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ABSTRACT The rise of multidrug-resistant malaria requires accelerated development 
of novel antimalarial drugs. Pharmacokinetic–pharmacodynamic (PK-PD) models relate 
blood antimalarial drug concentrations with the parasite–time profile to inform dosing 
regimens. We performed a simulation study to assess the utility of a Bayesian hierarchical 
mechanistic PK-PD model for predicting parasite–time profiles for a Phase 2 study of a 
new antimalarial drug, cipargamin. We simulated cipargamin concentration- and malaria 
parasite-profiles based on a Phase 2 study of eight volunteers who received cipargamin 
7 days after inoculation with malaria parasites. The cipargamin profiles were generated 
from a two-compartment PK model and parasite profiles from a previously published 
biologically informed PD model. One thousand PK-PD data sets of eight patients were 
simulated, following the sampling intervals of the Phase 2 study. The mechanistic PK-PD 
model was incorporated in a Bayesian hierarchical framework, and the parameters were 
estimated. Population PK model parameters describing absorption, distribution, and 
clearance were estimated with minimal bias (mean relative bias ranged from 1.7% to 
8.4%). The PD model was fitted to the parasitaemia profiles in each simulated data set 
using the estimated PK parameters. Posterior predictive checks demonstrate that our 
PK-PD model adequately captures the simulated PD profiles. The bias of the estimated 
population average PD parameters was low–moderate in magnitude. This simulation 
study demonstrates the viability of our PK-PD model to predict parasitological outcomes 
in Phase 2 volunteer infection studies. This work will inform the dose–effect relationship 
of cipargamin, guiding decisions on dosing regimens to be evaluated in Phase 3 trials.

KEYWORDS pharmacokinetic–pharmacodynamic modeling, antimalarial, Bayesian 
methods, simulation

A lmost 40% of the global population live in malaria endemic areas, with an estima­
ted 249 million clinical cases in 2022, and over 608,000 deaths (1). Following a 

significant decrease in the global malaria burden between 2005 and 2015, the estimated 
number of malaria cases and deaths has begun to increase over the recent years (1). The 
availability of effective antimalarial drugs is key to reducing the burden of morbidity and 
mortality attributable to malaria.

Artemisinin-based combination therapies (ACTs), comprising a highly potent and 
rapid-acting artemisinin derivative with a longer-acting partner drug, are the cur­
rent first-line treatment for Plasmodium falciparum malaria infection. However, partial 
resistance to artemisinins is now widespread across Southeast Asia (2) and more recently 
has emerged de novo in some African countries (3, 4), South America (5), and Papua New 
Guinea (6). Moreover, resistance to partner drugs used in ACTs, such as piperaquine, has 
also been detected in Southeast Asia (7), resulting in treatment failures. New antimalarial 
drugs are urgently needed.
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Drug development is a resource-heavy, expensive, and time-consuming process, with 
only approximately 10% of drugs tested in Phase 1 trials ultimately gaining approval 
(8). The journey from early-phase clinical trials to Phase 3 clinical trials in patients, and 
then drug registration, can take many years (9). Cipargamin is a promising candidate 
antimalarial drug that has transitioned from early-phase studies (10) to Phase 2 clinical 
trials of adult patients with P. falciparum malaria (11, 12). In particular, it is a rapidly acting 
agent with potential to replace artemisinin (13). McCarthy et al. investigated the efficacy 
of cipargamin in a Phase 2 clinical trial (14) in eight healthy volunteer patients who were 
experimentally infected with malaria and 7 days later administered a low dose (10 mg) of 
cipargamin.

These human challenge studies, also known as volunteer infection studies, involve 
purposeful infection of healthy volunteers in a controlled environment and produce 
rich data on both parasite and drug concentrations through frequent sampling (15). 
Given the ethical considerations of infecting healthy volunteers, it is imperative that 
the maximum information possible is obtained from these data in order to guide 
selection of dosing regimens investigated for future Phase 2 and 3 studies. Statistical 
methods that are tailored to generating inferences from these valuable data are thus 
required. Pharmacokinetic–pharmacodynamic (PK-PD) modeling is a typical framework 
used for such analyses. These models integrate the PK model, which describes the 
drug concentration over time, with a PD model that characterizes the drug’s effect on 
the parasite population. Ideally, a PK-PD model should capture key elements of the 
underlying biological system, while remaining sufficiently simple for practical estimation 
and interpretation of key parameters (16).

In this study, we assessed an adaptation of an existing mechanistic Bayesian 
hierarchical PK-PD model developed by Dini et al. (17), which captures the life cycle 
of the parasite within the red blood cells. With a simulation-estimation framework, we 
investigated how precisely and accurately this model was able to recover the PK and 
PD parameters. The simulation study is based on data from the Phase 2 clinical study of 
cipargamin (14).

RESULTS

A detailed description of the PK model, PD model, the Bayesian inference framework, 
and simulation study setup, including all model parameters, are provided in the Methods 
section. Definitions of the PK and PD model parameters are given in Tables 1 and 2, with 
a study overview diagram provided in Fig. 1.

Pharmacokinetic model

Cipargamin concentrations were simulated using a two-compartment PK model with 
first-order absorption, based on the estimated PK parameters and between-individual 
variability from the analysis of the Phase 2 trial PK data (14) (Table 3). A total of 1,000 
simulated data sets were generated, and each data set included the PK and PD profiles 
of eight patients, incorporating between- and within-individual variability. The simulated 
eight-patient PK data sets provided a good visual match to the trial data from McCarthy 
et al. (14) (Fig. S1). The PK model was incorporated into a Bayesian hierarchical framework 
and fitted to each of the 1,000 simulated data sets, restricting data to the cipargamin 
concentrations that correspond to the sampling times of the original Phase 2 trial (1, 2, 3, 

TABLE 1 Definitions of pharmacokinetic model parameters

Parameter (units) Definition

Cl (L/h) Clearance rate of the drug
Vc (L) Central compartment volume
Q (L/h) Inter-compartmental clearance rate
Vp (L) Peripheral compartment volume
ka (/h) Absorption rate
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4, 6, 8, 12, 16, 24, 36, 48, 72, 96, and 120 hours post-treatment), and the posterior median 
estimate of each population PK parameter was obtained. To evaluate how accurately this 
model can estimate PK parameters, we calculated the difference (absolute and relative 
bias) between the posterior median estimate of the population-level PK parameter and 
the value used to simulate the data (i.e., the “true” value). Table 4 shows the “true” 
PK parameter values used to simulate the data, the mean, 2.5- and 97.5-percentiles 
(herein, 95% intervals) across the 1,000 posterior median estimates associated with each 
simulation, and the bias (absolute and relative) in these posterior median estimates. The 
population-level PK parameters were reliably estimated, with the magnitude of relative 
bias ranging from 1.7% to 8.4%, comparing the mean of the posterior median estimates 

FIG 1 Flowchart describing the stages of the current simulation study framework.

TABLE 2 Definitions of pharmacodynamic model parameters

Parameter (units) Definition

ipl (total #) Initial parasite load. Total number of parasites at inoculation or model start
µipl (h) Initial mean parasite age
σipl (h) Standard deviation of the age distribution of the initial parasite load
PMF Parasite multiplication factor. Number of parasites released by a ruptured 

schizont at the end of the life cycle
Emax (% killed/h) Maximal hourly killing rate of the drug
EC50 (ng/mL) In vivo drug concentration when the killing rate is 50% of Emax

γ Slope of the in vivo drug concentration–effect curve
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to the “true” value. To contextualize the bias in these estimates, we compared the PK 
profile created by the “true” population parameters to the PK profiles generated at the 
1,000 posterior median parameter estimates (Fig. 2). This figure demonstrates that the 
average PK profiles for cipargamin are captured well across all simulations.

The population-level PK parameter least accurately estimated by the model was the 
absorption parameter, ka, with a mean relative bias of 8.4% [95% intervals (-9.7%, 32%)]. 
The PK profiles exhibit a short and sharp increase in drug concentration upon adminis­
tration, during which absorption may be estimated; however, the availability of only 
one to two observations from this period impedes the estimation of the ka parameter. 
When the drug concentration profiles produced from the “actual” and “estimated” PK 
parameters were compared (Fig. 2), it is clear that the discrepancies between the 
absorption parameter values do not materially impact the cipargamin concentrations 
during the distribution and elimination phases.

To investigate how well this framework can recover model parameters for a single 
experiment, we show an example of the posterior samples compared to the “true” value 
in Fig. 3. These show that the true parameter values are contained within the range of 
posterior samples for each parameter, considering pairwise correlations. Figure S4 shows 
the posterior predictive pharmacokinetic profiles for each of the eight patients in a 
single experiment, again demonstrating that the posterior model fit provides an accurate 
characterization of the pharmacokinetic profile.

Pharmacodynamic model

For each of the above simulated 1,000 data sets, the eight individual cipargamin 
concentration–time profiles were used to simulate eight parasite count profiles. These 
parasitaemia profiles were simulated for the initial 7 days of parasite growth post-inoc­
ulation. The simulated cipargamin concentration profiles were then used to simulate 
drug-induced killing of the parasites over the next 2 days, post cipargamin administra­
tion on day 7.

The PD model simulated the number of parasites aged 1 to 40 hours at each time 
point, and data for fitting the model were again restricted to the sampling times of the 
original study (72, 96, 108, 120, 132, 144, 156, 168, 172, 176, 180, 184, 192, 198, 204, 
216, 228, 240, 264, and 288 hours post-innoculation). We assumed cipargamin had an 
immediate effect on the parasite and that the concentration–effect relationship followed 
Michaelis–Menten kinetics. The PD parameter values and feasible bounds selected for 
generation of the PD profiles are provided in Table 5. The 1,000 simulated PD data sets 

TABLE 3 Population parameters (θ) and feasible lower (b) and upper (a) prior bounds for each parameter 
in the first-order absorption two-compartment pharmacokinetic model for cipargamin

Parameter (units) θ [b, a]

Cl (L/h) 5.5 [2.75, 11]
Vc (L) 64.4 [32.2, 128.8]
Q (L/h) 12.9 [6.45, 25.8]
Vp (L) 107 [53.5, 214]
ka (/h) 0.919 [0.460, 1.838]

TABLE 4 Mean PK parameter estimates [95% intervals] over 1,000 fitted data sets and associated bias 
when compared to the values used to simulate the dataa

Parameter
(units)

“True” value Posterior medians Bias

Absolute Relative (%)

Cl (L/h) 5.5 5.41 [5.08, 5.74] -0.09 [-0.42, 0.24] -1.64 [-7.64, 4.36]
Vc (L) 64.4 61.89 [46.52, 77.84] -2.51 [-17.88, 13.44] -3.90 [-27.76, 20.87]
Q (L/h) 12.9 12.36 [10.12, 14.40] -0.54 [-2.78, 1.50] -4.19 [-21.55, 11.63]
Vp (L) 107 111.44 [89.13, 139.44] 4.44 [-17.87, 32.44] 4.15 [-16.70, 30.32]
ka (/h) 0.919 0.996 [0.83, 1.21] 0.08 [-0.09, 0.29] 8.38 [-9.68, 31.66]
aEstimates are the posterior median values from a Bayesian hierarchical model.
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provided a good visual match to the parasitaemia data from the study by McCarthy et al. 
(14) (Fig. S6).

Table 6 shows the “true” PD parameter values, the mean and 95% intervals across 
the 1,000 posterior median estimates, and the absolute and relative bias in the posterior 
median estimates for each PD parameter. The magnitude of relative bias for the posterior 
median estimates of the seven PD parameters varied between 1% and 53%. As per the 
PK evaluation, we contextualized this bias by plotting a profile produced by the mean 
PD parameter estimates for each of the 1,000 simulations and compared these to the PD 
profile created by the parameters used to simulate the data (Fig. 4).

The “true” mean initial parasite age (µipl) was 2 hours but had a mean estimate of 
2.96 hours (95% quantiles: [2.69, 3.44]). Although there was a seemingly large relative 
bias (48% [34.50%, 72.0%]), this discrepancy is less than a 1-hour difference in parasite 
age. These still represent a mean age of parasites in the early ring stage of the para­
site life cycle. Estimates of the standard deviation of the initial parasite age (σipl) are 
associated with a similarly large relative bias (-53.3%, [-57.3%,-48.3%]).

When we compared the profiles produced by the estimated and “true” values, (Fig. 
4) the estimate-based profiles had slightly inflated pretreatment parasite counts due to 
overestimation of the PMF parameter. Bias in the estimation of the initial parasite age 
also resulted in the simulated profiles having approximately a 1-hour discrepancy in 
parasite trajectories. Overall, the bias in these estimates had a negligible impact on the 
general trajectory and parasite dynamics on a multi-day scale.

The estimated values of the PD parameters representing the maximum drug effect, 
Emax (“true” value = 0.23), and the cipargamin concentrations at which half of this 
effect is achieved, EC50 (“true” value = 15.1), have a relatively moderate bias with mean 
posterior median estimates (95% quantiles) of 0.29 (0.23, 0.38) and 17.27 (13.80, 21.12) 
ng/mL, respectively. These estimates correspond to mean relative biases of 26.1% for 
Emax and 14.4% for EC50. These PD parameters, together with γ, define the killing effect 
of the drug (Equation (2)). As a result, the bias in these estimates produces a noticeable 
discrepancy in the total number of parasites post-treatment (Fig. 4).

FIG 2 PK drug concentration profiles for a two-compartment model produced from “true” parameter values used in creating the simulations (black), compared 

to 1,000 profiles created from each of the 1,000 data set’s mean estimated values (gray).
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As with the PK results, we demonstrate that this framework can recover PD model 
parameters (excluding the mean and spread of the initial parasite age distribution as 
described previously) for a single experiment by presenting an example of the posterior 
samples compared to the “true” value in Fig. 5. These show that, with the exception of 
µipl and σipl, the true parameter values are well-contained within the range of posterior 
samples, considering pairwise correlations. With the observed bias in the estimation 
of µipl and σipl, these posterior distributions exclude the “true” values entirely. Figure 
S7 shows the posterior predictive PD profiles for each of the eight patients in three 

FIG 3 Bivariate distributions of posterior samples for population-level PK parameters, from the STAN fit of a single simulated data set. Red dots indicate “true” 

underlying parameter values used to simulate data.
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randomly selected eight-patient cohorts, again demonstrating that the posterior model 
fit provides an accurate characterization of the PD profile.

DISCUSSION

The results of this simulation–estimation study demonstrate that consequential 
parameters of the biologically informed PK-PD model can be estimated with moderate 
to high accuracy for Phase 2 volunteer infection studies, while parameters describing 
the initial distribution of parasite age are not estimated as well. The PK parameters 
in particular were all estimated with very low bias, whereas the estimation of certain 
PD parameters was less precise. The mean (µipl) and standard deviation (σipl) of the 
initial parasite age distribution corresponded to a relative bias of 48.0% and 53.3%, 
respectively. However, in absolute terms, this bias in the mean age corresponds to 
approximately 1 hour in the 40-hour parasite life cycle in patients observed over several 
days, which does not substantially impact the characterization of parasite dynamics. The 
Emax and EC50 parameters had less relative bias (26.1% and 14.4%, respectively), yet 
these differences did lead to observable discrepancies in the post-treatment parasitae­
mia estimates for many of the simulated data sets.

Post-treatment parasite counts are often below the limit of quantification (LOQ). This 
model accounts for the measurement uncertainty in those data points by averaging 
across the range [0, LOQ], which provides some information on the relevant parameter 
values, but less than contributed by points measured above the LOQ. This imperfect 
observation contributes to the relatively poorer estimation performance of the PD 
model, and in particular, the bias in the estimates of the Emax parameter. Generated data 
sets with more post-treatment observations under the LOQ had more biased parameter 
estimates and therefore poorer modeling accuracy (Fig. S8).

This form of the PK-PD Bayesian hierarchical model has been previously applied to 
volunteer infection and patient trial data sets (17, 18). The mechanistic form includes 
the hourly age of the parasite within the red blood cells for each individual, capturing 
the asexual reproduction cycle of the parasite and also allowing for the inclusion of the 
stage-specific action of the antimalarial drug. Estimates of the PK-PD model parameters 
can be derived using different statistical methods. Maximum likelihood methods are 

TABLE 5 Population parameters (θ) and feasible lower (b) and upper (a) prior bounds for each parameter 
in the pharmacodynamic model

Parameter (units) θ [b, a]

ipl (total #) 1800 [1500, 2100]
µipl (h) 2 [1, 24]
σipl (h) 3 [1, 14]
PMF 13 [5, 50]
Emax (% killed/h) 0.23 [0.05, 1]
EC50 (ng/mL) 15.1 [0.5, 30]
γ 5 [1, 10]

TABLE 6 Mean PD parameter estimates [95% intervals] over 1,000 fitted data sets and associated bias when compared to the values used to simulate the dataa

Parameter (units) “True” value Posterior medians Bias

Absolute Relative (%)

ipl (#×103) 1.8 1.78 [1.75, 1.82] -0.02 [-0.051, 0.018] -1.11 [-2.83, 1.00]
µipl (h) 2 2.96 [2.69, 3.44] 0.96 [0.69, 1.44] 48.00 [34.50, 72.00]
σipl (h) 3 1.40 [1.28, 1.55] -1.60 [-1.72, -1.45] -53.33 [-57.33, -48.33]
PMF 13 14.55 [13.48, 16.80] 1.55 [0.48, 3.80] 11.92 [3.69, 29.23]
Emax (% killed/h) 0.23 0.29 [0.23, 0.38] 0.06 [0.00, 0.15] 26.09 [0.00, 65.22]
EC50 (ng/mL) 15.1 17.27 [13.80, 21.12] 2.17 [-1.30, 6.02] 14.37 [-8.61, 39.87]
γ 5 4.72 [2.86, 6.83] -0.28 [-2.14, 1.83] -5.60 [-42.80, 36.60]
aEstimates are the posterior median values from a Bayesian hierarchical model.
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widely used in the analysis of data from early-phase antimalarial drug trials (9, 16). 
However, these methods have limitations that could potentially introduce significant 
bias and can fail to achieve convergence, especially for studies with small sample sizes, 
unless many of the parameter values are fixed. Additionally, the methods are restrictive 
in the incorporation of pre-existing data or knowledge. In contrast, Bayesian hierarchical 
methods have a number of advantages, such as explicitly incorporating prior knowledge 
and allowing for complex variation in both the population-level parameter values, and 
the correlations between the distributions from which patient-level values are drawn. 
Therefore, a direct empirical comparison of the two methods would not be a valid 
evaluation of their relative merit.

Pharmaceutical research and development is a costly and time-consuming proc­
ess (19). Limited understanding of drug effects can result in the waste of resources 
though suboptimal trial design, simultaneously diverting efforts from other candidate 
treatments. Therefore, careful statistical analysis and interpretation serves to not only 
maximize the information obtained from a study but also has the capacity to reduce 
further inaccuracies, potentially limiting unnecessary risks for patients and minimizing 
delays in antimalarial drug development—and translation into practice. In addition, 
further computer simulation–estimation studies can be used to determine optimal 
sampling designs for future Phase 2 and 3 studies [e.g., (20, 21)].

Extrapolation and applicability of these simulation results is necessarily limited by 
the underlying assumptions of the simulation framework. This model is applied with the 
assumption that the underlying drug and parasite dynamics are identical to the form of 
the specified model. An area for further investigation would be evaluation of the impact 
of model misspecification on recovering biological parameters via a simulation–estima­

FIG 4 PD parasite profiles produced from “true” parameter values used to create the simulations (black), compared to 1,000 profiles created from each of the 

1,000 data set’s mean estimated parameter values (gray). The dashed vertical line at day 7 indicates treatment.
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tion study, whereby PK and/or PD dynamics are simulated under a different model to 
that used for fitting [e.g., (22)].

The model presented in this paper has been shown to reliably estimate key popula­
tion-level PK–PD parameters within the sampling framework from a Phase 2 clinical 
trial of cipargamin (14), using simulated data. While some parameters are estimated 
with high bias, such as initial parasite age and spread, these differences are of small 
biological magnitude and did not materially impact the estimation of the drug effect. 
To date, there has been no published formal assessment in a simulation study of the 
ability of a Bayesian hierarchical PK–PD model to reliably estimate model parameters 
in the context of malaria. Therefore, this paper serves as an example of model perform­
ance evaluation through a simulation–estimation approach and provides confidence 
in the implementation of similar mechanistic malaria models and inference framework 
to analyze such data. This flexible model can be easily adapted to study and evaluate 
emerging antimalarial compounds in the future. By fitting this mechanistic PK–PD model 

FIG 5 Bivariate distributions of posterior samples for population-level PD parameters, from the STAN fit of a single simulated data set. Red dots indicate “true” 

underlying parameter values used to simulate data.
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to data from early-phase studies in a Bayesian framework, simulations from the resulting 
posterior distributions can inform the dosing schemes to evaluate in future phase 2 and 
3 trials.

MATERIALS AND METHODS

In this section, we describe the pharmacokinetic (PK) and pharmacodynamic (PD) 
models, the simulations generated from each, and the process of estimating model 
parameters from simulated data.

Simulation of cipargamin pharmacokinetic profiles

This study simulated cipargamin concentrations using a standard two-compartment 
first-order absorption PK model with linear elimination (Text S3), as described in the 
study by McCarthy et al. (14). The definition of each PK model parameter is given in Table 
1. A hierarchical (or mixed-effects) model was used to account for the between- and 
within-individual variability in cipargamin concentrations.

We simulated 1,000 data sets, each with PK profiles for eight patients, following the 
sampling intervals from the study by McCarthy et al. (14). Table 3 contains the population 
PK parameters, θ, from the study by McCarthy et al. (14), and lower and upper bounds 
on each PK parameter. The bounds were chosen to allow a broad range of feasible values 
spanning half to double the PK estimates from McCarthy et al. (14). The prior posterior 
distribution comparison plots (Fig. S5) demonstrate the suitability of these ranges.

Multiplicative error terms for individual observations were drawn from a normal 
distribution with a mean of 0 and variance σ2 and then exponentiated. The σ2 value was 
generated individually for each data set, drawn from a log-normal distribution centered 
at 0.1 (see Text S4 for full details).

Pharmacodynamic model

The PD model (presented and developed in (17, 23, 24) is a mechanistic representation 
of asexual parasite replication and death during the blood stage of the infection in 
the presence of an antimalarial drug, represented by a series of difference equations. 
Representing parasite age as an integer ranging from 1 to Tmax, the number of parasites 
that are a hours old at time t, N (a, t), is given by the number of parasites that were a 
− 1 hours old at time t − 1. The only unique case is the number of parasites that are 
1 hour old at t > 0: this is given by the number of parasites that are at the end of the 
life cycle (Tmax) at the previous time step, N (Tmax, t − 1), multiplied by the parasite 
multiplication factor (PMF), representing the number of new merozoites released into 
the blood following the asexual reproduction of the parasite at the end of its life cycle. 
A stage-specific killing effect of cipargamin, E(a, t), at day 7 is then applied to the 
parasites of each age (Equation (1). Thus, the difference equations governing the parasite 
distribution are:

(1)N a, t = N  a  −  1,  t  −  1 ×   1  −  E a  −  1,  t  −  1 ,                  2  ≤  a  ≤  Tmax         N  Tmax,  t  −  1 ×   1  −  E Tmax,  t  −  1 ×  PMF,                        a  =  1.         
Following inoculation, the initial age distribution, N (a, 0) is assumed to be normally 

distributed and discretized into hourly age groups. This distribution is defined by the 
number of parasites, ipl, and the mean, µipl, and standard deviation, σipl, of the para­
site age distribution. During the growth phase, as the parasites age and replicate, the 
distribution shifts.

The effect of treatment on parasites of age a at time t, E(a, t), is assumed to have 
Michaelis–Menten kinetics and depend on the drug concentration (C(t)), the maximum 
killing effect (Emax), the drug concentration for which 50% of that maximum killing effect 
is achieved (EC50), and the sigmoidicity of the concentration–effect curve (γ):
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(2)E a,  t   =  Emax C t γC t γ +  EC50γ ,   E a,  t    ∈   0,  1 .
For this model, the life cycle was set to 40 hours in order to enable a visual match to 

the periodic trends of the trial data in McCarthy et al. (14), that were not reproducible 
with a 48-h cycle. This is consistent with Wockner et al. (25), where it was found that a 
range of 38.3 to 39.2 hours was the reproductive cycle length most strongly supported 
by their data from volunteer infection studies. Although Wockner et al. were using a 
different parasite dynamic model, these estimates were based on the same strain of 
malaria and a population of healthy volunteers with no prior malaria infections, similar to 
the participants of the trial data in McCarthy et al. (14).

Simulation of parasite density versus time profiles

The 1,000 eight-patient parasite density-time data sets were simulated using the PD 
model, each corresponding to one set of simulated PK data. Each profile begins with 
a growth-phase starting from inoculation, followed by a treatment-phase from day 7 
onward. The concentration profiles of the simulated PK data were input into the PD 
equation to generate the killing effect of the drug during treatment. Individual PD 
parameters were generated via the same approach as described for the PK parameters, 
that is, patient-level parameters were drawn from population-level distributions centered 
around θ. Drug effect parameters were given by estimates from McCarthy et al. (14), and 
the parasite multiplication factor informed by (25). Table 5 contains the population PD 
parameters, θ, and lower and upper bounds on each parameter. Aside from PK input 
data, the only other factors that varied between simulations were the variance–cova­
riance matrix and noise distribution.

Estimation of pharmacokinetic and pharmacodynamic parameters

For each of the 1,000 simulated data sets, parameters were estimated in a Bayesian 
framework using a Hamiltonian Monte Carlo No U-Turn Sampler in RStan v2.21.0 
(26) using R version 4.1.1 (27). For fitting the PK model to the simulated cipargamin 
concentrations, three chains were run with 2,000 iterations each and 500 discarded as 
warm-up. This produced 4,500 posterior samples for each PK parameter, from which the 
posterior median was extracted as a central estimate of the posterior distribution.R̂, the effective sample size (neff), trace plots, and posterior predictive interval plots 
were assessed to confirm that the chains had converged and were sufficiently well-
mixed and that the posterior predictive distributions captured the simulated cipargamin 
concentration profiles accurately (Fig. S2 and S3).

For Bayesian modeling of the simulated parasitaemia data, three chains were run with 
1,000 iterations each and 400 iterations discarded as warm-up, leaving 1,800 iterations 
for analysis. This was fewer than the number of iterations for each PK data set due 
to a comparatively longer processing time to evaluate the likelihood; however, visual 
assessment of the parameter trace plots confirmed adequacy of the burn-in period and 
suitable convergence. The same diagnostics were evaluated as for the PK model fitting 
in order to ensure chains were appropriately well-behaved, and posterior predictive 
distributions characterized the data (Fig. S7). See Supplemental text S5 for information 
on the prior distributions.

Graphical representation

To evaluate the estimation accuracy of the PK-PD model, we compared the posterior 
medians to the “true” underlying input values. This comparison of the posteriors medians 
(mean [95% intervals]) is presented in Table 4 (for PK parameters) and 6 (PD parameters). 
Additionally, we plotted the hypothetical profiles that would be produced by each set of 
posterior median parameter values. These profiles are presented in Fig. 2 and 4 alongside 
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the profile that would be produced by the true population values (i.e., centers of the 
population parameter distributions).

Fig. 3 and 5 present the full distribution of all posterior samples from the STAN fit of a 
randomly selected single data set.

All statistical computing codes for the simulation and estimation steps are available at 
https://github.com/M-Tully/pkpd_model_cip.
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