Quantification of the pronounced myelin deficit and delineation of subtle

myelination processes are of high clinical interest. Quantitative magnetic resonance

imaging (qMRI) techniques can provide in vivo insights into myelination status, its

spatial distribution, and dynamics during brain maturation. They may serve as poten-

tial biomarkers to assess the efficacy of myelin-modulating therapies. However, regis-

tration techniques for image quantification and statistical comparison of affected

pediatric brains, especially those of low or deviant image tissue contrast, with healthy

controls are not yet established. This study aimed first to develop and compare post-

processing pipelines for atlas-based quantification of qMRI data in pediatric patients

with PMD and evaluate their registration accuracy. Second, to apply an optimized

pipeline to investigate spatial myelin deficiency using myelin water imaging (MWI)

data from patients with PMD and healthy controls. This retrospective single-center

study included five patients with PMD (mean age, 6 years ± 3.8) who underwent

conventional brain MRI and diffusion tensor imaging (DTI), with MWI data available

for a subset of patients. Three methods of registering PMD images to a pediatric

template were investigated. These were based on (a) T1-weighted (T1w) images,

(b) fractional anisotropy (FA) maps, and (c) a combination of T1w, T2-weighted, and

FA images in a multimodal approach. Registration accuracy was determined by visual

inspection and calculated using the structural similarity index method (SSIM). SSIM

values for the registration approaches were compared using a t test. Myelin water

fraction (MWF) was quantified from MWI data as an assessment of relative myelina-

tion. Mean MWF was obtained from two PMDs (mean age, 3.1 years ± 0.3) within

four major white matter (WM) pathways of a pediatric atlas and compared to seven

healthy controls (mean age, 3 years ± 0.2) using a Mann–Whitney U test. Our results

show that visual registration accuracy estimation and computed SSIM were highest

for FA-based registration, followed by multimodal, and T1w-based registration

(SSIMFA = 0.67 ± 0.04 vs. SSIMmultimodal = 0.60 ± 0.03 vs. SSIMT1 = 0.40 ± 0.14).

Mean MWF of patients with PMD within the WM pathways was significantly lower
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than in healthy controls MWFPMD = 0.0267 ± 0.021 vs. MWFcontrols = 0.1299

± 0.039. Specifically, MWF was measurable in brain structures known to be myelin-

ated at birth (brainstem) or postnatally (projection fibers) but was scarcely detectable

in other brain regions (commissural and association fibers). Taken together, our

results indicate that registration accuracy was highest with an FA-based registration

pipeline, providing an alternative to conventional T1w-based registration approaches

in the case of hypomyelinating leukodystrophies missing normative intrinsic tissue

contrasts. The applied atlas-based analysis of MWF data revealed that the extent of

spatial myelin deficiency in patients with PMD was most pronounced in commissural

and association and to a lesser degree in brainstem and projection pathways.
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hypomyelinating leukodystrophy, magnetic resonance imaging, medical image registration,
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1 | INTRODUCTION

Pelizaeus-Merzbacher disease (PMD) is a rare hypomyelinating white

matter (WM) disorder caused by a defect in the PLP1 gene that dis-

turbs the formation of myelin (Garbern, 2007). Depending on the type

of mutation, such as deletion, point mutation, duplication or triplica-

tion (Wolf et al., 2005), a wide range of myelin deficiency has been

described (Koeppen & Robitaille, 2002; Laukka et al., 2016). The mye-

lin deficit can cause a variety of neurological symptoms and very dis-

tinct developmental delays. In the classic course of the disease,

patients characteristically present with nystagmus and extreme mus-

cle hypertonia in infancy. Later on, they develop ataxia and leg spas-

ticity. The developmental delays affect motor skills and cognition,

particularly speech and communication difficulties (Golomb

et al., 2004; Moore et al., 2023).

Hypomyelinating leukodystrophies (HLD) have been character-

ized in general by conventional magnetic resonance imaging (MRI),

which allows qualitative estimation of the myelin deficiency. For

example, Schiffmann and Van der Knaap, reported that if very little to

no myelin is present within brain WM, the cerebral WM signal is

lower than that of gray matter (GM) structures on T1-weighted (T1w)

images (Schiffmann & Van Der Knaap, 2009). As myelination

increases, WM becomes iso- and then hyperintense to GM structures

on T1w images. However, advanced quantitative MRI techniques

(qMRI) might be more appropriate to determine brain myelination in

patients with HLD (Pouwels et al., 2014) to capture spatial myelin def-

icits for monitoring the natural course of the disease. QMRI may pro-

vide a better characterization of the PMD phenotypes and may serve

as a biomarker for myelin-specific therapeutic efficacy in the future

(Stellingwerff et al., 2023). Myelin water imaging (MWI), which allows

the determination of the myelin water fraction (MWF), is currently

considered to be highly specific for the quantification of myelin

in vivo (MacKay et al., 2006). Further technical developments (Deoni

et al., 2008) have enabled whole-brain coverage in clinically accept-

able scan times (Prasloski et al., 2012).

Considerable research has been conducted over the past decades

to develop qMRI sequences to provide in vivo insights into brain

microstructure and myelination. Little research has addressed MRI

analysis pipelines for developing and evaluating diseased pediatric

brains, particularly those with low or deviant image contrast compared

to healthy controls. For this purpose, a template of healthy control

participants with segmented brain structures (atlas), which serves as a

region of interest (ROI), is transferred to the qMRI data by registration

in the patient image space, allowing for quantitative image analysis

and statistical comparison.

However, the lack of reliable registration methods for aligning

pediatric brain imaging data with severely deviating WM/GM tissue

contrast to a healthy brain template is a major problem for atlas-based

analyses. Template registration requires images with similar image

contrast, which is typically performed on T1w images.

Groups developing MRI templates for children have suggested

that fractional anisotropy (FA) images can guide registration in

sparsely myelinated neonates with poor WM/GM T1w contrast

(Huang et al., 2006; Oishi et al., 2011). Further, FA contrast of main

WM tracts was found to be more stable than T1w WM contrast dur-

ing brain myelination (Zhang et al., 2007) and therefore may serve as

a better registration target image in hypomyelinated patients with

PMD. Presumably, the inclusion of multimodal images in the registra-

tion process may provide additional information to render the regis-

tration process more accurate.

This study aimed to develop an optimized postprocessing pipeline

for atlas-based image evaluation of qMRI data obtained from patients

with PMD. Three registration methods based on (a) T1w, (b) FA, or

(c) a multimodal approach combining T1w, T2-weighted (T2w), and FA

images were implemented. Furthermore, the registration accuracy

was estimated by visual inspection and structural similarity index

(SSIM) calculation. In addition, the optimal registration approach was

selected to analyze the MWF of patients with PMD in the main WM

tracts of a pediatric atlas and compared to age-matched controls to

estimate spatial myelin deficiency.
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2 | METHODS

2.1 | Patient cohort and healthy control dataset

Patients with PMD were recruited by a pediatric white matter disease

center between 2014 and 2020. A total of five male pediatric patients

with a genetically confirmed diagnosis of PMD were included in this

study. The institutional ethical review board approved all study proce-

dures. MRI visits were performed under sedation during an inpatient

stay as part of the clinical evaluation. In addition to structural imaging,

MWI data were available in two patients. Informed consent was

obtained from the parents prior to the study. An additional MWI con-

trol dataset of seven male participants was used with permission to

compare with the PMD subgroup (Deoni et al., 2012). Demographics

are presented in Table 1.

2.2 | MRI data acquisition

A 3-Tesla scanner (TrioTim, Siemens Healthineers, Erlangen,

Germany) equipped with an 8-channel radiofrequency head coil was

used to acquire MRI data. 3D T1w, 3D T2w, MWI, and DTI with

64 gradient directions with two sets of b0 images with reversing

phase encoding direction were acquired according to the study proto-

col (Table 2). The MWI technique (multi-component driven equilib-

rium single pulse observation of T1/T2 [mcDESPOT]) was used,

allowing the processing of high-resolution whole-brain MWF maps

(Deoni et al., 2008). Following the mcDESPOT protocol, spoiled gradi-

ent recalled echo (SPGR) and balanced steady-state free precession

(bSSFP) sequences were acquired over a range of flip angles at con-

stant TE and TR (Deoni et al., 2012). Further, inversion-prepared (IR)-

SPGR was acquired to correct for transmit (B1) magnetic field inho-

mogeneity, and bSSFP data was acquired with 0� and additionally with

180� phase increments to correct for main (B0) field variations. The

MRI data were acquired during a total scan time of approximately

37 min.

2.3 | DTI processing

DTI data were first corrected for eddy-current-induced distortion

using “topup” and “eddy” routines and then FA maps were derived

using “dtifit” routine from the FMRIB's Software Library (FSL). The

rigid transformation was used to align DTI images to the T1w image

(reference image) within the session using the least diffusion-

weighted images (b0 images) as moving images. The transformation

matrix was then applied to the FA maps.

2.4 | Processing of myelin water fraction maps

The MWF computation was based on the algorithms previously

described by Deoni and Kolind (Deoni & Kolind, 2015), but was imple-

mented in a Nipype workflow (Neuroimaging in Python: Pipelines and

Interfaces) (Gorgolewski et al., 2011) to manage and process the files

of the mcDESPOT dataset. This enabled the use of multithreading and

high-performance computers. SPGR, IR-SPGR, and bSSFP images

were co-registered with the high flip angle SPGR image (SPGRfa18).

To obtain quantitative T1 and B1 field maps, the SPGR and IR-SPGR

scans were used for DESPOT1-HIFI analysis (Deoni, 2007). T2 and B0

field maps were then calculated using DESPOT2 from the bSSFP data

TABLE 1 Demographics.

No. of participants

Age (years) mean

(min, max)

Healthy controls 7 3 (2.7, 3.1)

PMD-registration dataset 5 6 (2.8, 11.2)

PMD-MWI subset 2 3.1 (2.9, 3.3)

TABLE 2 MRI protocol.

3D
MPRAGE 3D TSE DTI SPGR bSSFP IR-SPGR

TR, ms 2250 2900 7500 5.4 4.9 5.4

TE, ms 3.26 428 82 2.5 9.8 2.5

Flip angle, degrees 9 120 90 [3, 4, 5, 6, 7, 9, 13,

18]

[9, 12, 15, 18, 21, 28, 40,

55]

5

Inversion time, ms 900 - - - 450

Resolution, mm 1 � 1 � 1 1 � 1 � 1 2 � 2 � 2 1.7 � 1.7 � 1.7 1.7 � 1.7 � 1.7 2.3 � 2.3 � 3.5

Gradient directions - - 64 at b = 1000s/

mm2

- - -

Phase cycling,

degrees

- - - - [0, 180] -

Scan time, (min:s) 07:17 05:07 08:06 05:21 2� 04:57 01:14

Abbreviations: 3D T1-weigthed MPRAGE, magnetization-prepared rapid gradient echo; 3D T2-weighted TSE, turbo spin echo; DTI, diffusion tensor

imaging; SPGR, spoiled gradient echo; bSSFP, balanced steady-state free precession; IR-SPGR, inversion-prepared spoiled gradient echo.
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and the quantitative T1 and B1 maps. Finally, the B0 and B1 maps, as

well as SPGR and bSSFP 0� and 180�, were used to estimate the

MWF using stochastic region contraction by fitting the SPGR and

bSSFP data to a three-pool relaxation model of WM (Deoni

et al., 2013). An affine image transformation was used to align the

SPGRfa18 image to the T1w image (reference image) within the

session, and the resulting transformation matrix was then applied to

the MWF map.

2.5 | Pediatric template

A pediatric template (https://cmrm.med.jhmi.edu/, JHU_Pedia-

tric_SS_18Month (JHU18m)) was chosen that provided aligned T1w,

T2w, and FA (multimodal) images obtained from a single participant at

18 months of age. The corresponding atlas segmentation consists of

159 ROIs for the left and right hemispheres. Anatomically and function-

ally relevant major WM tracts were selected from the atlas (n = 59

ROIs) and grouped into the brainstem, projection, association, and com-

missural fiber tracts for further analysis (Table 3). The atlas segmenta-

tion was slightly manipulated by expanding the ventricles by two

voxels. This was done because of the considerable enlargement of the

ventricles, which was present in the majority of the patients with PMD.

2.6 | Registration workflow

Nipype was also used to generate the postprocessing workflow. This

workflow consisted of two steps shown in the flowchart (Figure 1).

First, the T1w image was corrected for the bias field and all images

within the session of a PMD patient were co-registered to this image

TABLE 3 WM tract and corresponding JHU18m atlas ROI
selection.

WM tract ROI label name left and right of Jhu18m

Brainstem Thalamus, midbrain, pons, cerebellum, middle

cerebellar peduncle, medial lemniscus, medulla

Projection

fibers

Anterior corona radiata, superior corona radiata,

posterior corona radiata, posterior thalamic radiation

(include optic radiation), anterior limb of internal

capsule, posterior limb of internal capsule,

retrolenticular part of internal capsule, cerebral

peduncle (CST midbrain level), corticospinal tract

(CST pontine level)

Association

fibers

Superior longitudinal fasciculus, superior fronto-

occipital fasciculus, Inferior fronto-occipital

fasciculus, sagittal stratum, uncinate fasciculus, optic

tract, cingulum, cingulate gyrus

Commissural

fibers

Genu of corpus callosum, body of corpus callosum,

splenium of corpus callosum, anterior commissure

F IGURE 1 Schematic of the developed registration workflows; input images: mov: moving image; ref: reference image.
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using AntsRegistrationSyNQuick transform type: “a” (affine) (Avants

et al., 2011). Subsequently, the brain mask was extracted from the

T1w image using FSL 5.0 BET and applied to the co-registered images

by using FSL math (ApplyMask). In the second step, three methods for

registration to the template were implemented for PMD patients. In

(a) the registration was based on the T1w image of PMD to a T1w

template image, in (b) the FA image of PMD to an FA template image,

and in (c) the multimodal images (T1w, T2w, and FA) of the PMD

patient to the reference image(s) in the template. Thus, AntsRegistra-

tionSyNQuick and transform type “s” (rigid + affine + deformable syn)

were used. Final transformations were applied to transform the

co-registered images to the template to investigate registration accu-

racy, and the inverse transform was applied to the atlas segmentation

for atlas-based image quantification of qMRI data.

2.7 | Assessment of registration accuracy

An experienced neuroradiologist (HHK) visually inspected the registra-

tion accuracy of all patients with PMD using three scoring categories:

aligned, minor misaligned (mismatch ≤2 voxels), or major misaligned

(mismatch >2 voxels). The evaluation compared the alignment of the

registered images with the template images within five WM struc-

tures: corpus callosum truncus (body) and splenium, internal capsule,

thalamus, and mesencephalon. A total of 25 ROIs (5 PMD � 5 ROIs)

were scored to determine the registration accuracy.

Additionally, the registration accuracy was assessed using the

structural similarity indexing method (SSIM) implemented in Python's

skimage.metrics.structural_similarity (Wang et al., 2004). The SSIM map

was generated to measure the spatial registration accuracy between

the reference FA template image and the registered (transformed)

PMD FA image, by identifying structural similarities and discrepancies.

The SSIM algorithm assessed correlation loss, luminance distortion,

and contrast distortion between two images using a sliding window

approach. The obtained SSIM values ranged from �1 (dissimilar, for

example, misaligned) to 1 (similar, aligned), thereby facilitating the esti-

mation of spatial alignment and misalignment.

2.8 | Atlas-based image quantification of MWF in
patients with PMD and healthy controls

To investigate differences in MWF between PMD and controls, the

transformed atlas ROIs were superimposed on the MWF maps to quan-

tify their mean and standard deviation, using FA-based registration for

PMD and conventional T1w-based registration for controls.

2.9 | Statistical analysis

Statistical analysis was conducted using the Python scipy.stats pack-

age. Differences in SSIM measures for various registration modalities

were compared using a Student's t test for two independent samples

with a significance level set at 0.05. Differences in MWF between

healthy controls and patients with PMD were estimated using the

nonparametric Mann–Whitney U test, with a significance level also

set at 0.05.

F IGURE 2 Cerebral axial T1w, T2w, and FA images of the
registration dataset aligned to JHU18m template. Upper row:
JHU18m template from a 1.5-year-old healthy participant. Rows 2–6:
PMD patients of different ages, reflecting the inhomogeneous range
of T1w and T2w tissue contrast, whereas FA-image contrast was
more similar in these hypomyelinated states with widely varying
degrees of maturation.
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3 | RESULTS

This single-center, retrospective study included five male

patients with PMD (mean age, 6 years ± 3.8). MRI data were of

good quality for further data analysis. In 4/5 of the patients, the

WM appeared hypointense relative to the GM on T1w images,

demonstrating the severely altered appearance compared to the

healthy control template and abnormal myelination (Figure 2, left

column). In addition, all T2w images indicated abnormal WM

maturation as reflected by hyperintense to isointense signal pre-

sentation of the WM compared to the GM (Figure 2, middle col-

umn). Note that the tissue contrast of the FA images was more

similar between the template and the patients with PMD, regard-

less of the different developmental stages of brain maturation

(Figure 2, right column).

3.1 | Assessment of registration accuracy for PMD
participants

3.1.1 | Visual inspection

All patients were successfully registered to the JHU18m template.

The registration accuracy ratings are presented in Figure 3 and indi-

cated that FA-based registration yielded the most accurately aligned

brain structures and the fewest major misaligned ROIs. Misalignment
F IGURE 3 Visual scoring of registration accuracy for the three
different image registration methods.

F IGURE 4 Transformed FA image
of PMD5 in the JHU18m template
space and zoomed section with
superimposed atlas segmentation
contours. The color-coded SSIM map
demonstrates the differing image
similarities between the transformed
FA images of the PMD patient to
JHU18m for the three analyzed
registration approaches. Major
misaligned regions are indicated with
black arrows.
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was most pronounced in the T1w-based registration, which also had

the lowest percentage of aligned ROIs. Multimodal registration did

not outperform FA-based registration.

3.1.2 | Structural similarity evaluation

To illustrate the differences in registration accuracy Figure 4,

shows the transformed image, atlas segmentation contours, and

SSIM maps for a registered patient with PMD in the template

space. The lack of correspondence between the atlas contours

and the WM tracts visualizes poor registration accuracy, which

was associated with low SSIM values (arrows in Figure 4). The

SSIM maps facilitated the evaluation of spatially misaligned areas,

which were most evident for commissural fiber ROIs in T1w-

based registration. Table 4 shows SSIM values per WM tract for

the different registration approaches. Mean SSIM values were

highest for FA-based registration, followed by multimodal and

T1w-based registration across all ROIs examined. Registration

accuracy also differed significantly between T1w and multimodal

registration, T1w and FA-based registration, but not for multi-

modal and FA-based registration, with t-values t = �3.687

(p < 0.001), t = �5.531 (p < 0.001), and t = �1.570 (p = 0.125),

respectively.

3.2 | Application of atlas-based image
quantification of MWF in patients with PMD and
comparison with healthy controls

Based on the aforementioned findings, we selected the FA-based reg-

istration approach to transfer the atlas segmentation to the patient

space to evaluate MWF in patients with PMD, while T1w-based regis-

tration was used for healthy controls. MWF was significantly lower

within all selected WM ROIs in patients with PMD compared to age-

matched controls (mean MWFPMD = 0.02672 ± 0.021 vs. mean

MWFControls = 0.1299 ± 0.039, p < 0.05). To illustrate the spatial dis-

tribution of the MWF, Figure 5 shows the mean MWF, grouped by

WM tracts, for healthy controls and patients at approximately 3 years

of age. In controls, mean MWF in projection, commissural, and

TABLE 4 Registration accuracy.
WM-tracts SSIMT1w mean (SD) SSIMmutimodal mean (SD) SSIMFA mean (SD)

Brain stem 0.55 (0.12) 0.60 (0.12) 0.62 (0.07)

Projection fibers 0.43 (0.09) 0.55 (0.10) 0.71 (0.08)

Commissural fibers 0.20 (0.19) 0.57 (0.30) 0.68 (0.24)

Association fibers 0.41 (0.07) 0.60 (0.10) 0.67 (0.10)

Mean (SD) 0.40 (0.14) 0.60 (0.03) 0.67 (0.04)

Note: SSIM values represented as mean (standard deviation) within atlas ROIs of the brainstem,

projection, commissural, and association fibers using the three registration approaches.

Abbreviations: SSIMT1w, registration based on T1w; SSIMmultimodal, registration based on T1w, T2w, and

FA; SSIMFA, registration based on FA images.

F IGURE 5 Left: Distribution of mean MWF within the ROIs grouped by the WM tracts for a 3-year-old control group and two patients with
PMD at 2.9 and 3.3 years of age. Right: Corresponding MWF maps for the average image of the nine male controls and PMD 2 with
superimposed WM tracts for comparison.
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association fibers exceeded that of the brainstem. In contrast, in both

PMD patients, the mean MWF was highest within the brainstem and

some projection fiber ROIs, while the mean MWF of the commissural

and association fiber ROIs was considerably lower than in the brain-

stem areas.

4 | DISCUSSION

In hypomyelinating leukodystrophies such as PMD, MR signal intensity

on conventional T1w and T2w images can be severely altered com-

pared to a healthy brain due to myelin deficiency. This makes template

registration a challenging task. Therefore, this study evaluated three

registration approaches and their accuracy for registering PMD images

to a pediatric healthy control template and applied the most accurate

one for atlas-based analysis of PMD qMRI data. The data and postpro-

cessing pipelines created are publicly available via https://gitlab.ukdd.

de/nra/wmi/atlas-based-assessment-of-hypomyelination.

Substantial differences in registration accuracy were found

between the three registration approaches. The results showed that

registration accuracy, as measured by visual inspection and SSIM

values, was highest for FA-based registration, followed by multimodal

and T1w-based registration. This result can be explained by the fact

that template registration algorithms try to match image regions of

similar intensity. The DTI-derived contrast of the FA maps, which is

mainly driven by the orientation and organization of the WM fibers,

provided the most equivalent contrast for the template registration of

patients with PMD. Another study similarly reported FA images to be

superior for the analysis of very low-contrast MRI images of adult

patients with PMD (Al-Saady et al., 2022). The inclusion of multimodal

images in the registration process did not improve the registration

accuracy in our study, despite the increased resolution and image

information compared to FA images alone.

The analysis of SSIM maps offered the advantage of visualizing

misaligned areas and computationally evaluating registration accuracy

estimates. This may help select appropriate registration procedures

for diseased brains, such as those with HLD. SSIM is useful for image

quality assessment but is not yet widely used in medical image data

analysis (Mudeng et al., 2022), for example, estimating the registration

accuracy. Further studies are needed to demonstrate the utility of

SSIM for detecting regional misalignment in a larger cohort. Nonethe-

less, SSIM has found its way into registration strategies (Larrey-Ruiz

et al., 2019; Sassi et al., 2008).

Our study demonstrated that atlas-based qMRI image evaluation

is also feasible in pediatric patients with PMD. In the current investi-

gation, we evaluated MWF, which has been previously studied using

the mcDESPOT approach for the in vivo assessment of normal brain

myelination in early childhood (Deoni et al., 2012). This allowed us to

compare normative MWF data from controls with patients with PMD

and provided the opportunity to identify atypical myelin development.

Mean MWF within main WM tracts was found to be significantly

lower in PMD than in controls, reflecting a reduced or absent myelina-

tion. Specifically, MWF was present in brain structures that were

myelinated at birth (brainstem) or shortly thereafter (corona radiata).

Surprisingly, MWF was barely detectable in other brain regions such

as commissural and association fibers in patients with PMD. In con-

trast, in healthy controls following physiological progressing myelina-

tion mean MWF in projection, commissural, and association fibers

exceeds that of the brainstem at 3 years of age. Thus, these findings

provide new insights into spatial myelin deficits and a delayed or dis-

turbed pattern of myelination in the patients with PMD studied. Our

findings were consistent with mcDESPOT results from a preclinical

model of PMD, the shaking pup canine model, which suffers from

hypomyelination showing a profound lack of MWF in the WM com-

pared to controls (Hurley et al., 2010).

However, this study had limitations. First, the limited availability

of PMD imaging data due to its ultra-rare nature. Second, the small

number of pediatric brain templates that also included an FA map and

detailed atlas segmentation. The choice of a single-subject template

was a necessary compromise for the use of near-age-appropriate ana-

tomical brain structures, with the trade-off for less variation in anat-

omy. Third, FA-based registration also had some limitations. For

example, FA-based registration is mainly driven by the high signal

intensity of the major WM tract structures, reflecting axonal integrity

and density (Harsan et al., 2006; Song et al., 2002), but lacks contrast

in brain regions such as the ventricle/WM or WM/GM tissue bound-

aries, which in turn may lead to poorer registration accuracy in these

regions. In order to address this issue, it could be considered to use

additional image information from the other DTI metrics (MD, AD,

RD). However, axonal involvement is present in patients with PMD

albeit to varying degrees depending on the genetic defect and age of

the patient (Laukka et al., 2014; Sima et al., 2009). Fourth, another

challenge in the registration of PMD data was the substantial atrophy

of brain structures such as the corpus callosum (CC) in some of the

patients. Reduced CC area in patients with PMD has been previously

described (Laukka et al., 2013), as well as CC atrophy in a longitudinal

MRI study (Sarret et al., 2016). The greater the regional atrophy, the

more difficult it was to achieve registration accuracy to a healthy tem-

plate. That is because the registration algorithm used restricts the

deformation by considering the deformation of neighboring tissue

structures. This may result in a slight discrepancy between the regis-

tered PMD imaging data and the atlas segmentation. For the registra-

tion approach performed in this study, we used

antsRegistrationSyNQuick, which uses robust fixed parameters. How-

ever, further improvements may be beneficial with the more flexible

antsRegistration algorithm, such as the manipulation of the cost func-

tion or the regularization, the latter being a factor that constrains the

transformation between the moving and fixed images. Fifth, we did

not explore other likewise available neuroimaging tools like SPM and

FSL, to register the PMD data or investigate the registration accuracy

in other HLD imaging data. This was beyond the scope of this study.

Future research might focus on comparison with other qMRI

imaging biomarkers to determine different aspects of microstructural

tissue change in patients with PMD. Furthermore, the heterogeneity

and temporal evolution of myelination in these patients are poorly

understood and need to be addressed in future studies.
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5 | CONCLUSION

FA-based template registration is superior to conventional T1w or

multimodal registration in patients with PMD and provides an

alternative approach for the successful evaluation of myelination

using qMRI in pediatric patients with hypomyelinating leukodystro-

phies. The atlas-based analysis of MWF revealed atypical WM

myelination for patients with PMD in comparison to controls and

allowed quantification of its extent. The developed postprocessing

pipeline may be supportive of investigating further potential bio-

markers to assess spatial myelin deficits in childhood WM disor-

ders including HLD.
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