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Abstract 

Human–robot physical interaction contains crucial information for optimizing user experience, enhancing robot 
performance, and objectively assessing user adaptation. This study introduces a new method to evaluate human–
robot interaction and co-adaptation in lower limb exoskeletons by analyzing muscle activity and interaction torque 
as a two-dimensional random variable. We introduce the interaction portrait (IP), which visualizes this variable’s 
distribution in polar coordinates. We applied IP to compare a recently developed hybrid torque controller (HTC) 
based on kinematic state feedback and a novel adaptive model-based torque controller (AMTC) with online learn-
ing, proposed herein, against a time-based controller (TBC) during treadmill walking at varying speeds. Compared 
to TBC, both HTC and AMTC significantly lower users’ normalized oxygen uptake, suggesting enhanced user-exo-
skeleton coordination. IP analysis reveals that this improvement stems from two distinct co-adaptation strategies, 
unidentifiable by traditional muscle activity or interaction torque analyses alone. HTC encourages users to yield 
control to the exoskeleton, decreasing overall muscular effort but increasing interaction torque, as the exoskeleton 
compensates for user dynamics. Conversely, AMTC promotes user engagement through increased muscular effort 
and reduces interaction torques, aligning it more closely with rehabilitation and gait training applications. IP phase 
evolution provides insight into each user’s interaction strategy formation, showcasing IP analysis’s potential in com-
paring and designing novel controllers to optimize human–robot interaction in wearable robots.
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Introduction
Assistive and rehabilitation robotics are gaining increas-
ing attention as they deliver a more substantial dose 
of exercise to users, enhancing their functionality and 
quality of life while reducing the workload of physical 
therapists [1, 2]. Despite recent advancements, includ-
ing human-in-the-loop optimization to improve exo-
skeleton assistance [3–6], these robotic systems still lack 
the sophistication to automatically fine-tune the level of 
support required for each individual user effectively [7, 

8]. This personalized touch, instinctive for physical thera-
pists in traditional therapy sessions, remains a challenge 
for robots due to the lack of a unified metric for monitor-
ing and quantifying human–exoskeleton interaction.

A range of studies have used quantitative metrics that 
describe aspects of human–exoskeleton interaction or 
its consequences. For instance, Postol et al. examined the 
metabolic cost of exercising with a robotic exoskeleton, 
noting that both healthy and neurologically impaired 
participants increased their VO2 levels during exoskel-
eton-assisted exercise, with stroke participants showing 
a greater reduction after 12 weeks of therapy [9]. Witte 
et  al. explored the energy economy of human running 
with powered and unpowered ankle exoskeleton assis-
tance, finding that optimized powered assistance signifi-
cantly improved energy economy compared to running 
in normal shoes [10]. While low metabolic cost and 
improved energy economy could be indicators of effec-
tive assistance and reduction of human–robot physical 
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conflicts, these metrics do not directly assess the interac-
tion quality, e.g., whether the user was actively engaged 
in movement or not. Zhu et al. compared the lower-limb 
muscle synergies between users wearing and not wear-
ing exoskeletons and during exoskeleton-assisted gait 
training in post-stroke patients. They found that wearing 
the exoskeleton altered synergy patterns towards those 
of able-bodied participants [11]. While similar muscle 
synergy patterns could indicate an increased chance of 
motor recovery, uncertainties remain due to the sensi-
tivity of the obtained synergies to the choice of optimi-
zation setting. Muscle synergies do not provide details 
of human–robot interaction in terms of who is leading 
the control of motion, or following, and whether they 
are actively participating, resisting or remaining passive. 
Ingraham et al. focused on user preference in exoskeleton 
control by having participants self-tune the magnitude 
and timing of peak torque using a touch screen tablet, 
demonstrating that individuals can reliably identify their 
preferred assistance settings, which varied with walking 
speed and device exposure [12]. Küçüktabak et al. looked 
at interaction power to assess human–exoskeleton inter-
action. The study included an analysis of the power flow 
between the exoskeleton and the user, particularly focus-
ing on the interaction torques and power and their effects 
on muscle activity [13]. Dalley et al. developed a control-
ler that enabled continuous joint motion, which in turn 
increased walking speed and speed control [14]. Duran-
dau et al. also demonstrated that using a neuromechani-
cal model-based control approach enabled significant 
reductions in both biological joint torques and electro-
myograms (EMGs) across various walking conditions 
and transitions [5]. The metrics used in these studies 
were not chosen to directly quantify human–exoskel-
eton interaction; instead, they served as criteria for tun-
ing exoskeleton control. For instance, reducing metabolic 
cost or muscular effort has been considered a desir-
able outcome, regardless of the underlying mechanisms. 
However, a reduction in metabolic cost could result from 
user disengagement, which is undesirable in rehabilita-
tion. Therefore, a multifaceted approach that combines 
various metrics is needed to accurately indicate the user’s 
response to different exoskeleton control strategies.

Questionnaires have been used in various studies [15–
18] and despite being subjective showed to be valuable in 
revealing aspects of user’s perception about their interac-
tion with the exoskeleton. Pisotta et al. developed a four-
factor questionnaire to assess user experience with lower 
limb exoskeletons [15], while Muijzer-Witteveen et  al. 
utilized a questionnaire to identify missing sensory infor-
mation and preferences for feedback methods among 
individuals with Spinal Cord Injury using exoskeletons 
[16]. Additionally, Lee et al. emphasized the importance 

of establishing a methodology for user evaluation of exo-
skeletons to enhance safety, convenience, and usability. 
They highlighted the need for detailed evaluation ele-
ments and considerations for different user classes [17].

Although separate performance indicators are uti-
lized in the field, none fully encapsulate the nuances of 
human–robot physical interaction, obstructing the pre-
cise adjustment and customization of lower limb exoskel-
eton support [19]. Questionnaires are also subjective and 
prone to biases.

Quantifying and controlling human–exoskeleton 
interaction plays a key role in optimizing the user expe-
rience and performance of lower limb exoskeletons for 
rehabilitation as well as power augmentation applica-
tions [20]. In power augmentation scenarios, the user 
retains full autonomy, and the exoskeleton follows user 
commands directly or indirectly by interpreting their 
intended motion. In case of disagreement between the 
user and the exoskeleton, the exoskeleton must relin-
quish control in favor of the user [21, 22]. However, in the 
context of rehabilitation exoskeletons, human–exoskel-
eton interaction control is more challenging due to two 
primary factors. First, the user-performed motion is not 
always reliable due to musculoskeletal or motor impair-
ments [23] undermining the quality of decoded intention 
solely based on user-robot physical interaction. Second, 
the exoskeleton should encourage the user to maximize 
their engagement in motion when possible and assist or 
correct when the user is unable to perform the motion 
correctly [24, 25]. Consequently, the exoskeleton must 
seamlessly transition between the leader and follower 
roles [26].

To determine the appropriate control strategy for 
human augmentation and rehabilitation applications, it 
is crucial to understand human–exoskeleton adaptation 
as an indicator of how individuals respond to specific 
exoskeleton control strategies concerning shared motion 
control [27]. Adaptation in our context refers to the 
observed changes in user interaction strategy rather than 
adaptation of neuromotor activities to a specific pattern 
or to achieve a goal. These changes in behaviors indicate 
how users adapt their interaction strategy to the exoskel-
eton’s control over time. However, it is worth noting that 
the emerged interaction strategy can be formulated as a 
motor learning in a dyadic task.

In power augmentation, the ideal scenario involves 
users to contribute primarily by guiding the motion, 
without physical exertion [5]. The exoskeleton takes the 
responsibility of moving the human body by applying 
interaction torques or forces demonstrated by reduced 
muscle activity or metabolic rates [4]. Conversely, in 
rehabilitation, users must often be guided to increase 
their muscle activity and actively engage in motion 
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control [28]. The human–exoskeleton interaction tor-
ques exhibit a dual behaviour in this context. When the 
user performs the motion correctly, the exoskeleton must 
transparently follow the user, resulting in zero interac-
tion torques [13]. However, when motion correction is 
required, the exoskeleton controller should intervene. 
This intervention creates a conflict that necessitates an 
increase in the interaction torque to rectify the motion. 
Neither muscular effort nor interaction torques alone 
can discern the aforementioned conditions. For example, 
an increase in muscular effort may stem from human–
exoskeleton disagreement [23], while it can also signify 
that the human user is engaged in walking and relies on 
their motor capacity rather than on exoskeleton assis-
tance. Therefore, to compare different controllers in such 
cases, interaction torque needs to be considered along-
side muscular effort. A low level of interaction torque 
coupled with higher muscular effort suggests no physical 
disagreement, indicating that the exoskeleton is following 
the user and the user is walking with minimal assistance. 
Conversely, a higher level of interaction torque along with 

high muscular effort indicates that the user and exoskel-
eton do not share the same desired motion patterns, and 
they are fighting for control [26]. Therefore, determining 
the suitability of a controller for either power augmenta-
tion or rehabilitation applications requires a co-analysis 
of muscular effort and interaction torque.

Inspired by the above reasoning, we propose evaluating 
human–exoskeleton physical interaction by co-analyzing 
the variation of muscular effort ( �µ ) and interaction 
torques ( �τ ) as a 2D random variable in the �τ −�µ 
space, which draws the interaction portrait (IP), i.e., the 
distribution of the �τ −�µ random variable. IP stochas-
ticity is induced by natural variation in human motor 
control and motor unit recruitment. According to Fig. 1, 
we show that the phase of the IP distribution (in polar 
coordinates) indicates whether the human–exoskeleton 
interaction is developing toward yielding motion control 
to the human, to the exoskeleton, or toward an increase 
in human–exoskeleton physical disagreement. Moreo-
ver, the temporal analysis of the IP phase reveals how this 
interaction evolves over time.

Fig. 1  Regions of interaction portrait (IP). Each quadrant of the circle corresponds to different human–exoskeleton interaction modes determined 
by the variation of the normalized total muscle activation ( c2c1�µ ) with respect to the normalized total interaction torque ( c2c1�τ ) between controllers 
c1 and c2 , respectively. The first quadrant (red) indicates increased disagreement between the user and exoskeleton, resulting in an increase 
in both muscle effort and the total interaction torque. The second quadrant (green) determines the co-adaptation of the user toward participating 
in the motion as much as possible and leading the motion. The third quadrant (blue) denotes the decrease in total interaction torque and the total 
muscle effort, associated with the decrease in human–exoskeleton disagreement. Finally, the fourth quadrant (orange) denotes the condition 
at which the user yields control of the motion to the exoskeleton and minimally activates their muscles. In this case, muscle activation decreases 
while the total interaction increases since the exoskeleton has to carry the user’s body (passive dynamics) in addition to the exoskeleton dynamics
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This metric is utilized to compare a time-based torque 
controller (TBC), a recently developed hybrid torque 
controller (HTC), that computes the required joint 
torque based on kinematic states [29], and a novel torque 
controller proposed in this paper called adaptive model-
based torque controller (AMTC), that learns the user’s 
desired trajectory and employs the exoskeleton’s dynami-
cal model to generate feedforward torques. We hypoth-
esize that users will adopt different interaction strategies 
with these three controllers, expecting difficulty in main-
taining a consistent strategy with TBC, as it is blind to 
the user’s gait variability. Thus, we expect both HTC and 
AMTC to result in lower human–exoskeleton physical 
disagreement compared to TBC. Also, because of the 
intuitive adaptation mechanisms in the AMTC, we antic-
ipate users to adapt to a consistent strategy faster with 
AMTC compared to HTC. The proposed interaction 
portrait analysis enables quantitative study of the adapta-
tion mechanism in the case of each of these controllers. 
It is worth noting that TBC, HTC and AMTC were cho-
sen to showcase the IP analysis as the controller adapta-
tion methods vary among these controllers: from none, 

to implicit (state-based torque computation), to explicit 
(reference trajectory adaptation), respectively.

Methods
Feedforward control strategies
This section describes three controllers tested in our 
study.

Time‑based torque controller
Figure 2A depicts the block diagram of the Time-Based 
Torque Controller (TBC). This controller utilizes lookup 
tables to determine the desired joint torques uE by con-
sidering both the gait phase ( φ(t) ) and the estimated 
gait speed (v). To construct the lookup table, measure-
ments of exoskeleton joint torques were taken at different 
speeds while a participant walked with the exoskeleton 
governed by a high-gain PD controller. The participant 
was asked to exert the minimum voluntary effort during 
walking. The joint trajectories were controlled based on 
reference trajectories derived from the participant’s walk-
ing without the exoskeleton. The input gait phase to the 
lookup table was obtained by dividing the stride length, 

Fig. 2  Block diagram of TBC, HTC, and AMTC controllers. A Block diagram of the Time-Based Controller (TBC). A time-based gait phase 
along with the estimated gait speed are fed into a lookup table to determine the applied torque to the exoskeleton joints according to joint 
torque data recorded from the exoskeleton during high-gain joint control with the user passively following the exoskeleton (with the minimum 
voluntary contribution to the gait). B Hybrid Torque Controller (HTC) consisted of a data-driven estimator of the required joint torque along with a 
lookup table-based torque controller similar to the TBC. In this case, however, the gait phase is determined according to the exoskeleton states 
rather than time. The torque from the two different pipelines is finally combined with the weight of w = 0.75 and 1− w = 0.25 to form the applied 
torque to the exoskeleton. C Block diagram of the Model-Based Torque Controller (AMTC). The gait phase is estimated according to the exoskeleton 
joint angles and then fed into a trajectory adaptation block which learns the joint trajectory of the participant in real time and uses that trajectory 
as the reference for the exoskeleton to be fed into the forward dynamics of the exoskeleton to determine the feedforward joint torques
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calculated using the exoskeleton joint angles ( q ), by the 
stride time updated at each heel strike. For this controller, 
the gait phase ( φ(t) ) was generated based on the desired 
gait speed, following the formula φ(t) = mod(t,T ) , 
where T represents the average measured stride time 
when the participant walked without the exoskeleton at 
the desired gait speed. For more detailed information 
about the construction of the lookup table and the gait 
speed estimator, refer to [29].

Hybrid Torque Controller
Figure  2B presents the block diagram of the Hybrid 
Torque Controller (HTC), which combines the torque 
outputs of two distinct controllers [29]: the Kinematic 
State Dependent Controller (KSC) and the Gait Phase 
Dependent Controller (GPC). The KSC incorporates an 
inverse dynamics model and an Artificial Neural Net-
work (ANN) that compute the required biological torque 
for the user based on the kinematic measurements [30]. 
On the other hand, the GPC adopts the same structure as 
the TBC mentioned earlier, however, instead of relying on 
a time-based gait phase, it utilizes a real-time estimation 
of the gait phase derived from the kinematic measure-
ments [31]. The outputs of these two controllers are lin-
early combined in the HTC: uE = wuKSC + (1− w)uGPC , 
where the blending weight for all users is w = 0.75 , repre-
senting the weight assigned to the KSC output.

Adaptive model‑based Torque control
The Adaptive Model-based Torque Control (AMTC) 
depicted in Fig.  2C, leverages the estimated dynamics 
of the exoskeleton to generate joint torques for control. 
According to [32], the interaction between the Indego 
exoskeleton and the human in the sagittal plane can be 
described by the following dynamical model:

where γ ∈ R and a ∈ R
2 denote the exoskeleton 

thigh angle with respect to the gravity vector and 
its acceleration in the sagittal plane, respectively, 
q = [qh,r; qk ,r; qh,l; qh,l] ∈ R

4 represents the exoskeleton 
hip and knee joint angles, uE ∈ R

4 denotes the exoskel-
eton applied motor torques, and uint ∈ R

4 represents the 
torques arising from the human–exoskeleton interaction. 
The AMTC controller employs a dynamic compensatory 
approach. In a dynamic compensator, the exoskeleton’s 
applied torques are set equal to the exoskeleton’s pas-
sive dynamics ( uE = Ŵ(γ , γ̇ , γ̈ ,a, q, q̇, q̈) ) which ideally 
results in the transparency of the exoskeleton ( uint = 0 ). 
However, in AMTC, the exoskeleton torques are com-
puted using the desired joint angles instead of the current 
(actual) joint angles:

(1)Ŵ(γ , γ̇ , γ̈ ,a, q, q̇, q̈) = uE + uint ,

where rE ∈ R
4 are the desired exoskeleton joint angles. 

This approach ensures the exoskeleton remains trans-
parent only when the user’s joint motions match the 
desired trajectories. Otherwise, the exoskeleton will 
assist or resist the user’s motion depending on the con-
sistency between the user’s intended motion and the 
exoskeleton’s desired trajectories. To ensure that the 
exoskeleton always assists the user and avoids resisting 
their motion, the reference trajectory of the exoskeleton 
needs to be synchronized temporally with the user’s 
desired motion and matched spatially to their intended 
gait pattern. Temporal synchronization is achieved by 
defining the exoskeleton’s reference trajectory as a func-
tion of the estimated gait phase computed from the 
exoskeleton’s joint angles ( rE(t) = rE(φ(q)) ). Spatial 
consistency is ensured by adapting the reference trajec-
tory based on the minimization of the error between the 
exoskeleton’s reference trajectory and its current joint 
angles ( e = rE − q ). At each joint, the reference trajec-
tory is defined as rE = r0(φ)+�(φ) , where r0 repre-
sents the initial reference trajectory of the exoskeleton, 
and �(φ) = θTψ(φ) is the modification term. Here, ψ(·) 
represents the Fourier series basis functions with up to m 
harmonics, and θ represents the coefficients of the Fou-
rier series that are adapted similar to [23]. The adaptation 
rule is then derived to minimize J = 0.5e2 using Gradient 
Descent (with a learning rate of ǫ = 0.05):

Look at Fig. 5C for an example of joint torque generated 
by each of the described controllers, temporally normal-
ized with respect to the gait phase.

Experimental setup
The experimental setup comprised a split-belt instru-
mented treadmill (Bertec, USA), providing ground reac-
tion forces (GRF) on each belt, a lower limb exoskeleton 
(Indego, ekso Bionics, USA) with actuated hip and knee 
joints, fourteen wireless EMG sensors (Trigno, Delsys, 
USA), and a COSMED K5 wearable metabolic system 
(Albano Laziale, Rome, Italy) to measure oxygen uptake 
(VO2). Additionally, four Inertial Measurement Units 
(IMUs) (Physilog 6 s, Gait Up SA, CH) are employed to 
measure gait spatiotemporal parameters. The exoskel-
eton encoders, IMUs, load cells, and EMG sensors have 
sampling rates of 200 Hz, 128 Hz, 1000 Hz, and 2000 Hz, 
respectively. Following appropriate skin treatment, EMG 
sensors were placed on Gluteus Maximus (GMx), Biceps 
Femoris (BF), Rectus Femoris (RF), Vastus Medialis 

(2)uE = Ŵ(γ , γ̇ , γ̈ ,a, rE , ṙE , r̈E),

(3)θ̇ = −ǫ
∂J

∂θ
= −ǫ

∂J

∂e

∂e

∂rE

∂rE

∂�

∂�

∂θ
= −ǫeψ(φ).



Page 6 of 20Shushtari et al. Journal of NeuroEngineering and Rehabilitation          (2024) 21:152 

(VM), Gastrocnemius Medialis (GM), Soleus (Sol), and 
Tibialis Anterior (TA) muscles of each leg. Spatiotem-
poral gait parameters such as Minimum Toe Clearance 
(minTC), Maximum Heel Clearance (maxHC), Stance 
Time Percentage, and Stride Length are computed using 
the IMUs, as validated in previous studies [33, 34]. Before 
recording data for each subject, the COSMED K5 under-
went a calibration process following a standardized pro-
cedure [35]. Figure 3A illustrates the exoskeleton and the 
placement of the sensors within the experimental setup.

Experimental protocol
The experiment consisted of three blocks, each involv-
ing participants walking on the treadmill with the exo-
skeleton controlled by one of three different controllers: 
TBC, HTC, or AMTC. The order of the blocks was var-
ied among participants to mitigate any potential order 
effects. Within each block, participants walked at 0.4, 0.6, 
and 0.8 m/s, respectively. Each speed lasted for a dura-
tion of 100  s. For an illustration of the treadmill speed 
and the order of the controllers applied to the exoskel-
eton for participant #9, refer to Fig. 3B. Participants also 
walked on the treadmill without exoskeleton at the same 
three speeds to obtain baselines for metabolic rate and 
muscular effort, ground reaction forces, and gait spati-
otemporal parameters.

The maximum walking speed is limited to 0.8 m/s due 
to the exoskeleton’s weight and safety concerns. Lower 
walking speeds are prioritized in rehabilitation settings, 
where slow walking is crucial during the early stages of 
recovery leading to very different walking patterns and 
interaction with the exoskeleton. Additionally, the cost 
function of gait varies with speed due to gravity, poten-
tially leading to different adaptation strategies at different 
speeds [36].

A total of nine able-bodied participants (5 males and 4 
females, age: 23.4 ± 4.2 years, mass: 73.6 ± 20.2 kg, height: 
176.7 ± 9.6 cm) participated in the study. All participants 
provided informed written consent prior to the experi-
ments. The study protocol and procedures received ethi-
cal approval from the University of Waterloo Clinical 
Research Ethics Committee (ORE#41794). The study 
adhered to the principles outlined in the Declaration of 
Helsinki. The anonymized data is available at https://​doi.​
org/​10.​6084/​m9.​figsh​are.​25365​772.

Data analysis
Muscle activation
The EMG data was bandpass filtered, with cutoff frequen-
cies of 5 and 500 Hz. The signal was then full-wave recti-
fied and its envelope was computed by applying a moving 
average with a window of 100 ms. Each EMG signal is nor-
malized by its respective maximum voluntary contraction 

(MVC), computed for each muscle as the maximum meas-
ured contraction during walking on the treadmill (maxi-
mum across with and without the exoskeleton walking). 
The average muscle effort [37, 38] is computed for each 
muscle at each stride s as

where e(t) is the filtered EMG signal, Ts is the duration 
of stride s computed by heel-strike events obtained from 

µm,s =
1

Ts

∫

Ts

e2m(t)dt,

Fig. 3  A Dorsal, lateral, and frontal view of a participant 
with the Indego exoskeleton with active hip and knee joints. 
The participant is standing on the Bertec treadmill with two 
speed-controlled belts equipped with individual loadcells 
underneath each of them for GRF monitoring. Muscle activation 
is measured from both right and left leg muscles using EMG 
sensors. Gait up IMUs are clipped to the outer side of the shoes, 
right below ankle joints to measure the spatiotemporal parameters 
of gait. Oxygen uptake of the participant is measured and recorded 
at each breath through a mask connected to the gas analyzer 
carried at the back of the participant. B Treadmill speed changes 
while experimenting with the HTC, AMTC, and the TBC controllers. 
The order of the controllers was specific to participant #9 and varied 
for other participants. Participants walked with each controller 
for 300 s divided by three 100-second walking periods during each 
the treadmill speed was set to 0.4, 0.6, and 0.8 m/s, respectively

https://doi.org/10.6084/m9.figshare.25365772
https://doi.org/10.6084/m9.figshare.25365772
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vertical Ground Reaction Force (GRF) measurements, 
m ∈{GMx, BF, RF, VM, GM, Sol, TA}, is the muscle 
index. The muscle effort over all strides with controller 
c ∈ { TBC, HTC, AMTC} and speed v ∈{0.4, 0.6, and 0.8 
m/s} is, therefore, computed as

where Sc,v is the set of all strides during walking with exo-
skeleton at treadmill speed v with controller c. Finally, 
the total muscular effort ( µtot

c,v ) was determined as the 
weighted average of the muscle efforts across all mus-
cles. Physiological cross-sectional areas (PCSA) of mus-
cles, obtained from [39], were employed as the weights 
for total muscular effort computation. This weighting 
scheme partly accounts for the differences in force con-
tributions across muscles. It is worth noting that the 
torques generated by particular muscles also depend on 
their moment arms and the interaction between active 
and passive (tendon) structures, however, the aim of our 
EMG analysis is to estimate the overall muscular effort 
rather than the joint torque or power. The use of PCSA 
weights allows us to compare the activation of different 
muscles and sum them accordingly, which provides a 
more comprehensive measure of muscular effort.

Interaction torque
The human–exoskeleton interaction torque is estimated 
based on Eq. 1, given by

The mean absolute interaction torque is then calculated 
for each joint as:

where j ∈ {hipright , kneeright , hipleft , kneeleft } is the joint 
index. The overall absolute interaction torque with each 
controller is computed as

The total interaction torque ( τ totc,v  ) is finally obtained for 
each controller as the average interaction torque across 
all joints.

VO2
VO2 is computed for each breath. To normalize the VO2 
measurements across participants, the average VO2 dur-
ing treadmill walking with no exoskeleton at each speed v 
is computed as:

µc,v,m =
∑

s∈Sc,v

Tsµm,s,

(4)uint = Ŵ(γ , γ̇ , γ̈ ,a, q, q̇, q̈)− uE .

τj,s =
1

Ts

∫

Ts

∣

∣uint,j(t)
∣

∣dt,

τc,v,j =
∑

s∈Sc,v

Tsτj,s.

where n is the breath index and Nv is the set of all breaths 
during walking with no exoskeleton at treadmill speed v. 
The normalized VO2 during exoskeleton walking is then 
computed as

where Nc,v is the set of all breaths during walking with 
the exoskeleton at treadmill speed v with controller c . The 
first five breaths after a treadmill or controller switch are 
excluded to eliminate the transition effect on metabolic 
rate due to cardiovascular system adjustment. The num-
ber of excluded steps is chosen based on the experiment 
design, where the treadmill speed started from ultra-slow 
(0.4 m/s) and increased in two steps. Given that our car-
diovascular system reacts faster in case of speed increase 
compared to speed decrease, we expected to observe 
faster transitions in the collected metabolic rate, which 
was verified as shown in Fig.  5. The sum of the VO2 
measurements is also obtained for all of the exhales for 
each controller as

Human–exoskeleton interaction portrait (IP) analysis
To examine the impact of each controller on the human–
exoskeleton interaction dynamics, we analyzed the 
changes in total interaction torques ( �τ ) relative to vari-
ations in total muscular effort ( �µ ) when switching from 
controller c1 to controller c2 ( c1 → c2 ). For each treadmill 
speed (v), these changes are computed as:

After max-normalization of �τ and �µ across all strides 
of each walking speed, controller, participant, separately, 
we compare their variation with respect to each other. 
Figure 1 illustrates the possible outcomes:

•	 Disagreement Increase ( �τ > 0 , �µ > 0) This con-
dition is associated with an increase in both the total 
interaction torque and the total muscular effort, 
indicating that switching from controller c1 to con-
troller c2 has led to an elevation of human muscular 
effort. Consequently, their contribution to motion 
has increased. This, however, has resulted in a higher 
total interaction torque with the exoskeleton, imply-
ing that the applied torques by the exoskeleton are 

η̄v = mean
n∈Nv

ηn,

η̂c,v,n = {ηn/η̄v|n ∈ Nc,v},

η̂totc,v =
∑

n∈Nc,v

η̂c,v,n.

c2
c1
�τ totv = τ totc2,v

− τ totc1,v

c2
c1
�µtot

v = µtot
c2,v

− µtot
c1,v

.
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not aligned with the user’s desired motion. As a 
result, the user needs to exert additional effort to cor-
rect the motion while contending against the applied 
torques from the exoskeleton. Thus, the increased 
interaction indicates a lack of harmony between the 
user’s intentions and the assistance delivered by the 
exoskeleton.

•	 Disagreement Decrease ( �τ < 0 , �µ < 0) If con-
troller c2 demonstrates improved consistency com-
pared to c1 with the user’s desired motion, the user 
will experience less resistance from the exoskeleton. 
This reduced discordance between the exoskel-
eton and the user’s intended movements results in 
decreased total muscular effort and overall exertion 
by the user.

•	 Human Yields Control to Robot ( �τ > 0 , �µ < 0) 
In this case the user may relinquish motion control 
to the exoskeleton reducing their voluntary contri-
bution to the gait demonstrated by lower muscular 
effort. Consequently, the exoskeleton must gener-
ate the necessary torque to facilitate the movement 
of both the exoskeleton and the passive dynamics of 
the human body. The increase in human–exoskel-
eton interaction torques, in this scenario, is not due 
to conflicts between the exoskeleton’s motion and the 
user’s desired motion but rather because the exoskel-
eton is effectively carrying the user’s body.

•	 Human Takes Control ( �τ < 0 , �µ > 0) In a con-
trasting scenario, the exoskeleton may encourage the 
user’s active participation in the motion, resulting in 
an increased level of muscular effort. Consequently, 
the total interaction torque between the user and 
the exoskeleton may decrease. This reduction occurs 
because the human and exoskeleton motions are syn-
chronized in time and consistent in space, creating a 
harmonious alignment between the two.

We conducted the aforementioned analysis at various 
speeds for the TBC→HTC, TBC→AMTC, and HTC→
AMTC cases. We also performed a stride-wise analysis 
for the TBC→HTC and TBC→AMTC scenarios, which 
involves computing changes of total interaction torque 
and muscle effort at each stride during the HTC and 
AMTC controllers as

where c ∈ {HTC, AMTC} . These calculations allowed 
us to analyze the precise changes in interaction force 
and muscular effort for each stride during the HTC and 
AMTC controllers in relation to the TBC controller. For 

TBC
c�µv,s = µc,v,s − µtot

TBC ,v

TBC
c�τv,s = τc,v,s − τ totTBC ,v ,

the sake of illustration, �τ and �µ are graphed in polar 
coordinate normalized to unit circle.

Interaction portrait is a relative measure that compares 
human adaptation under different control strategies. If a 
baseline value is provided by a physical therapist or a ref-
erence controller, this metric can evaluate individual con-
trollers. Additionally, interaction portrait offers clinicians 
an abstract metric that quantifies human–exoskeleton 
interaction during a gait cycle, allowing objective tuning 
of the exoskeleton assistance strategy.

Statistical analysis
To identify statistical differences, we first employed a 
Friedman test with a significance level of 0.05 to test 
group-level differences. Following the Friedman test, we 
conducted pairwise comparisons, between the blocks, 
using the Wilcoxon signed-rank test. To account for mul-
tiple comparisons between the three blocks, we applied 
the Bonferroni correction. Non-parametric tests are used 
as the normality assumption is rejected using Kolmogo-
rov-Smirnov test (p < 0.0001) performed prior to all of the 
statistical comparisons.

Results
Fig. 4 showcases example signals obtained from a typical 
participant (Participant #9) during robot-assisted tread-
mill walking with different controllers. Figure 4A shows 
the mean absolute interaction torque at the right hip joint 
(as one of the four joints we computed interaction torque 
about) for each stride. The interaction torque increases 
with an increase in treadmill speed across all blocks. Dur-
ing walking at 0.4 and 0.6 m/s, AMTC interaction torques 
are smaller than those of HTC and TBC. Figure 4B shows 
GM activation ( µc,v,m ), selected for visualization here as 
an example from seven muscles recorded on each leg, for 
each stride. Similar to the interaction torques, muscular 
effort increases at higher treadmill speeds, mostly during 
the HTC and TBC blocks. In the AMTC block, however, 
GM’s muscular effort does not change from 0.6 to 0.8 
m/s speeds. Moreover, the muscular effort is smaller dur-
ing the AMTC block compared to the two other blocks. 
The relative oxygen uptake ( ηc,v ) during the experiment 
for breath cycles is presented in Fig. 4C. As anticipated, 
the oxygen uptake increases with an increase in treadmill 
speed in the HTC, AMTC, and TBC blocks. See Fig. 10 
for further data on this participant.

An interesting observation in Fig. 4 is the variation in 
metrics associated with the TBC controller. For instance, 
Participant #9 experienced varying interaction torques 
during walking at 0.4 and 0.6 m/s, as shown in Fig. 4A. 
Conversely, during walking at 0.8 m/s, the variation in 
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the interaction torque decreases, demonstrating a more 
consistent performance by the participant. A similar 
observation is evident in the case of GM muscle activa-
tion (Fig. 4B). For further investigation, Fig. 5 illustrates 
the average profile of GM activation and hip interac-
tion torque, temporally normalized with respect to the 
gait phase during walking at 0.4, 0.6, and 0.8 m/s. Both 
metrics exhibit a large standard deviation (shaded area) 
during walking at 0.4 and 0.6 m/s, while the standard 
deviation significantly drops during walking at 0.8 m/s. 
This indicates an inconsistency in the participant’s per-
formance in both spatial and temporal aspects.

Overall performance analysis
Figure 6A shows the sum of the oxygen uptake for all par-
ticipants for each of the TBC, HTC, and AMTC blocks 

during walking at 0.4, 0.6, and 0.8 m/s. TBC and AMTC 
have the highest and lowest metabolic rate at all walking 
speeds, respectively. The AMTC-resultant metabolic rate 
is significantly less than other controllers, at 0.4 and 0.6 
m/s speeds, where AMTC resulted in 22.9% ± 17.1 (Fried-
man: p <0.05, Wilcoxon signed rank: pTBC ,AMTC <0.01) 
and 28.7% ± 12.7 (Friedman: p <0.01, Wilcoxon signed 
rank: pTBC ,AMTC <0.01) decrease in the total oxygen 
uptake, respectively, compared to TBC. The total mean 
absolute interaction torque is similarly illustrated for the 
participants in Fig. 6B. AMTC has the lowest interaction 
torque compared to TBC and HTC, indicating the least 
disagreement between the exoskeleton assistance and the 
user’s desired motion. With respect to the TBC, AMTC 
shows 17.1 ± 12.5%, 12 ± 15%, and 9.2 ± 7.7% reduction in 
human–exoskeleton total interaction during walking at 

Fig. 4  Examples of a typical participant’s (#9) experimental data; for ease of visualization and interpretation, only the interaction torque at the right 
hip and activation of one of the muscles are illustrated here along with the relative oxygen uptake. A The mean absolute interaction torque 
at the right hip at each stride with each controller and speed for Participant #9. B Normal muscle activation for the Gastrocnemius Medialis (GM) 
at the right leg. The dashed line represents average activation during no-exoskeleton walking. GM was chosen since it showed the strongest 
sensitivity to changes in the controller. C Relative oxygen uptake with respect to no exoskeleton walking for each breath for each controller 
and speed. The oxygen uptake has increased with the increase in treadmill speed
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0.4, 0.6, and 0.8 m/s speeds, respectively. The difference 
is statistically significant at 0.4 m/s walking (Friedman: 
p <0.05, Wilcoxon signed rank: pTBC ,AMTC <0.01). Com-
pared to HTC, AMTC shows 19.8 ± 21.1%, 17.9 ± 10.1%, 
and 18.1 ± 9.9% reduction in human–exoskeleton total 
interaction. These differences are statistically significant 
in the case of walking at 0.6 m/s (Friedman: p <0.05, Wil-
coxon signed rank: pHTC ,AMTC <0.004) and 0.8 m/s (Fried-
man: p <0.001, Wilcoxon signed rank: pHTC ,AMTC <0.01) 
walking.

Figure 6C shows the total muscle effort for participants’ 
right legs during walking at 0.4, 0.6, and 0.8 m/s across 
the three different controllers. Natural walking without 
the exoskeleton has the lowest total muscle effort com-
pared to other cases in which the exoskeleton is involved. 
This is expected as wearing the exoskeleton adds about 
17  kg of extra weight to the body resulting in higher 
muscle effort. Among the three controllers, TBC has the 
highest total muscular effort at all speeds. AMTC and 
HTC’s total muscular effort are close in all cases while 

Fig. 5  Muscle activation, interaction torque, and exoskeleton applied torque profiles with respect to the gait phase for participant #9. A The 
average normalized muscle activation pattern for the TBC, HTC, and AMTC blocks for the right Gastrocnemius Medialis during walking at 0.4, 0.6, 
and 0.8 m/s. The shaded area represents the standard deviation of the muscle activation about their mean value. Similarly, the average human–
exoskeleton interaction torque and exoskeleton joint torques at the right hip are plotted in B and C, respectively

Fig. 6  The average performance metrics for each treadmill speed and controller across participants. A The sum of the relative oxygen uptake 
across all the strides for each speed in each controller block graphed for each participant. The bars show the average of the sum of the oxygen 
uptake across all participants. Similarly, the average total absolute value of the human–exoskeleton interaction and total normalized muscle effort 
are graphed in B and C, respectively. Asterisks indicate statistical difference between the median of the compared populations
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AMTC is slightly lower and higher during walking at 
0.4 and 0.6 m/s, respectively. None of the identified dif-
ferences are statistically significant (Friedman: pv=0.4 = 
0.506, pv=0.6 = pv=0.8 = 0.057). Further results in regard 
to the comparisons of ground reaction force and gait spa-
tiotemporal metrics with each of the controllers are dis-
cussed in subsection B.2.

Interaction portrait analysis
Figure 7 compares the examined controllers one by one 
during walking at 0.4, 0.6, and 0.8 m/s by illustrating the 
average change in the max-normalized total muscular 
effort with respect to the change in the max-normal-
ized total interaction torque (the average IP is plotted 
by a single vector for each participant). To compare 

Fig. 7  Comparing the average interaction portrait for each pair of controllers. The average interaction portrait (IP) depicted according 
to the average total muscle effort and the average total human–exoskeleton interaction for each participant computed at each of the 0.4, 0.6, 
and 0.8 m/s speeds for the TBC→HTC, TBC→AMTC, and HTC→AMTC illustrated in A, B, and C, respectively. The yellow areas denote the area 
between 25 and 75 percentiles
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the IP results of participants more easily, Fig. 7A shows 
the average IP for HTC compared to TBC, denoted as 
[HTCTBC�τ totv ,HTCTBC �µtot

v ] . During walking at 0.4 and 0.6 
m/s, participants adapt differently to HTC compared to 
TBC, as the average IP vectors are spread in all quad-
rants. During walking at 0.8 m/s, however, the major-
ity of average IP vectors fall within the fourth quadrant, 
indicating that most participants yield control to the 
HTC-controlled exoskeleton. This observation aligns 
with participants exhibiting the lowest total muscular 
effort when walking with an HTC-controlled exoskel-
eton, as shown in Fig. 6C. Similarly, Fig. 7B presents the 
average IP vectors of AMTC compared to TBC, denoted 
by [AMTC

TBC �τ totv ,AMTC
TBC �µtot

v ] . Unlike HTC, AMTC effec-
tively decreases user-exoskeleton disagreement at all 
tested speeds, as indicated by the majority of average IP 
vectors concentrated in the third quadrant. To further 
examine, Fig. 7C compares the HTC and AMTC control-
lers, denoted as [AMTC

HTC �τ totv ,AMTC
HTC �µtot

v ] . It shows that 
compared to HTC, participants lean more toward con-
tributing to the motion rather than yielding control to the 
exoskeleton with AMTC, as most of the average IP vec-
tors fall around the border of the second and third quad-
rants at all three speeds.

Individual adaptation strategy
We analyzed the dependency of user adaptation strategy 
formed in interaction with each of the HTC and AMTC 
cases with respect to the TBC. To this end, we first com-
puted the average total muscular effort and interaction 
torque in TBC. We then computed the total muscular 
effort and interaction torque for each stride in the HTC 
and AMTC cases. For each stride, the difference in total 
muscle effort and interaction torque is then computed 
with respect to the TBC. Figure 8 shows the stride-wise 
IP distribution of the TBC→HTC ( [HTCTBC�τv,s,

HTC
TBC �µv,s] 

in red), and TBC→AMTC ( [AMTC
TBC �τv,s,

AMTC
TBC �µv,s] in 

blue) for each participant separately during walking at 0.8 
m/s. The graphs are ordered from left to right and top to 
bottom, corresponding to a monotonic increase in par-
ticipants’ body mass. According to the graph, except for 
participant #9, our lighter participants leaned towards 
contributing more to the gait and leading the motion, 
with either HTC or AMTC, as their IP is consistently 
distributed in the third quadrant. On the other hand, 
heavier participants in our experiment tended to relin-
quish control and passively follow the exoskeleton. This 
behaviour was particularly noticeable in the two heaviest 
participants, who consistently adopted this strategy with 
the HTC, resulting in their IP distribution falling in the 
fourth quadrant. In contrast, their IP distribution for the 
AMTC was more widely spread.

The strength of the adopted co-adaptation strategy is 
proportional to the IP radial distribution. Accordingly, 
the higher radial coordinates distribution of TBC→
AMTC compared to TBC→HTC for participants #2, 
3, 4, and 5 reveals that AMTC-controlled exoskeleton 
led users to adopt a more consistent strategy compared 
to the HTC case. Participants #8 and 9, as exceptions, 
adopted a more consistent strategy during HTC. Figure 8 
also reveals that Participant #9 did not adopt a strong 
strategy in either the HTC or AMTC cases.

Discussion
Human adaptation
The interaction torques and GM muscle activity during 
walking with TBC exhibited different variations across 
walking speeds (as shown for a typical participant); with 
higher variations during 0.4 and 0.6 m/s and lower vari-
ations during 0.8 m/s. The inherent difference between 
the TBC and the other two controllers can explain this 
observation. During the TBC block, the feedforward 
torque is generated regardless of the user’s performance, 
and the exoskeleton has no capacity for adapting to the 
user. Therefore, it is entirely up to the user to adapt to the 
torque delivered by the exoskeleton. During walking at 
0.4 and 0.6 m/s, Participant #9 was unable to adjust their 
gait timing to the exoskeleton, resulting in inconsistent 
interaction with the exoskeleton. At the higher speed, 
however, this user was able to synchronize their gait with 
the exoskeleton assistance and, therefore, adopted a solid 
interaction strategy, which emerged with a lower varia-
tion in all the above metrics. This has not been the case 
for all participants, as six of them were not successful in 
effectively synchronizing their walking to the TBC-con-
trolled exoskeleton at any speed. These results highlight 
the importance of human–robot co-adaptation, which is 
not achievable with a time-based controller. TBC, a con-
troller with a non-zero interaction torque, was selected 
as the baseline rather than a passive or transparent con-
troller, as it allows us to fully utilize the capacity of the 
IP analysis. With a passive exoskeleton as a baseline, the 
user has the burden of moving the inertia of the robot, 
resulting in increased muscular effort, influencing their 
adopted strategy. In turn, any well-designed assistive 
controller is expected to result in an IP which falls only in 
quadrants 3 and 4 if compared to a passive exoskeleton. 
Conversely, a transparent controller eliminates physi-
cal interaction, making it less suitable as a baseline for 
comparison. It can be seen that any assistive controller 
would result in IP values that fall in the right-hand-side 
quadrants when compared to a transparent controller as 
a baseline. As presented in Fig. 9, some participants were 
able to adjust their timing with the TBC and benefit from 
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its assistance, allowing users to decrease their muscular 
effort. This behaviour would not be exhibited in the case 
of walking with passive or transparent exoskeleton con-
trol. Moreover, we intentionally implemented no adap-
tation capacity in the TBC to keep everything fixed and 
allow users to adapt themselves to a fully predictable 
assistance.

Additionally, in this study, we did not calibrate the 
torque of controllers with each participant’s body mass. 
This was avoided mainly to maintain  a similar range of 
torques for all three controllers and to keep the compari-
son fair. Such calibrations, which is inherent to HTC, can 
provide more personalized torques and affect the user 

interaction strategy which can be studied using IP in the 
future.

Importance of IP analysis
In Fig. 6, the lower total muscular effort during walking 
with the HTC and AMTC compared to TBC is consistent 
with their lower metabolic rate with respect to the TBC, 
indicating that both controllers reduce the walking effort 
more than the TBC-controlled exoskeleton. Muscular 
effort has been previously used to assess walking effi-
ciency and user engagement. The main shortcoming of 
such analysis is that it is blind to the physical interaction 
between the user and the exoskeleton. For instance, the 

Fig. 8  Interaction portrait distribution along with their polar histogram for HTC and AMTC blocks with respect to the average total muscle effort 
and total interaction torque across all strides during the TBC block graphed for each participant plotted for walking at 0.8 m/s. The radial coordinate 
of data points is normalized with respect to the maximum radius computed across all participants’ strides. Participants are arranged increasingly 
according to their body mass. The polar histograms show the concentration intensity of the depicted points. Each bin of the histogram covers π/6 rad



Page 14 of 20Shushtari et al. Journal of NeuroEngineering and Rehabilitation          (2024) 21:152 

decrease in muscular effort, which has often been used 
as an indicator of improved gait [5], may be due to the 
user relying fully on the exoskeleton and lack of engage-
ment in motor tasks. The increase or maintenance of cer-
tain levels of muscular effort alone could be difficult to 
interpret, as it may be due to user engagement or disa-
greement between the user and the exoskeleton. IP analy-
sis is an effort to remove such ambiguity by joint analysis 
of muscular effort and interaction torque. According to 
Fig. 6B, HTC resulted in higher interaction torque com-
pared to the TBC. This indicates that even though HTC 
and AMTC both reduced users’ metabolic rate and mus-
cular effort, they encouraged users to adopt two differ-
ent interaction strategies. IP analysis in Fig.  7 reveals 
that with the HTC controller, users relinquished control 
to the exoskeleton, passively following the exoskeleton’s 
motion. In contrast, AMTC encouraged users to lead the 
motion more actively. Our IP analysis suggests that the 
HTC controller is particularly well-suited for applica-
tions requiring human augmentation, such as in indus-
trial settings for workers or healthcare environments for 
nurses. In these contexts, the primary goal is to minimize 
human exertion, thereby enhancing operational capa-
bilities and safety [40]. Conversely, the AMTC controller 
shows greater promise in rehabilitation contexts for indi-
viduals with residual motor functions, such as those with 
incomplete spinal cord injuries or post-stroke conditions. 
Here, the imperative is to actively involve the user in task 
execution, thereby amplifying their motor functions and 
accelerating the recovery processes [41].

Figure  7 also demonstrates that different participants 
adopted a more consistent strategy with AMTC com-
pared to the HTC, as the average IP vectors across par-
ticipants exhibit lower variation with AMTC compared 
to the HTC controller.

IP distribution itself can also shed light on the strength 
of the adopted strategy in each participant depending on 
the IP radial coordinate. This is more evident in Fig.  8 
where each point of IP represents the difference in mus-
cle effort and interaction torque obtained for each stride. 
As an example, the IP analysis in Fig. 8 reveals that Par-
ticipant #4 (2nd row, 1st column) and Participant #5 (2nd 
row, 2nd column) adopted the same interaction strategy 
with the AMTC controller compared to the TBC. This 
is, nevertheless, more significant for Participant #4 due 
to the larger radial coordinates of the distributed points 
compared to those of Participant #5.

Using the IP analysis, it is also possible to track the evo-
lution of the adopted strategy across strides at each walk-
ing speed. Figure 9, as an example, shows the evolution 
of the IP phase for each of the TBC→HTC and TBC→
AMTC comparisons for participants #5 and #4, respec-
tively. As the angular coordinate of IP shows the essence 
of the adopted strategy, its variation is an indicator of how 
consistent that strategy is. Therefore, implied by the large 
variation in the IP phase, Participant #5 converged to a 
consistent interaction strategy with neither the HTC nor 
AMTC controllers during 0.4 m/s walking. Assuming a 
dynamic primitive framework for human movement con-
trol, ultra-slow walking may lead to very different walking 

Fig. 9  Evolution of IP phase at each stride at different walking speeds for two sample participants. The top and bottom rows depict IP phase 
evolution during walking at 0.4, 0.6, and 0.8 m/s for each of the TBC→HTC and TBC→AMTC cases for participants #5 and #4, respectively
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patterns and interaction with the exoskeleton due to pos-
sible limitations of the human dynamic primitives and 
movement segmentation [42–45]. The difficulty in main-
taining smoothness and continuity, therefore, explains 
the lack of convergence to a consistent interaction with 
the exoskeleton while walking at 0.4 m/s. During walking 
at 0.6 m/s, however, the user adopted a more consistent 
strategy using AMTC, evidenced by low variations in the 
IP phase. In the case of the HTC controller, the partici-
pant’s strategy remained inconsistent. It was only during 
walking at 0.8 m/s that Participant #5 was able to con-
verge to consistent interaction strategies both with the 
AMTC and the HTC controllers. Our IP analysis, in this 
case, shows that AMTC decreased the human–exoskel-
eton interaction, but the user did not completely obtain 
the motion control or yield the motion to the exoskele-
ton, as the IP phase is still in the third quadrant. In the 
case of the HTC controller, the user has relied more on 
the exoskeleton assistance since the IP phase is primarily 
concentrated in the 4th quadrant. Participant #4, in con-
trast to Participant #5, converged to a consistent inter-
action with the exoskeleton at all three walking speeds. 
The HTC controller, regardless of the walking speed, has 
guided the participant to rely more on the exoskeleton as 
the IP phase is mostly concentrated on the border of the 
3rd and 4th quadrants. In the case of the AMTC control-
ler, however, we observe that as the gait speed increases, 
the user strategy develops more toward leading the gait 
and contributing to motion control, evidenced by an 
83-degree shift in the average IP phase during walking at 
0.8 m/s compared to 0.4 m/s.

These results showcased the ability of IP analysis to 
provide an objective comparison of different exoskeleton 
controllers, the adopted interaction strategy by the user, 
as well as evaluation of user-exoskeleton co-adaptation. 
Besides offline analysis, IP addresses the lack of a quan-
titative metric to demonstrate human interaction with 
exoskeletons in a human-in-the-loop framework. It pro-
vides designers with an easily embeddable metric to tai-
lor the exoskeleton controller to the unique requirements 
of each application or participant [46].

IP focuses on the co-analysis of muscle activity and 
interaction torque to evaluate human–exoskeleton inter-
action. While it does not directly provide information on 
kinematics, it offers a unique perspective on the roles of 
the user and exoskeleton, as well as their co-adaptation 
strategies, which are not easily discernible through tradi-
tional kinematic analysis alone. In the context of individ-
uals with motor impairments, distinguishing the user’s 
possible compensatory strategies from the intended exer-
cises is crucial [47, 48]. This can be achieved through kin-
ematic and electromyography analyses. IP analysis can 
complement kinematic analyses by providing insights 

into how each user responds to different assistive con-
trollers and alters their muscle activity and interaction 
torque over time, which can be indicative of their engage-
ment in motor control. For example, integrating IP analy-
sis with kinematic analyses similar to the approach used 
by Ishmael et  al. [49], where biological residual torque 
was estimated using inverse dynamics to understand the 
torque required for specific movements, can offer a more 
comprehensive understanding of patient interaction with 
the exoskeleton. Kinematic data can provide detailed 
information on joint angles and movement patterns, and 
IP can offer insights into the underlying muscle activity 
and interaction forces that drive these movements. This 
combined approach can help identify assistive control 
strategies more effectively and provide a holistic view 
of patient-exoskeleton interaction, ultimately leading to 
better customization of exoskeleton control strategies to 
meet each individual’s needs.

It is also notable that, user physical interaction and 
muscular effort under the baseline controller were aver-
aged across gait cycles. For each step of the tested con-
trollers, the distance from these means was calculated 
to obtain the IP distributions. If the baseline control-
ler measurements are skewed, a Bayesian approach or 
Mahalanobis distance could offer a more accurate com-
parison. Moreover, to compute IP points, we abstracted 
each stride’s information into a single quantity while user 
strategy may be different alongside the gait phase. For 
example, the user may prefer to rely on the exoskeleton 
only during the swing phase while leading the motion 
during the stance phase. Extensions, such as separate IPs 
for stance and swing phase, can be easily computed in 
future if needed for analysis and decision making of the 
designers and physical therapists.

Conclusion
W e proposed a new metric for the analysis of human–
exoskeleton interaction (interaction portrait) and 
employed it in investigating the effect of three feed-
forward controllers in enhancing human–exoskeleton 
interaction during assisted treadmill walking at different 
speeds. Through interaction portrait analysis, we found 
that the HTC controller demonstrated a more suitable 
performance for human augmentation along with reduc-
ing muscle activation and metabolic cost. On the other 
hand, the AMTC controller, also proposed in this study, 
proved to be more suitable for rehabilitation applica-
tions, as it promoted user reliance on their own muscular 
capacity by making the exoskeleton transparent.

Furthermore, we observed that the human adaptation 
pattern facing each of the HTC and AMTC controllers 
was influenced by the participants’ weight. Individu-
als with lower weight tended to take control with the 
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AMTC controller, while heavier participants were more 
inclined to relinquish control when interacting with 
the HTC-controlled exoskeleton. IP analysis has been 
only performed to evaluate the able-bodied individuals’ 
interaction with exoskeletons. As the next step of this 
research, we plan to analyze the interaction portrait of 
motor-impaired individuals with exoskeletons equipped 
with different assist-as-needed controllers to provide a 
meaningful and objective comparison of these control-
lers. Developing a probabilistic framework for interaction 
portrait analysis, considering interaction power instead 
of interaction torque are considered as future directions 
of this work.

Appendices
Appendix A: complementary example data

Figure 10A illustrates the modifications made to the hip 
reference trajectory ( �rhip ) during the AMTC block. 
These modifications occur after the HTC block and 
before the TBC block, as depicted in (Fig. 3B), across 0.4, 
0.6, and 0.8 m/s walking speeds. Similarly, Fig. 10B show-
cases the adaptation of the Fourier coefficients ( θ ) and 
their convergence pattern during the AMTC block dur-
ing walking at 0.4 m/s. The Fourier coefficients begin to 
adapt as soon as that block starts. It takes approximately 
20 s for them to converge, and they subsequently exhibit 
minor oscillations around their converged values until 

the treadmill speed is switched to 0.6 m/s. This change in 
treadmill speed induces new walking conditions, result-
ing in distinct gait patterns. Consequently, the Fourier 
coefficients converge toward a new set of steady-state val-
ues. A similar pattern emerges when the treadmill speed 
is switched to 0.8 m/s. Pearson correlation between the 
vertical Ground Reaction Forces during each of the HTC, 
AMTC, and TBC blocks and natural walking with no 
exoskeleton is plotted for each stride in Fig. 10C. Accord-
ing to the graph, the GRF patterns resemble the GRF dur-
ing natural walking at 0.6 and 0.8 m/s. During walking at 
0.4 m/s, however, the correlation slightly decreases in all 
three blocks. Finally, Fig. 10D shows the computed stride 
length. As expected, in all three blocks, the stride length 
increases with the increase in treadmill speed.

Appendix B: comparison with natural walking
To identify which controller led to a gait closer to natural 
walking, we analyzed the spatiotemporal parameters of 
gait (obtained using GaitUp Sensors) in TBC, HTC, and 
AMTC and compared them to those of each participant’s 
natural walking with no exoskeleton. Moreover, we ana-
lyzed the correlation of recorded ground reaction torques 
in the case of each controller with natural walking.

Gait spatiotemporal parameters
Figure 11A shows the maximum heel clearance in nat-
ural walking condition (with no exoskeleton) and dur-
ing exoskeleton walking at each of the TBC, HTC, and 

Fig. 10  A Evolution of the modification term for Participant #9’s right hip trajectory ( �hip ). �hip is zero before and after the AMTC block. During 
the AMTC block, the modification term of the trajectory adapts to make the reference trajectory closer to the user joint angle. At each walking 
speed, the modification pattern in the steady state converges to a different amplitude and shape, indicating that the user joint angle, and as a result, 
the exoskeleton reference trajectory has evolved to a different pattern at each speed. B Modification trajectory coefficients evolve during the AMTC 
block. Each coefficient converged to a steady state value at the end of each treadmill speed condition. After the change in treadmill speed, 
coefficients converge to new optimum levels. These levels, as mentioned for the modification term of the hip trajectory, differ for each speed. C 
Pearson correlation between the GRF of each stride with the average GRF profile recorded during natural walking without the exoskeleton. D Stride 
length was computed using the Physiolog 6 s IMU sensors
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AMTC blocks at 0.4, 0.6, and 0.8 m/s speeds. Natu-
ral walking has the greatest heel clearance, which is 
expected as the addition of the exoskeleton weight 
makes it harder for the participant to lift their foot to 
their convenient level. Among the three controllers, 
AMTC has a heel clearance closer to that of natural 
walking, indicating that maintaining the desired heel 
clearance is easier for the participant in the case of this 
controller. Similarly, Fig.  11B compares the minimum 
toe clearance, showing that at all walking speeds, nat-
ural walking with no exoskeleton has the lowest mini-
mum toe clearance. The HTC controller demonstrates 
lower toe clearance than the TBC and AMTC at all 
speeds. However, these differences are not statistically 
significant (Friedman: pv=0.4 = 0.144, pv=0.6 = 0.061) 
unless during walking at 0.8 m/s, where the HTC has 
led to a 21.3% ± 18.2 and 12.2% ± 9.3 decrease in mini-
mum toe clearance compared to the AMTC and TBC, 
respectively (Friedman: p <0.001, Wilcoxon signed 
rank: pHTC ,AMTC <0.01, pHTC ,TBC <0.01).

Regarding the stance percentage, as depicted in 
Fig. 11C, AMTC exhibits the closest behaviour to natu-
ral walking at all speeds. In all cases, TBC has a smaller 
stance percentage compared to natural walking. During 
walking at 0.4 and 0.6 m/s, HTC has the smallest stance 
percentage. During walking at 0.8 m/s, however, HTC has 
the highest stance percentage. Finally, Fig. 11D illustrates 
the stride length for each of the controllers at the three 
experimented walking speeds. The stride length generally 
increases with the increase in treadmill speed. At each 
individual speed, however, natural walking appears to 
have the smallest stride length on average, mostly com-
pared to the TBC, which has the highest stride length 
(Friedman: p <0.05, Wilcoxon signed rank: p <0.01 for 
all speeds).

Ground reaction force
Force plates are utilized to measure the ground reac-
tion forces (GRF) in the vertical, lateral, and longitudi-
nal directions. Heel strike events are detected using the 

Fig. 11  The average maximum heel clearance (A), minimum toe clearance (B), stance percentage (C), and stride length (D), computed for each 
of the 0.4, 0.6, and 0.8 m/s speeds during natural walking with no exoskeleton, TBC, HTC, and the AMTC blocks for each participant. Bars show 
the average of each metric across participants. Asterisks indicate statistical difference between the median of the compared populations
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vertical GRF, enabling the segmentation of collected data 
into individual strides. The recorded GRF during no exo-
skeleton walking is temporally normalized and averaged 
based on the gait phase as

where v ∈ {0.4, 0.6, and 0.8 m/s} is the treadmill speed 
index, s ∈ N is the stride index, Sv is the set of the strides 
during no exoskeleton walking with speed v, and f s(φ) 
is the temporally normalized GRF at stride s. To assess 
the similarity between the ground reaction force profiles 
with each controller and the natural walking without the 
exoskeleton, a normalized Pearson correlation is com-
puted as

 where Sc,v is the set of all strides during walking 
with exoskeleton at treadmill speed v with controller 
c ∈ {TBC, HTC, AMTC} excluding the first 10 steps after 
treadmill or controller switch.

Figure 12A shows the Pearson correlation of the verti-
cal ground reaction force between walking with each of 
the controllers and natural walking without the exoskel-
eton. At all speeds, TBC exhibits the most different ver-
tical GRF compared to the other controllers (Friedman: 
pv=0.4 <0.05, pv=0.6 < 0.001, and pv=0.8 < 0.05 ; Wil-
coxon signed rank: p <0.01 for all speeds). In contrast to 
the TBC, HTC and AMTC led to more natural vertical 

f̄ v(φ) = mean
s∈Sv

f s(φ),

xc,v,s = {Corr(f s(φ), f̄ v(φ))|s ∈ Sc,v},

GRF profiles with Pearson correlations greater than 96% 
at all speeds. The same observation stands for the GRFs 
in mediolateral (Fig. 12B) and antero-posterior (Fig. 12C) 
directions, where TBC shows the least natural GRF pro-
file while HTC and AMTC demonstrate closer to natu-
ral walking GRF with Pearson correlations greater than 
82.2% and 91.5% in mediolateral and antero-posterior 
directions, respectively (Friedman: p <0.01; Wilcoxon 
signed rank: p <0.01 for all cases).
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