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Introduction

Algorithms on digital media platforms clearly provide 
value, as reflected in the wealth they generate for the 
companies using them. They highlight relevant posts, 
news, people, and groups and have become necessary 
to reduce information overload (Narayanan, 2023b). 
The central role of algorithms in several types of online 
interaction has raised concerns that they may fuel large 
psychological and societal issues, specifically mental-
health issues and political polarization. First, algorithms 
could contribute to increasing depression, anxiety, 
loneliness, body dissatisfaction, and even suicides by 
facilitating unhealthy social comparisons, addiction, 
poor sleep, cyberbullying, and harassment, especially 
in teenagers and girls (Ritchie, 2021; Twenge, 2020; 
Twenge et al., 2022). Second, they may fuel hate speech, 
fake news, and polarization by promoting extremist and 
populist content or by using algorithmic filter bubbles 

(Bliss et al., 2020; Lewis-Kraus, 2022).

Widespread usage of digital platforms and continu-
ous interaction with algorithms could indeed affect 
individual and societal well-being in important ways 
(Büchi, 2021). However, direct evidence supporting 
these conclusions remains scarce (Bail, 2021; Ferguson, 
2021; Sumpter, 2018). Researchers have investigated the 
potential effects of digital media and its algorithms 
using self-reports of social-media usage and digital 
traces of online behavior. Yet most existing studies can-
not distinguish the effects of algorithms from the gen-
eral use of digital media, social behavioral patterns, or 
large societal changes because their traces are inter-
mingled in these types of data (Salganik, 2019).

We aim to illustrate how algorithmic mechanisms on 
digital media build on societal forces and how, in com-
bination, they influence desirable and undesirable 
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outcomes at the individual and collective levels. We 
focus on algorithms that determine how data is pro-
cessed and what content is presented to users on digital 
media, rather than the more general concept of algo-
rithms as a set of steps to perform a task. We describe 
the social drivers of online interaction and how algo-
rithms might change these dynamics. We then summa-
rize evidence and research gaps on social, algorithmic, 
and societal contributions for two sample topic areas: 
well-being and mental health at the individual level and 
polarization and misinformation at the collective level. 
Finally, we outline open questions and research oppor-
tunities to understand whether we can improve algo-
rithms to contribute to human flourishing, and if so, 
how.

Social Drivers Underlying Individual 
and Group Behavior on Digital Media

Social media and its algorithms are so successful 
because they build on ancient human needs for con-
nection and status (Brady et al., 2020; Meshi et al., 2015; 
Nadkarni & Hofmann, 2012). The twin desires to 
get along and to get ahead are basic human motives 
that were crucial for survival in our ancestral environ-
ment in social groups (Cummins, 2005; Sapolsky, 2005). 
Status and connection are pivotal to explaining social 
behavior (Abele & Wojciszke, 2013; Fiske et al., 2007; 
Gurtman, 2009) across many domains. Examples 
include face perception (Todorov et  al., 2008); judg-
ments and stereotypes (Fiske et al., 2007); relationships 
between individuals (Schafer & Schiller, 2018) or groups 
(Nadler, 2016); and cultural differences in religiosity 
and prosociality (Gebauer et al., 2013, 2014).

Connection and status motives also strongly shape 
social interaction and interaction with algorithms on 
digital media (Eslinger et al., 2021; Meshi et al., 2015). 
The need for connection motivates participation in the 
lives of friends, interest in peer groups, self-disclosure 
of one’s own experiences, and renewal of old connec-
tions, as well as the pursuit of new connections, dating 
partners, and groups to join. Status motives influence 
how we broadcast content, present ourselves, receive 
social feedback, and observe and evaluate what others 
share (Burke et al., 2020; Meshi et al., 2015). Studies 
show that humans are susceptible to social feedback 
on digital media: Likes influence how quickly people 
post again (Lindström et al., 2021), whether or not they 
consider a post successful (Carr et al., 2018), and how 
happy, self-assured, and popular they feel after posting 
status updates (Rosenthal-von der Pütten et al., 2019; 
Zell & Moeller, 2018).

Algorithmic Mechanisms and Other 
Platform Influences

All of these social motives are also ubiquitous in offline 
contexts, so how do algorithms and platform features 
change social interaction? Algorithms constantly adapt 
to changes in human behavior and are updated as 
behavior on platforms, and societal discussion about 
them, evolves. Humans, in turn, strive for the attention 
and recognition of others to gain social status, which 
motivates them to reproduce the behaviors that algo-
rithms reward. The eventually observable behavior  
thus results from interactive feedback loops between 
human behavior, algorithms, and other platform fea-
tures (Narayanan, 2023b; Tsvetkova et al., 2017; Wagner 
et al., 2021). Algorithms are designed to optimize cer-
tain metrics, which are used to rank content in user 
feeds or to suggest relevant accounts. Yet these opti-
mization metrics are usually chosen to maximize the 
profits of corporations and advertisers (Bak-Coleman 
et al., 2021; Narayanan, 2023b) rather to bring about 
psychological and societal benefits.

The history of the Facebook algorithm illustrates 
how changes in metrics can affect social behavior  
(Merrill & Oremus, 2021; Oremus et al., 2021; Wallaroo 
Media, 2022), but also how little control engineers actu-
ally have over eventual outcomes within such complex 
emerging feedback loops (Narayanan, 2023a). In its 
early days, the algorithm optimized for the number of 
clicks, likes, and comments and the total time spent on 
Facebook. As users and companies learned to game the 
algorithm, clickbait emerged. To counter this, Facebook 
started maximizing the time users spent reading or 
watching content in 2015, which led to more passive 
use, more professionally produced content, less social 
interaction, and less sharing of original content. Because 
of user complaints and decreases in interaction, Face-
book adapted the algorithm to encourage more “mean-
ingful social interactions.” It boosted posts by friends 
and family, boosted highly commented posts, and 
weighted the emotional-reaction buttons much more 
than likes. This became problematic, as the most heav-
ily commented posts also made people the angriest. 
Strongly weighting angry reactions may have favored 
toxic and low-quality news content. Responding to 
complaints, Facebook gradually reduced the angry 
emoji weight from five times the weight of likes in 2018 
to weight 0 in 2020.

Most current digital-media algorithms strongly opti-
mize for engagement (Narayanan, 2023b; Nikolov et al., 
2019). However, social success and quality of content 
are only partly correlated (Salganik et  al., 2006). 
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Optimizing for popularity even seems to lower the overall 
quality of content (Ciampaglia et al., 2018). Engagement 
metrics primarily promote content that fits immediate 
human social, affective, and cognitive preferences and 
biases rather than quality content (Menczer, 2021) or 
long-term goals and values (Narayanan, 2023b). For 
instance, users are more likely to like and share low-
quality content that others have already liked (Avram 
et al., 2020). Popularity metrics can also be gamed with 
inauthentic behavior, including bots, organized trolls, and 
fake-account networks (Pacheco et al., 2021; Sen et al., 
2018). Furthermore, the interval at which an algorithm 
rewards behavior influences how quickly it is repeated 
(Lindström et al., 2021). Especially variable and unpre-
dictable rewards, such as those on platforms with strong 
virality, seem more addictive (Munger, 2020b).

Other relevant platform features beyond algorithms 
include the vastly enlarged scale of digital compared 
with offline social networks. This increases audience 
size and magnifies differences in the influence and 
social status of individual users (Bak-Coleman et  al., 
2021). It also creates unprecedented opportunities for 
building connections, earning recognition, and observ-
ing others, thereby supercharging motives of social sta-
tus and connection (Bail, 2021; Bak-Coleman et  al., 
2021; Brady et al., 2020). This increases potentially avail-
able social feedback, which notifications, likes, shares, 
and comments make easily accessible, immediate, and 
quantifiable (Brady et al., 2020). Finally, algorithm rec-
ommendations may have changed the structure of net-
works, increasing the frequency of triangles (Salganik, 
2019; Ugander et  al., 2011) and enabling interaction 
between distant individuals (Bak-Coleman et al., 2021).

These conditions make status comparisons particu-
larly likely and painful (Brady et  al., 2020; Munger, 
2017). In large online networks, personal information 
about individuals is limited, whereas information about 
social groups is still visible. Social groups thus become 
the main relationships in the network, making social 
identities highly salient (Brady et  al., 2020). Finally, 
larger networks mean that one encounters a larger num-
ber and diversity of individuals and opinions than in 
real life (Gentzkow & Shapiro, 2011; Guess et al., 2018). 
Digital media thus allow people to observe many 
(potentially very different) others and offer people 
unprecedented freedom to present themselves, get 
feedback, and adapt; they have become a central tool 
people use to understand themselves, understand oth-
ers, and understand which groups they themselves 
belong to (Bail, 2021; Brady et al., 2020). As contexts 
in which status and groups are highly salient, digital 
media have become places where different groups 

compete for status and in-group and out-group dynam-
ics crucially determine behavior.

When audiences are larger and more public than 
private, competition between groups becomes particu-
larly strong, as discussions between political groups 
show, for example, on Twitter. Similarly, YouTube’s 
reputation for toxic comments could be linked to the 
extremely broad demographics of its users, leading to 
more conflict, and to the algorithm weighting up-votes 
and down-votes equally (Munn, 2020). On Facebook 
and especially Instagram, self-presentation is more  
central than group competition (Cingel et  al., 2022; 
Midgley, 2019; Storr, 2018), leading, for example, to 
microcelebrities (Marwick, 2015). The TikTok algorithm 
guarantees a small number of views for everybody, 
which lowers the barriers to entry compared with the 
more hierarchical social networks on social media. It 
further makes it hard to predict which TikTok videos 
will go viral, which could explain long unwanted scroll-
ing experiences, more passive watching, and less social 
interaction overall (Munger, 2020b).

Social Drivers and Algorithmic Mechanisms 
Influencing Individual Well-Being

Mainstream discourse and parts of the scientific literature 
often fail to distinguish between social drivers, algorith-
mic mechanisms, and societal context because they fail 
to derive causal insights from correlation, present results 
limited to single studies and countries, take self-reports 
at face value, or omit the fact that effect sizes are small 
(see Cavanagh, 2017; Dienlin & Johannes, 2020; Orben 
& Przybylski, 2019b; Ritchie, 2021; Sumpter, 2018).

Concerns are often raised about algorithms on digital 
media harming mental health by fueling addiction, bad 
sleep, and social comparison (Smyth & Murphy, 2023), 
or about algorithms purposefully manipulating user 
mood (Booth, 2014). This debate usually conflates the 
time spent using social media with algorithmic effects. 
Only one study pinpointed algorithmic effects, finding 
that reducing positive posts in the Facebook feed 
reduces the likelihood of users posting positive content 
by 0.1% (Kramer et al., 2014). Indirect hints that social 
dynamics in online media may be more harmful to 
mental health than algorithms come from a natural 
experiment—the rollout of Facebook across U.S. col-
leges in 2004 to 2006 (Braghieri et al., 2022). At this 
time, recommender algorithms still played no role on 
Facebook. Yet the study observed that starting to use 
Facebook produced a moderate effect on depression 
and a small effect on anxiety disorders but no signifi-
cant effect on eating disorders, suicidal thoughts, or 
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attempts. Further results hinted that the negative effects 
arose from unhealthy social comparisons.

Other studies on short- or long-term well-being and 
mental health addressed only algorithmic effects as part 
of social-media usage as a whole. Two randomized con-
trolled trials testing the effects of deactivating Facebook 
(Allcott et al., 2020; Asimovic et al., 2021) observed small 
to moderate decreases in anxiety, one in depression, and 
one in loneliness. Many other emotions did not change, 
consistent with an experience-sampling study testing the 
effects of using Twitter (de Mello et al., 2022). Life sat-
isfaction did not change after deactivating Facebook for 
1 week (Asimovic et  al., 2021), but increased after 4 
weeks (Allcott et al., 2020). Furthermore, specification 
curve analyses showed very small negative associations 
with social-media usage in adolescents (Orben et al., 
2019; Orben & Przybylski, 2019a).

Overall, the debate about social media and individual 
well-being requires more nuance. Evidence for algo-
rithms driving or reinforcing unhealthy dynamics is very 
thin, supporting, at best, a small effect on mood. Instead, 
unfavorable social-status comparisons online may harm 
mental health. The direction of effects between social-
media usage and mental health is unclear (Ferguson, 
2021; Luhmann et  al., 2022; Orben et  al., 2019); the 
direction and size of effects depend on who uses social 
media and in what way (Büchi, 2021). For instance, teen-
age girls or already socially disadvantaged individuals 
may be particularly vulnerable (Allcott et al., 2020; Heffer 
et al., 2019; Midgley, 2019; Orben et al., 2019, 2022). 
Passive, extreme, or low use is related to poorer well-
being, whereas active, social, and moderate use corre-
lates with better well-being (Dienlin & Johannes, 2020). 
Furthermore, self-reports of usage and addiction do not 
reliably measure actual usage and tend to systematically 
overestimate them, more so in some users (such as girls) 
than others (Boyle et al., 2022; Mahalingham et al., 2022; 
Scharkow, 2016; Shaw et al., 2020).

Yet  algorithmic effects could also emerge as slow 
trends or at higher levels of the complex system involving 
digital media and the offline world; studies on individuals 
in limited time periods cannot capture such effects. For 
example, the constant opportunity to express oneself 
could slowly affect independent emotion-regulation abili-
ties, and algorithmic reinforcement of emotional content 
could change norms of emotional self-disclosure in rela-
tionships over time. In any case, potential risks to the 
well-being and mental health of vulnerable groups need 
to be taken seriously, and large corporations should be 
held responsible for preventing harm.

None of the cited studies says anything about the 
societal context, including achievement pressure and 
individualization increasing with neoliberalism (Levitz, 
2023; Storr, 2018); increasing economic inequality and 

insecurity (Wilkinson & Pickett, 2017); more single 
households in wealthy societies, driving loneliness; 
sleep irregularities and addiction, especially in younger 
adults (Cocco, 2022); or general uncertainties about the 
future (e.g., climate change; Ingle & Mikulewicz, 2020). 
All of these societal developments could crucially affect 
mental health, with algorithms reinforcing existing 
dynamics but not being the primary cause.

When problems have strong social or societal root 
causes, solutions will require difficult political, institu-
tional, and economic changes. To address the actual 
causes, we need research that disentangles which, if 
any, of the issues currently blamed on algorithms are 
driven by social dynamics or societal context. The influ-
ence of societal context is particularly difficult to pin 
down. It would require large-scale and longitudinal 
studies tracing and separating multiple interacting fac-
tors and their online and offline effects over time, 
including algorithmic and societal changes across plat-
forms, nations, and cultures. Data for such studies are 
currently not available, but the European Digital Ser-
vices Act may be a step forward (Turillazzi et al., 2023).

Social Drivers and Algorithmic 
Mechanisms Influencing the Collective 
Dynamics of Political Polarization and 
Misinformation

Could algorithms foster echo chambers of like-minded 
people and polarization (Garimella et  al., 2017)? Do 
engagement metrics promote hate speech, radicalized 
content, and fake news? We highlight a few studies that 
help dissociate algorithmic mechanisms from social 
drivers. For more details, see Van Bavel et al. (2021), 
Ferguson (2021), and Lorenz-Spreen et al. (2022).

Online echo chambers might have a more minor role 
than has been commonly assumed (Bakshy et al., 2015; 
Bruns, 2021; Guess et al., 2018; Sumpter, 2018; Törn-
berg, 2022) and are smaller than offline echo chambers 
(Gentzkow & Shapiro, 2011). Weaker online echo 
chambers mean that people are exposed to more peo-
ple they disagree with. Similarly, digital media may 
increase perceived rather than actual polarization (Bail, 
2021). Supporting this, a field experiment on U.S. Twit-
ter observed increased political polarization after expo-
sure to posts from opinion leaders of the opposing 
party (Bail et al., 2018) and experience sampling reveals 
consistent results (de Mello et al., 2022).

Increases in actual polarization are less bad than 
commonly assumed; there is still overlap for substantial 
issues in the views of political parties (Bail, 2021). 
Because misinformation is largely a symptom of polar-
ization (Altay, 2022; Osmundsen et al., 2021; Petersen 
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et al., 2022), exposure to online misinformation might 
also have been overestimated. Misinformation accounts 
for a small proportion of digital-news consumption 
(Altay, Nielsen, & Fletcher, 2022) and is mostly shared 
by a tiny minority of users (Grinberg et  al., 2019; 
Osmundsen et al., 2021). Additionally, misinformation 
has been shown not to easily change beliefs or political 
voting behavior (Bail et al., 2020; Guess et al., 2020).

Regarding specific algorithm effects, a study on Face-
book data in 2014 (Bakshy et al., 2015) found that users’ 
social networks determined posts in their feeds much 
more strongly than the algorithm. Similarly, users 
actively engage with more partisan news than sug-
gested by the Google search algorithm (Robertson 
et al., 2023). The YouTube algorithm also does not seem 
to radicalize many users: Only 1 out of 100,000 who 
started viewing moderate content later moved to far-
right content (Ribeiro et al., 2021). Most movement to 
far-right videos comes from outside the platform, and 
far-right videos are not more likely toward the end of 
sessions, where algorithmic recommendations matter 
most (Hosseinmardi et al., 2021). Instead, the demand 
for far-right content, with supply being easy, and the 
lack of more moderate conservative content may 
explain the increases in views of such content until 
mid-2017 (Munger & Phillips, 2020).

Overall, evidence neither shows that algorithms 
cause echo chambers, nor that echo chambers cause 
polarization. Yet algorithms can still contribute to polar-
ization—for example, by weakening echo chambers 
and exposing people to more views they disagree with. 
Current evidence is consistent with the view that digital 
media as a whole, including algorithms, fuels perceived 
polarization by making extremist voices more visible 
and hiding moderate majorities (Bail, 2021). Two ran-
domized controlled trials support this: In the politically 
polarized United States, affective polarization decreased 
after Facebook abstinence (Allcott et al., 2020). How-
ever, not having online contact with (probably moder-
ate) ethnic out-group members in Bosnia-Herzegovina 
increased affective polarization (Asimovic et al., 2021). 
Similar to the idea of perceived polarization increasing 
actual polarization, the myth of fake news being com-
mon makes people more skeptical of news in general 
(Altay, Berriche, & Acerbi, 2022; Fletcher & Nielsen, 
2019; Guess et al., 2021). Again, most studies on digital-
media effects say little about larger societal drivers of 
polarization. One likely driver of increasing affective 
polarization, and thus misinformation, is the rise of 
authoritarian populism in many Western countries, 
which itself may arise from economic insecurities or 
backlash to progressive cultural change (Inglehart & 
Norris, 2016; but see Schäfer, 2022).

Yet such societal developments can interact with 
algorithmic effects by affecting discourse and decisions 
about algorithms. Letting platforms decide how to rank 
content may have seemed obvious for a long time, but 
discussions about this are increasing. Additionally, cur-
rently polarized or populist debates may make it difficult 
to find common ground on algorithmic optimization 
metrics, making it harder to address potentially negative 
effects. Similar feedback loops in the positive direction 
could begin with algorithms that emphasize the overlap 
in views of political groups, which could reduce polar-
ization. Furthermore, algorithms that emphasize nuanced 
content could help decrease paralyzing climate anxieties 
or highlight constructive perspectives that motivate 
action. Finally, algorithms could create more collective 
emotional experiences by facilitating the spreading of 
emotional content. This could motivate protest move-
ments or prosocial behavior but also foster intergroup 
conflict and intolerance.

Research Avenues Toward Solutions 
and Flourishing

Digital-media companies benefit from the narrative of 
omnipotent algorithms, as their business model relies on 
their customers (i.e., advertisers) believing it (Munger, 
2020a; Sumpter, 2018). For instance, Cambridge Analytica 
wanted its customers to believe they could shift political 
opinion in the crucial target group of undecided voters 
(Sumpter, 2018). Munger (2020a) argued that activists 
and society should stop buying this story. Silicon Valley 
corporations should carry responsibility for evaluating 
the potential societal consequences of their platforms. 
Still, blaming technology as the supposed mechanism 
behind a problem without looking at the drivers that 
power the problem is unlikely to lead to resolution. This 
approach directs attention away from actual root causes 
and potentially misleads societal discourse and policies, 
creating ground for further complaints.

Famous platform critics such as Francis Haugen or 
Elon Musk (Oremus et al., 2021; Riemer & Peter, 2022) 
have suggested getting rid of algorithms entirely and 
returning to reverse chronological ordering of posts. 
However, chronological order is just another kind of 
algorithm with its own drawbacks (Riemer & Peter, 
2022): It favors more frequent posters, does not reduce 
information overload, and likely implies that users will 
miss more carefully prepared but rarer content. Getting 
rid of algorithms also means not using them as tools 
where they are indeed useful. Using algorithms well, in 
turn, requires developing shared visions and values—
things users want algorithms to align with—which is a 
major important avenue for future research.
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Future researchers need to develop and test theories 
about the role of algorithms (see Box 1), including 
potentially positive contributions and the mechanisms 
and outcomes of feedback loops with social behavior. 
Algorithms could even help to solve problems to which 
they currently contribute, and they can be intentionally 
designed to foster short- and long-term well-being and 
flourishing (Steinert & Dennis, 2022). This requires 
developing a vision for digital-media design and algo-
rithm design beyond those proposed by existing for-
profit companies (Bail, 2021; Büchi, 2021).

Although problem audits of algorithms are rare, stud-
ies on beneficial effects are even rarer. Some A/B tests 
on beneficial outcomes exist for interface design (e.g., 

Zhang et al., 2022), content manipulations and connec-
tion recommendations (e.g., Rajkumar et al., 2022), or 
for achieving collective outcomes with the help of ran-
dom bots (Shirado & Christakis, 2017). However, more 
experiments comparing different optimization algo-
rithms and comparing platforms with and without algo-
rithms are needed.

Testing the effects of current and possible future 
algorithm and platform design requires platforms that 
allow experimental manipulation while obtaining users’ 
consent. Computational social scientists have begun 
developing such bespoke social-media platforms to test 
the effect of concealing political affiliation or gender 
identity (Combs, Tierney, Alqabandi, et  al., 2022; 

Box 1. Some Important Psychological Research Questions on Algorithms on Digital Media

Overarching questions

• With which values and purposes do we want the outcomes of our algorithms to align?
•  How can psychological knowledge about social behavior and cognition help to design algorithms and 

platforms to best foster human well-being and flourishing at an individual and collective level?
• Do current algorithms on digital media have beneficial effects compared with media without algorithms?
• Which new risks and opportunities arise from the current shift from social to algorithmic media?
•  Which platform design and algorithm features best align with different purposes? Which purposes require 

different digital environments, and which can be combined?
•  How does giving users choices about algorithm metrics or other design features affect individual and 

collective well-being? Which choices should be made available, and which should be implemented broadly? 
How should these choices be assessed?

Individual and interindividual well-being, happiness, and flourishing

•  What are specific algorithmic effects on emotions and mental health, independent from social-media usage as 
a whole?

• How could algorithms and other platform design features . . .
   foster short- or long-term well-being and flourishing of individuals (including pleasure, happiness, life 

satisfaction, and connection)?
  emphasize connection over social comparison between individuals?
  foster new and deepen existing important relationships?
  reward interindividual empathy, support, and prosocial behavior?
  foster successful emotion regulation or collective emotional experiences?
• How would allowing users to choose what they want to see affect their well-being?

Social cohesion, nuanced political discussion, and high-quality information

•  Do algorithms contribute to increasing affective polarization by fueling perceived polarization—for example, 
by suggesting more extreme political content?

• How could algorithms and platforms . . .
  make silent moderate majorities more visible?
  reduce the visibility of extremist, toxic, outraging, or regrettable content?
  promote nuanced and high-quality content?
  reward expressions of empathy and understanding?
  reward cooperation rather than status competition between groups?
  promote constructive online intergroup contact?
•  How would allowing individual user or community choices on algorithmic ranking affect polarization and the 

spread of misinformation at the macroscale on digital platforms?
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Combs, Tierney, Guay, et al., 2022), social-engagement 
metrics (Avram et  al., 2020), or anti-addictive design 
features (Zhang et al., 2022). Collaborations between 
academia and existing platforms are another promising 
approach (Stray & Hadfield, 2023).

Ideas for algorithm and platform 
design to foster flourishing

Algorithms can improve digital-media platforms in two 
ways: by using different optimization metrics to rank 
content, or by prompting interventions upon detecting 
problematic content. Current digital-media platforms 
show that engagement metrics that optimize for enter-
tainment are unlikely to foster rational debates. Optimal 
design choices will thus likely depend on the purpose 
of a platform and potentially on user preferences. We 
may want to create different platforms to foster nuanced 
political discussion, amplify entertainment and short-
term pleasure, promote regular contact between friends 
and relatives, deepen personal relationships, or build 
communities (e.g., for mental-health support). Future 
research on which design choices work best to achieve 
each purpose, and which ones require separate plat-
forms or subspaces on existing platforms, would be 
very valuable.

Platforms for fostering nuanced political discussions 
that strengthen social cohesion, moderate voices, and 
diversity will have to focus on reducing perceived polar-
ization. This requires reducing the visibility of strongly 
partisan and triggering content (Rose-Stockwell, 2018), 
perhaps with algorithm metrics that prioritize content 
popular on both sides of the political spectrum. This 
would highlight moderate voices and reveal the opinion 
overlap for the important issues where it actually exists 
(Bail, 2021), and could promote more trustworthy 
news sources (Bhadani et al., 2022). Similar algorithms 
could highlight which principles or practical approaches 
resonate with people on both sides of other belief spec-
trums, such as those relating to climate change or alter-
native medicine.

Algorithm rankings could further foster intergroup 
contact and understanding by presenting posts that are 
not too distant from a user’s own position (Levendusky, 
2018; Sherif, 1963). In this way, algorithms could sup-
port small steps toward understanding alternative 
views. Using algorithmic estimates of users’ positions 
on a dimension, platforms could further label extreme 
voices as such, give users feedback about their own 
position, or show how moderate and extreme users on 
both sides have responded to an account or post (Bail, 
2021). Other suggestions include toning down status 
incentives by hiding or reducing the visibility of engage-
ment metrics for certain types of posts (Avram et al., 

2020) or adding cues that spotlight passive user 
 behaviors (e.g., how many scrolled over a post; Lorenz-
Spreen et al., 2020). Twitter introduced view counts for 
tweets early in 2023, creating research opportunities to 
explore how this affects social-reward experiences or 
the spreading of polarizing and untrustworthy content. 
Finally, anonymity is a promising nonalgorithmic design 
feature for reducing conflicts rooted in social identity, 
with the potential to make discussions on controversial 
issues kinder (Combs, Tierney, Guay, et al., 2022).

Optimizing algorithms for metrics such as civility 
(Lewandowsky & Kozyreva, 2022; Oremus et al., 2021) 
would require defining what counts as civil and how 
civility fosters democratic discourse and diversity. When 
a minority is unjustly neglected, or an elite unfairly 
privileged, for example, angry responses are appropriate 
and necessary. Rather than deciding which values should 
guide the choice of algorithm metrics, platforms could 
also let users define values themselves (Lewandowsky 
& Kozyreva, 2022; Lorenz-Spreen et al., 2020). Facebook 
has tested such an approach in its “breaking the glass” 
experiments, deploying an algorithm that emphasized 
posts that users considered to be “good for the world” 
(Roose et al., 2021). Although this reduced low-quality 
content, it also lowered how often users opened Face-
book and was therefore implemented only in a weak-
ened version.

A second way to use algorithms is to detect certain 
posts or activities and then trigger interventions. The 
simplest of all interventions is adding friction, that is, 
increasing the time or effort it takes to share content 
(Brady et al., 2020; Lorenz-Spreen et al., 2020; Menczer, 
2021). Adding friction seems particularly useful to pre-
vent impulsive sharing of sensational news and outraged 
or toxic comments. In some cases, simply adding a time 
gap before allowing users to post or share might suffice. 
In others, additional prompts could encourage reflection 
before sharing (Rose-Stockwell, 2018). Empathic and 
humanizing prompts have been shown to reduce affec-
tive polarization (Saveski et al., 2022) and racist harass-
ment (Hangartner et  al., 2021; Munger, 2017). Undo 
prompts after posting hateful comments, default options 
to turn comments from public to private, or ideological 
prompts explaining that posts with moral-emotional 
language are unlikely to reach the other side, could all 
reduce hateful content (Rose-Stockwell, 2018). Interven-
tions that effectively reduce affective polarization pro-
vide further inspiration (Hartman et al., 2022; Voelkel 
et al., 2022).

To foster mental health and healthy usage of digital 
media, algorithms can detect linguistic markers of 
symptoms or certain activity patterns. Trying to detect 
users at risk of mental-health issues, with the goal of 
then providing contact points for support, is a popular 
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research field, which, however, urgently requires  
methodological-validation efforts (Chancellor & De 
Choudhury, 2020). To reduce unwanted addictive use, 
algorithms can encourage users to disengage by provid-
ing reminder bots after excessive periods of scrolling 
or providing usage statistics (Zhang et al., 2022). Inter-
ventions such as reading-progress indicators, feed filters 
and content blockers for specific types of content, and 
separate topic-focused feeds instead of one main feed, 
seem even more effective (Zhang et  al., 2022), and 
could be improved via algorithmic suggestions. Finally, 
we do not know of any research on how changing 
algorithm metrics could support individual well-being. 
Algorithms that reduce the visibility of toxic, regretta-
ble, and outraged content may help reduce content that 
negatively affects well-being (Rose-Stockwell, 2018). 
Research on algorithms that prioritize content from 
important personal contacts, expressions of empathy 
and connection, or prosocial behaviors could contribute 
to positive well-being outcomes.

Choosing values, validating metrics,  
and evaluating their effect on outcomes

As the above discussion illustrates, many different val-
ues are potentially justifiable candidates for algorithmic 
optimization. Choosing such values, validating the met-
rics to optimize for them, and testing their effect on 
various outcomes will require research in cultural, 
moral, social, political, affective, and clinical psychol-
ogy, as well as computational, sociological, political, 
and economic approaches. Such research needs to 
determine for which values societal consensus is pos-
sible, and where digital media have to accommodate 
different needs, visions, and goals within the same or 
between different platforms. It should further explore 
which values and goals individuals prioritize and how 
social and cultural norms affect these processes in com-
munities and societies.

Research could also compare different ways of 
assessing these value preferences: Avoiding perpetuat-
ing the influence of social and cognitive biases will 
probably require asking for user decisions in advance 
and at an abstract level, rather than measuring immedi-
ate preferences when users thoughtlessly scroll through 
their feeds. Preliminary research shows that most U.S. 
users across political and demographic groups opt for 
seeing more accurate, nuanced, friendly, positive, and 
educational content (Rathje et al., 2022), although such 
content currently does not typically go viral by itself. 
Researchers need to test whether users would actually 
make the choices they report preferring on the plat-
forms they regularly use, and they then need to deter-
mine whether this would reduce misinformation and 

polarization at the macroscale of digital platforms. They 
further need to explore where individual user or com-
munity choices on algorithmic rankings or interventions 
are possible and beneficial (Lewandowsky & Kozyreva, 
2022; Lorenz-Spreen et al., 2020), and where they need 
to be restricted. For example, letting users opt for only 
partisan content is dangerous, as contact with moderate 
voices from other groups may be necessary to reduce 
polarization.

Once certain values are agreed upon, methodological 
research can be employed to validate which metrics 
could actually represent those values, relying on the 
digital trace data available to algorithms. Finally, empiri-
cal research should be used to investigate how different 
metrics would affect the various outcomes, including 
affective well-being, mental health, societal cohesion, 
and nuanced political discussions. Given that social 
media are complex systems with emerging feedback 
loops between social drivers and algorithms, this research 
needs to incorporate methods from complexity science 
and computational social science, such as network analy-
sis or agent-based modeling (Borsboom et  al., 2021; 
Jackson et al., 2017; Smith & Conrey, 2007; Vlasceanu 
et al., 2018) to address these many open questions.

Shift from social to algorithmic media

Twitter, Facebook, and Instagram could be referred to as  
traditional social media, as their information-distribution 
mechanism relies primarily on social networks (Mignano, 
2022; Munger, 2020b). In contrast, other platforms like 
YouTube and TikTok mostly rely on recommendation 
algorithms instead of social links. On traditional social 
media, social drivers can have a much larger influence 
on interactions and spreading dynamics. In contrast, 
on algorithmic media, the platform itself has much 
more power to determine presented content through 
the recommender system and content feed (Mignano, 
2022; Narayanan, 2023b). Algorithms are more eco-
nomically competitive as information-distribution 
mechanisms because social graphs are now easily 
available (Mignano, 2022). Likely for this reason, Face-
book and Instagram have started following TikTok’s 
example by adding short recommendation-based video 
feeds. This trend may entirely change our current con-
clusions about the algorithmic effects that have been 
limited so far. Algorithmic media might worsen prob-
lems like addiction or propaganda. Munger (2020b) has 
argued that the immersive nature of TikTok’s mobile-
first design, its higher capacity to evoke emotions via 
both visual and audio information, the ease of posting 
content, and the unpredictable virality of its algorithm 
might make it more addictive and its users more vulner-
able to political persuasion.
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However, the shift from social to algorithmic media 
may also present an opportunity for the endeavor of 
designing digital media that foster human flourishing. 
Because algorithmic content distribution gives greater 
control to the platform compared with popular users, 
algorithms could select content on the basis of metrics 
that foster well-being of individuals and societies. They 
could highlight overlap between opposed groups (Bail, 
2021), prioritize news a user actually wants to see 
(Rathje et al., 2022), or simply limit how far fake news 
spreads (Bak-Coleman et al., 2022). Both new risks and 
opportunities arising from algorithmic media are impor-
tant avenues for future research in psychology and 
computational social science.

If algorithms make societally relevant decisions, it 
becomes pivotal who takes these decisions, and in what 
way. Making sure these decisions benefit society will 
require transparency about algorithmic design (Kozyreva 
et  al., 2021; Wagner et  al., 2021). The recent release  
of the code of the Twitter algorithm illustrates that in 
order to actually evaluate effects we need not only 
information about how the algorithms weigh types of 
content and interactions but also information about the 
machine-learning models that make suggestions for 
individual users (Narayanan, 2023a). Although we see 
potential in beneficially using algorithms on digital 
media, we must acknowledge the barriers that exist for 
this kind of research. Because the vast majority of 
online media are proprietary for-profit platforms, the 
designs and targets we presented are likely at odds with 
profit-making to a certain extent. Testing, implement-
ing, and adopting solutions will therefore likely require 
regulation (Gal, 2022). Given the unique role of digital 
media in creating a public sphere in a globalized world, 
researchers and activists have even discussed whether 
digital media should become a public good (Fournier-
Tombs, 2022). However, we are also still very early in 
the history of digital-media platforms, with large shifts 
of users to new platforms every couple of years (Bail, 
2021). Over time, market dynamics could still play out 
in ways that better satisfy user preferences beyond 
short-term rewards.

Conclusion

We have outlined different ways in which algorithms 
on digital media could promote positive emotions, men-
tal health, social cohesion, and nuanced discourse. In 
the context of a globalized world, polarized democra-
cies, and increasingly individualized societies, efforts 
to design algorithms that foster intergroup contact via 
digital media may make valuable contributions to 
reduce social, ethnic, political, and cultural barriers.
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