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Abstract

Type 2 diabetes mellitus (T2D), a major cause of worldwide morbidity and mortality, is 

characterized by dysfunction of insulin-producing pancreatic islet β cells1,2. T2D genome-wide 

association studies (GWAS) have identified hundreds of signals in non-coding and β cell 

regulatory genomic regions, but deciphering their biological mechanisms remains challenging3–

5. Here, to identify early disease-driving events, we performed traditional and multiplexed 

pancreatic tissue imaging, sorted-islet cell transcriptomics and islet functional analysis of early-

stage T2D and control donors. By integrating diverse modalities, we show that early-stage T2D 

is characterized by β cell-intrinsic defects that can be proportioned into gene regulatory modules 

with enrichment in signals of genetic risk. After identifying the β cell hub gene and transcription 

factor RFX6 within one such module, we demonstrated multiple layers of genetic risk that 

converge on an RFX6-mediated network to reduce insulin secretion by β cells. RFX6 perturbation 

in primary human islet cells alters β cell chromatin architecture at regions enriched for T2D 

GWAS signals, and population-scale genetic analyses causally link genetically predicted reduced 

RFX6 expression with increased T2D risk. Understanding the molecular mechanisms of complex, 

systemic diseases necessitates integration of signals from multiple molecules, cells, organs and 

individuals, and thus we anticipate that this approach will be a useful template to identify and 

validate key regulatory networks and master hub genes for other diseases or traits using GWAS 

data.

T2D is a major cause of macro and microvascular morbidity and mortality worldwide. 

Clinically heterogenous, T2D involves genetic, environmental and pathophysiologic 

components that affect multiple molecular pathways and tissues6,7. Initial management of 

the disease frequently involves lifestyle modifications but usually escalates to medication 

and, often, exogenous insulin to control blood glucose. T2D prevalence increases with 

obesity and age, both of which reduce peripheral insulin sensitivity; however, most insulin-

resistant individuals do not develop T2D. Instead, a defining feature of T2D is impaired 

insulin secretion1,2. Insulin is secreted by the β cell of the pancreatic islet, a mini-organ 

composed of endocrine cells (β, α, δ, γ and ε cells) and other cell types (for example, 

endothelial, immune and pericytes), which coordinate to control glucose homeostasis8. 

Although islet dysfunction is a hallmark of T2D, it remains unclear whether this is caused 

by an intrinsic defect in β cells, a reduction in β cell number, systemic signals, or some 

combination of these factors.
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T2D has a strong genetic component; more than 400 signals have been identified 

through genome-wide association studies3,9,10. However, 90% of these single nucleotide 

polymorphisms (SNPs) are located in non-coding genomic enhancer regions, where they 

are expected to modulate β cell- and islet cell-specific gene expression, implicating β cell 

processes as a key determinant for T2D pathophysiology4,5,11–13. How population-level, 

disease-associated genetic variation relates to molecular changes in gene expression, tissue 

architecture and cellular physiology in T2D islets is not well understood. Postulated 

T2D disease processes, studied primarily in rodent models, include β cell loss and/or 

dedifferentiation, endoplasmic reticulum stress, amyloid deposition, oxidative stress, 

glucotoxicity, lipotoxicity and islet inflammation2,14. Notably, human islets differ from 

mouse islets in key features including cellular architecture, basal and stimulated insulin 

secretion, response to dyslipidemia and hyperglycaemia, and expression of islet-enriched 

transcription factors15,16, highlighting the need for studies to define initiating and sustaining 

mechanisms of islet dysfunction in primary human islets.

Recent advances in pancreas procurement from organ donors with diabetes have increased 

the availability of human tissue and isolated islets for molecular and functional profiling17–

19. However, many studies utilize only tissue or islets, and further, do not differentiate 

outcomes based on T2D duration. Since different stages of T2D may involve different 

processes, such approaches make it difficult to discern cellular and molecular causes from 

disease consequences. The association of physiological measurements with transcriptomic 

profiles of islet cells have begun to identify critical pathways for β cell function17,18, but 

integration with disease stage, tissue-based analyses and genetic risk remains a challenge. 

Exacerbating this challenge is the likelihood that heterogenous pathways are involved in 

disease predisposition: it is not yet clear whether T2D GWAS variants are uniformly 

distributed across or focally concentrated in pathways.

Here we used an integrated approach to study the pancreas and islets from donors with 

early-stage T2D (referred to here as early T2D) and controls to identify disease-driving 

molecular mechanisms of T2D. We analysed islet function both ex vivo and in vivo 

using a transplant system and performed comprehensive transcriptional analysis by bulk 

RNA sequencing of whole islets and purified β and α cells, correlating these profiles 

to functional parameters and GWAS variants. Concurrently, we assessed changes in the 

pancreatic islet microenvironment via traditional and multiplexed imaging approaches, 

including spatial cellular relationships. We found that early T2D is defined primarily by 

β cell-intrinsic defects that can be proportioned into gene regulatory modules, including an 

RFX6-governed and GWAS-enriched transcriptional regulatory network. We validated this 

network at the molecular level through targeted gene perturbation and at the population scale 

using Mendelian randomization (MR), thus demonstrating convergence of multiple layers of 

genetic risk.

Dynamic functional analysis

Focusing on early T2D as defined by a combination of disease duration and treatment 

approach, we collected pancreata and isolated islets for multimodal analysis from 

individuals with T2D (n = 20; mean disease duration 3.5 years) as well as nondiabetic 
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(ND) donors (n = 36) (Fig. 1a,b and Supplementary Table 1). Compared with age- and 

body mass index (BMI)-matched controls, basal insulin secretion in T2D islets was similar, 

but stimulated secretion was substantially reduced in response to high glucose, cyclic AMP 

(cAMP)-evoked potentiation and potassium chloride (KCl)-mediated depolarization when 

normalized by islet volume (Fig. 1c–f and Extended Data Fig. 1a–e). Inhibition of insulin 

secretion by low glucose and adrenaline was similar between ND and T2D islets, as was 

insulin content (Fig. 1g and Extended Data Fig. 1f); thus, normalization of response by islet 

insulin content showed similar reductions in stimulated insulin secretion but also showed 

reduced basal insulin secretion (Supplementary Fig. 1a–f). Together, these data suggest that 

early T2D islets ex vivo maintain insulin production and storage but have defects at multiple 

steps of the insulin secretory pathway, including those distal to glucose metabolism, which 

persist after islet isolation from the in vivo environment.

In contrast to insulin secretion, glucagon secretion under basal, stimulatory and inhibitory 

conditions, as well as glucagon content was similar in T2D islets (Extended Data Fig. 

1g–m and Supplementary Fig. 1g–l). Although there is substantial evidence of dysregulated 

glucagon secretion in T2D20, these data suggest either that α cell dysfunction is not present 

in early T2D, or that defects are present in vivo but not maintained after islet isolation. 

Stimulated insulin secretion correlated to donor HbA1c (Extended Data Fig. 1n). Therefore, 

to test whether the systemic environment contributed to β cell dysfunction in T2D islets, we 

transplanted T2D or ND islets from a subset of donors into normoglycaemic, non-insulin-

resistant immunodeficient NOD-scid-Il2rgnull (NSG) mice (Extended Data Fig. 1o). After 

six weeks in this environment, T2D islets secreted less human insulin than ND islets despite 

similar engraftment, consistent with ex vivo findings of impaired stimulated insulin secretion 

(Extended Data Fig. 1p–s). In sum, these experiments highlight that β cell dysfunction 

in early T2D persists in a normoglycaemic, non-insulin-resistant environment and suggest 

that intrinsic β cell dysregulation and/or cellular and molecular alterations within the islet 

microenvironment are key features driving reduced insulin secretion.

Islet, β cell and α cell transcriptomes

Studying β and α cells purified by fluorescence-activated cell sorting (FACS) together 

with whole islets enabled detailed appreciation of both cell type-specific and islet-wide 

transcriptional changes in T2D (Fig. 1h, Extended Data Fig. 2, Supplementary Fig. 2 

and Supplementary Table 2). Differential expression analysis highlighted that β cell genes 

involved in stimulated insulin secretion (G6PC2 and GLP1R) and mitochondrial, exocytosis, 

ion transport and protein secretion pathways were enriched in T2D β cells (Extended Data 

Fig. 2a,d). Despite diverse differentially expressed genes across sample types (Fig. 1i), 

there was considerable overlap at the level of biological pathways in which these genes are 

involved; hormone secretion, lipid metabolism and cilia organization were among the most 

enriched biological pathways across samples (Fig. 1j). In sum, parallel analyses emphasize 

common dysregulated pathways among sample types as well as cell-specific transcriptomic 

changes.
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Endocrine cell mass

To understand the context in which functional and transcriptomic changes occur, we 

comprehensively evaluated the islet architecture in pancreatic tissue from T2D donors by 

immunohistochemistry and co-detection by indexing (CODEX), a multiplexed technique 

that enables simultaneous visualization of multiple tissue compartments and identification of 

cellular phenotypes (Supplementary Tables 3 and 4 and Extended Data Fig. 3a). Images are 

available in Pancreatlas (https://pancreatlas.org/datasets/904/explore) for reader exploration. 

Since changes in endocrine cell number or ratio could explain the reduced insulin secretion 

in T2D islets, we first analysed β, α, and δ cell populations across the pancreas head, body 

and tail. Islet cell area and islet cell count from sagittal tissue cross-sections revealed that 

β and α cell mass in early T2D were similar to controls (Fig. 2a and Extended Data Fig. 

3b–g). The abundance of endocrine cells quantified by CODEX was also similar (Fig. 2b,c 

and Extended Data Fig. 3h–j). Apoptotic and/or necrotic cells were exceedingly rare in both 

ND and T2D islets (data not shown), and cells positive for chromogranin A (CHGA) but 

negative for all hormones—occasionally considered ‘dedifferentiated’ β cells—were rare 

but present in similar proportions (Extended Data Fig. 3k). Evidence of amyloid deposits, 

the abnormal buildup of β cell-produced islet amyloid polypeptide (IAPP) that manifests 

in T2D, was detectable in 75% of donors in this cohort but did not correlate to endocrine 

cell abundance or area (Extended Data Fig. 3l–m). Thus, these data suggest that changes in 

endocrine cell populations and β cell mass are not a substantial component of early T2D and 

instead point to reduction in β cell function as the predominant feature of this disease stage.

Islet microenvironment

Adequate islet vascularization and blood flow are critical for sensing and delivery of 

hormones to systemic circulation, and RNA-seq analysis highlighted enrichment in T2D 

samples for processes controlling capillary maintenance (Extended Data Fig. 4a–c). 

Morphometric analysis of islet capillary endothelial cells demonstrated that capillary size, 

but not density, was reduced in T2D islets (Fig. 2d,e), resulting in a greater distance of 

α and β cells to the nearest capillary in T2D islets (Fig. 2f and Extended Data Fig. 

4d). The phenotypic markers CD34, a cell adhesion molecule, and HLA-DR, a major 

histocompatibility class II (MHCII) receptor, were unchanged in T2D endothelial cells 

(Extended Data Fig. 4e). Similar to vascular signatures, immune activity was also detectable 

by transcriptional profiling (Extended Data Fig. 4f,g). Macrophages, the largest population 

of intraislet immune cells, did not differ between ND and T2D on the basis of abundance 

or phenotypic classification (Fig. 2g,i and Extended Data Fig. 4h). T cells, the second most 

prevalent intraislet immune population, were greater in T2D islets across all phenotypes 

(Fig. 2j and Extended Data Fig. 4i). HLA-DR+ T cells, previously observed in T2D 

islets21, were not increased, though they were more abundant in a subset of T2D donors 

(Extended Data Fig. 4j). High-dimensional data analysis using all identified cell types within 

individually annotated islets revealed a high degree of overlap between islets from ND 

and T2D donors, emphasizing that although there are subtle differences, the overall islet 

composition is similar (Fig. 2k and Extended Data Fig. 4k).
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We next performed cellular neighbourhood studies to identify differential cellular spatial 

architecture not detected by compositional analyses. A community detection algorithm 

tailored to islet cell frequencies, termed CF-IDF, categorized six different cellular 

neighbourhoods (CNs), clusters of cells with distinct cell-type compositions that were 

defined by the most enriched cell type (CN0–CN5; Extended Data Fig. 5a). A parallel 

k-means approach corroborated cellular neighbourhood classifications and similar cellular 

neighbourhood distribution between ND and T2D islets (Extended Data Fig. 5b,c). 

Endothelial cells and pericytes were depleted in β cellular neighbourhoods (CN1) of 

T2D islets, whereas these cellular neighbourhoods had higher β cell enrichment than 

ND cellular neighbourhoods (Extended Data Fig. 5d,e). Vascular cell frequencies were 

correlated between more cellular neighbourhoods in T2D compared with ND islets, whereas 

T cell frequencies were specifically correlated between endothelial cells and α cellular 

neighbourhoods as well as β cell and macrophage cellular neighbourhoods in T2D (Fig. 

2l and Extended Data Fig. 5f,g), congruent with findings from islet RNA-seq showing 

that endothelial cell-specific and immune signals were upregulated in T2D. Together, these 

results demonstrate modest changes in islet organization by vascular and immune cells in 

early T2D.

Co-expression network analyses

To understand the key gene networks that were contributing to β cell dysfunction in early 

T2D, we performed network analysis on α cell, β cell and islet samples using weighted 

gene co-expression network analysis (WGCNA) (Supplementary Fig. 3). This approach 

created modules (eigengenes) of up to 2,000 genes each, labelled by sample type and 

numbered consecutively (for example, β cells constituted modules β00–β48), that enabled 

association of transcriptomic profiles with curated gene lists, donor traits, islet functional 

parameters measured by perifusion and enrichment of open chromatin peaks to overlap 

GWAS variants (Fig. 3, Extended Data Fig. 6 and Supplementary Table 5). Modules with 

significant correlations were then queried on the basis of their member genes for ontology 

terms to determine biological processes related to significant associations (Supplementary 

Fig. 4). We highlight noteworthy observations below, with results available for further 

exploration online (https://theparkerlab.shinyapps.io/Islet-RNAseq-WGCNA/).

Several β cell modules were significantly associated (FDR < 5%) with whole-body glucose 

homeostasis (HbA1c), and some of these (for example, β05 and β07) were also significantly 

enriched for genes differentially expressed in T2D β cells (Fig. 3b). Both β05 and β07 

contained genes related to carbohydrate, lipid, and amino acid metabolism (Fig. 3a and 

Supplementary Fig. 4a), with β07 significantly correlating with KCl-mediated insulin 

secretion (r = 0.49, P = 0.027; Fig. 3c). Modules significantly positively correlated with 

glucose-stimulated insulin secretion included β01 and β48 (all enriched for metabolism-

related processes), whereas β06 and β08 (both enriched for cilium movement and motility) 

were significantly negatively correlated with glucose-stimulated insulin secretion (Fig. 3c 

and Supplementary Fig. 4a). Notably, aligning functional correlations with enrichment for 

GWAS loci (Fig. 3d) enabled identification of modules that are more likely to be disease-

causing (for example, β01) as opposed to those without GWAS enrichment (for example, 

β48) that may instead represent disease-induced transcriptional changes. Analyses of α cell 
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and islet modules (Extended Data Fig. 6 and Supplementary Fig. 4b,c) further suggest that β 
cell function may be influenced by α and other non-endocrine cells residing within the islet.

Thus, this approach enables linking of transcriptional profiles to islet physiological 

parameters and facilitates prioritization of signatures based on T2D genetic risk. For 

example, cilia-related processes defined functionally correlated modules in every sample 

type and were represented proportionately on the basis of differential expression of validated 

cilia-related genes22 (Extended Data Fig. 7a,b). Further β06, β08 and α08 were enriched 

for T2D and related trait GWAS loci, suggesting a potential casual role (Fig. 3d and 

Extended Data Fig. 6d). We explored this finding briefly using tissue sections from the same 

donors and found that total cilia area within the islet was greater in T2D tissue, which was 

attributable to a higher cilia density with unchanged cilia size (Extended Data Fig. 7c,d). 

Such initial findings demonstrate how our dataset of functional, transcriptional and genetic 

linkages provides a practical foundation to design and prioritize studies of early T2D.

Targeted molecular perturbation of RFX6

To understand central transcriptional regulators that may be driving β cell dysfunction, we 

used the network analysis framework to identify ‘hub’ genes that are highly connected—

that is, whose expression highly correlates with many other genes both within and across 

modules (Fig. 4a,b and Supplementary Fig. 5). RFX6, which has been linked to both 

monogenic and polygenic forms of diabetes23–25, was more highly connected in β cells 

than other islet-enriched transcription factors; further, RFX6 was reduced in β cells at the 

transcript level in T2D (Fig. 4c). Of note, RFX6 is a member of module β01, which had the 

strongest positive association with high glucose-stimulated insulin secretion and was among 

the most significantly enriched for both GWAS variants and RFX binding motifs (Fig. 3c,d 

and Extended Data Fig. 8a). Immunohistochemistry analysis revealed a reduction in number 

of β cells expressing RFX6 in T2D (Fig. 4d,e). Together, these data support RFX6 as a 

critical β cell hub gene that may contribute to the functional deficits observed in early T2D.

To determine the role of RFX6 in adult human β cell function, we used short hairpin RNA 

(shRNA) knockdown in a pseudoislet system26 that enables robust phenotypic analyses of 

genetically altered primary cells in an islet-like context (Extended Data Fig. 8b). RFX6 
shRNA (shRFX6) pseudoislets showed β cell knockdown of RFX6 compared with scramble 

shRNA controls, but were similar in morphology and composition (Extended Data Fig. 

8c–e), suggesting that acute RFX6 reduction does not cause β cell loss. Like T2D islets, 

dynamic insulin secretion of shRFX6 pseudoislets was significantly blunted in the presence 

of secretagogues (Fig. 4f,g and Extended Data Fig. 8f,g), and although shRFX6 pseudoislets 

had a greater insulin content, proinsulin processing was similar (Extended Data Fig. 8h,i). 

In sum, not only is RFX6 decreased in T2D β cells, but the results of targeted knockdown 

are consistent with the RFX6-containing module β01 association with glucose-stimulated 

insulin secretion and strongly implicate RFX6 as a major regulator of human β cell gene 

expression required for stimulated insulin secretion.

To determine the molecular mechanism by which RFX6 knockdown affects insulin 

secretion, we processed shRFX6 and control pseudoislets (n = 7 matched donors) for 
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single-nucleus multiome profiling (Fig. 5a) to yield 15,825 (RNA) and 5,706 (assay for 

transposase-accessible chromatin (ATAC)) high-quality nuclei for downstream analysis 

(Supplementary Fig. 6a). Major islet cell types were represented across all donors and 

constructs (Fig. 5b,c, Extended Data Fig. 9a,b and Supplementary Fig. 6b,c). Data are 

available via the UCSC Cell Browser at https://theparkerlab.med.umich.edu/data/public/

cellbrowser/?ds=Pseudoislet10XMultiome for further exploration. Supporting the role of 

RFX6 as a major β cell regulator, 13% of total detected genes were differentially 

expressed in β cell nuclei compared with less than 3% in other cell types (Extended 

Data Fig. 9c). Upregulated genes were enriched for actin filament-based movement and 

synaptic signalling, whereas downregulated genes were enriched for membrane trafficking, 

autophagy and ciliary pathways (Extended Data Fig. 9d). We identified β cell-specific 

regulons that were differentially active in shRFX6 nuclei, with regulon genes being 

significantly enriched (P < 0.001) for maturity-onset diabetes of the young and insulin 

secretion pathways (Fig. 5d, Extended Data Fig. 9e,f and Supplementary Fig. 6d). Of note, 

there was common pathway overlap between shRFX6 β cell nuclei and purified T2D β cells 

(Extended Data Fig. 9g), particularly in cellular membrane and vesicle components linked 

to T2D GWAS variants and RFX6 binding motifs by module analysis (Supplementary Fig. 

6e). Together, these data highlight how reduction in RFX6 disrupts networks fundamental to 

β cell function and identifies exocytosis as a target of RFX6-mediated dysfunction in T2D β 
cells.

We observed global changes to the chromatin landscape in shRFX6 β cells (Supplementary 

Fig. 6f–h), taking peaks with smallest P values in either direction (top RFX6-sensitive 

peaks) for use in downstream analyses. These peaks were significantly enriched for motifs 

corresponding to the known chromatin modifier activator protein 1 (AP1) as well as RFX6 

and related family member motifs (Fig. 5e,f and Extended Data Fig. 9h,i) and were 

significantly enriched to occur near differentially expressed genes (Extended Data Fig. 9j), 

indicating concordance between the snATAC-seq and snRNA-seq modalities. β cell ATAC 

peaks are enriched for T2D GWAS variants4,5, and indeed, top RFX6-sensitive peaks were 

also significantly enriched to overlap with these variants (Fig. 5g,h and Extended Data 

Fig. 9k,l), emphasizing their importance in the genetic predisposition to T2D. Overall, 

these results show that RFX6 knockdown in β cells results in widespread transcriptional 

and chromatin changes that are associated with downregulated vesicle transport and 

coordinated disruption of genome-wide regulatory elements that overlap T2D GWAS 

variants, highlighting how genetic risk throughout the transcriptional regulatory network 

may mediate β cell dysfunction.

Large-scale population genetics of RFX6

To further investigate the role of RFX6 in T2D, we performed MR to test the causal 

relationship between RFX6 expression in human islets and T2D status (Extended Data 

Fig. 9m). Seven islet RFX6 expression quantitative trait loci (eQTLs) with low pairwise 

linkage disequilibrium (r2 < 0.2) from the Integrated Network for Systemic analysis of 

Pancreatic Islet RNA Expression (InsPIRE) study27 (n = 420 donors; Supplementary Fig. 

6i), a European ancestry cohort, were selected as instrumental variables. Their association 

with T2D was evaluated in a large population dataset, UK Biobank3 (n = 423,698 ND, 
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n = 19,119 T2D; Fig. 5i,j and Supplementary Table 6), selected to match the European 

ancestry of the InsPIRE cohort. Robust analysis by four complementary MR approaches 

revealed that genetically predicted decreased islet RFX6 expression is causally associated 

with increased risk of T2D (causal effect = −0.228, P = 3.98 × 10−6 from Egger; causal 

effect = −0.187, P = 0.048 from weighted median; causal effect = −0.174, P = 0.006 

from debiased inverse-variance weighted method (dIVW); causal effect = −0.152, P = 

0.038 from pleiotropy residual sum and outlier (PRESSO); Fig. 5k). Both MR-Egger and 

MR-PRESSO approaches suggest non-significant horizontal pleiotropy (effect = 0.01, P 
= 0.122 from Egger; test statistic = 6.59, P = 0.615 from PRESSO). MR of the same 

instrumental variables in a larger and more heterogeneous European T2D meta-analysis9 (n 
= 965,732 ND, n = 148,726 T2D) showed similar point estimates of the causal effect of 

RFX6 expression on T2D, however, perhaps owing to weak instrument bias (Supplementary 

Table 6) and/or the increased heterogeneity across contributing studies, these effects did not 

reach statistical significance (Extended Data Fig. 9n; for example, dIVW causal effect = 

−0.084, P = 0.065). Non-coding functional variation predicted to reduce RFX6 expression 

in islets increases T2D risk in the UK Biobank, a population-based sample of European 

ancestry, demonstrating an additional level of genetic risk converging on RFX6 in diabetes.

Discussion

The pancreatic β cell resides in the multicellular pancreatic islet mini-organ, where there are 

complex interactions between various cell types. In T2D, as in other chronic, complex, 

multi-organ diseases, teasing apart the causes, correlates and consequences of cellular 

and tissue dysfunction is challenging owing to the limited availability of primary tissue, 

constraints of sample processing at different disease stages, and in many cases, removal 

of cells from their native environment. Here, to address these challenges and identify 

early disease-driving events, we applied a comprehensive, multimodal, integrated approach 

to isolated islets and pancreatic tissue from a unique cohort of early T2D and control 

donors that included analyses of islet physiology, transcriptome and pancreas tissue cellular 

architecture. Furthermore, we integrated donor and islet functional traits with gene network 

analysis and GWAS to understand central transcriptional and genetic regulators driving β 
cell dysfunction in early T2D. Co-registration of multimodal data and clinical information 

yielded several important findings (summarized in Extended Data Fig. 10a): (1) impaired β 
cell function, a hallmark of early T2D, persisted ex vivo and in a nondiabetic environment; 

by contrast, α cell function was not changed; (2) islet endocrine cell composition was 

unchanged, although there were modest changes in the islet microenvironment including 

endothelial and immune cells; (3) transcriptional network analysis proportioned genetic 

risk into gene modules with specific functional properties; and (4) RFX6 emerged as a 

highly connected hub transcription factor that was reduced in T2D β cells and associated 

with reduced glucose-stimulated insulin secretion. We used two approaches to investigate 

the critical role for RFX6 and its regulatory network (summarized in Extended Data Fig. 

10b): (1) molecular perturbation of RFX6 in β cells of primary human pseudoislets enabled 

functional, transcriptomic and epigenomic analyses; and (2) integration of UK Biobank 

data enabled population-scale genetic relationships to be examined. Reduction of RFX6 

levels led to reduced insulin secretion defined by transcriptional dysregulation of vesicle 
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trafficking, exocytosis and ion transport pathways, mediated by genome-wide chromatin 

architectural changes overlapping with T2D GWAS variants. Furthermore, MR analysis 

revealed a significant causal association between genetically predicted decreased islet RFX6 
expression and increased risk of T2D in the UK Biobank. We also found directionally 

consistent point estimates of effect in a larger but more heterogeneous dataset from Vujkovic 

et al.9, which did not reach statistical significance. Thus, our integrated, multimodal 

studies identify β cell dysfunction that results from cell-intrinsic defects, including an 

RFX6-mediated, T2D GWAS-enriched transcriptional network as a key event in early T2D 

pathogenesis. This study serves as a blueprint for investigating complex diseases, taking a 

finding arising from unbiased genome-wide approaches and validating it at both single-cell 

and population scales.

Integration of functional, transcriptional and spatial analyses

This study demonstrates β cell functional defects ex vivo—which persist in culture and 

following transplantation into a normoglycaemic environment—but no change to insulin 

content or β cell mass. The relative contributions of impaired β cell function and/or reduced 

β cell mass have long been debated in T2D28–30. By integrating studies of pancreatic tissue 

and isolated islets from the same donors, our data indicate that β cell loss is not a major 

component in disease pathogenesis early in T2D. Further, the continued dysfunction of islets 

in a transplant setting underscores the persistence of the initial β cell defect.

Overall, the islet microenvironment in T2D was largely similar to that in ND donors. We 

identified transcriptional changes in vascular and immune signalling as features in sorted α 
and β cells as well as in whole islets and demonstrated that in situ T2D islets had subtle 

reductions in islet capillary size, increased intraislet T cells, and altered communication 

between cellular neighbourhoods. Although most T2D donors showed some evidence of 

amyloid deposits as a unique feature in the T2D islet microenvironment, only a minority of 

islets demonstrated detectable amyloid at this stage of disease. Together, these observations 

are unlikely to explain the degree of β cell dysfunction in this cohort, but given that they are 

present without any associated changes in endocrine cell composition, they may represent 

early consequences of β cell dysfunction or may act to exacerbate initial β cell-intrinsic 

defects. Further study is needed to determine whether changes to the microenvironment 

are an independent disease process or whether there is bidirectional signalling between 

dysfunctional β cells, α cells and/or other islet cell types.

Gene modules of genetic risk in early T2D

Co-expression network analysis and association with GWAS variants and physiological 

parameters enabled us to prioritize processes with physiological relevance that were 

more likely to be disease-causing rather than disease-induced. For instance, both β01 

(metabolism-enriched) and β06 (cilia-enriched) modules are associated with T2D GWAS 

variants, indicating that the regulatory circuitry related to metabolism and cilia function may 

have causative roles in the development of T2D. Notably, insulin secretion was positively 

correlated to β01, whose constituent genes were decreased in T2D β cells, but negatively 

correlated to β06, whose genes were increased in T2D β cells. These results suggest that 

β01 genes enhance insulin secretion, whereas β06 genes decrease it; thus, T2D risk alleles 
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are likely to decrease β01 gene expression and activate β06 genes, both of which would 

negatively influence β cell function. Future work directly testing key candidate genes from 

this dataset and these modules, analogous to the studies of RFX6 described here, will be 

important.

Genetic risk for complex metabolic diseases such as T2D results from the combined 

influence of many variants with small effects, with at-risk individuals likely having multiple 

parallel processes affected. This concept has been described as a ‘palette’ model31, and 

our work aids in deciphering components of the palette by proportioning genetic risk 

into cell-specific functional modules derived from transcriptome signatures across early 

stages of disease. Since this work utilizes eQTL and genetic datasets of primarily European 

ancestry, the extension of these findings as new multi-ancestry datasets emerge9,10 will be 

an important future direction. Such studies provide the opportunity to assess downstream 

consequences of an individual’s innate genetic risk by identifying specific molecular and 

functional processes that would be most affected and hopefully enabling precise targeting of 

those to achieve precision medicine in diabetes.

Role of RFX6 in early T2D β cell dysfunction

Although we did not set out to target RFX6 in this study, our unbiased multimodal analysis 

identified an RFX6 regulatory network strongly correlating with insulin secretion and T2D 

genetic risk, which provides new insight into RFX6 biology and how regulatory variants 

can influence T2D risk through key pathways. Our single-cell to population-scale results 

suggest that RFX6 exerts a disproportionate transcriptional influence on β cell state and that 

its dysregulation is a key molecular event in early T2D pathogenesis. RFX6 perturbation 

in primary human pseudoislets points to two major drivers of impaired β cell insulin 

secretion: (1) defective ion transport processes32,33 and (2) dysregulated vesicle trafficking 

and exocytosis pathways mediated by changes in chromatin accessibility. Dysregulated cilia-

related genes were in line with evidence that the RFX family of transcription factors control 

ciliogenesis34,35. Given their role in environment sensing, cell–cell communication and 

signal transduction, cilia represent a potential link between β cell-intrinsic, RFX6-mediated 

dysregulation and changes within the islet microenvironment seen in early T2D and warrant 

future study. Additional dissection of individual-level RFX6 transcriptional heterogeneity is 

an exciting topic that will be enabled by large-scale single-cell studies.

Overall, our results and prior information reveal multiple layers of genetic convergence on 

RFX6 and its regulatory network: (1) it has been known that rare coding variants in RFX6 
are associated with early-onset monogenic forms of diabetes23,24 and a recently identified 

rare frameshift variant in RFX6 is associated with T2D36; (2) we show that RFX6-altered 

binding regions genome wide are enriched to overlap common variants associated with 

T2D; and (3) we show that genetically predicted reduced expression of RFX6 from nearby 

non-coding variants is causally associated with increased T2D risk in the UK Biobank 

population dataset. Thus, these three different classes of genetic variations all converge on 

RFX6 biology in diabetes. Such a genetic convergence may be possible for other diseases 

and genes, especially transcription factors with hub properties as reported here.
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This work raises important questions about the factors or events initially dysregulate RFX6 
to begin this cascade. Given the conserved role of RFX6 in islet cell development and 

maintenance of functional β cell identity23,32,33, it may be that early defects driven by 

RFX6 dysregulation only become apparent after superimposed environmental, nutritional 

and/or age-related stressors. Alternatively, the strong enrichment of T2D GWAS variants 

in β01 (the RFX6-containing module) and the position of RFX6 as a hub gene may point 

to cumulative genetic effects compounding over time in a cascade that disrupts β cell 

homeostasis. Thus, precisely what underlies the initial RFX6 dysregulation and whether it 

can be targeted to prevent or reverse early-stage molecular and functional defects in the β 
cell should be an active area of investigation.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41586-023-06693-2.

Methods

Human participants

A total of 20 organ donors with T2D and 50 ND organ donors were used in this study; 

36 ND samples were used as controls in molecular phenotyping experiments and 14 NDs 

were used in follow up pseudoislet experiments. T2D donors were identified using a national 

network including partnerships with the International Institute for Advancement of Medicine 

(IIAM), National Disease Research Interchange (NDRI), and local Organ Procurement 

Organizations to ensure organs met inclusion and exclusion criteria19,38 and had minimal 

ischaemic time. Twenty pancreata were obtained from individuals with T2D aged 37–66 

years (mean 52 years) with T2D duration of 0–10 years (mean 3.5 years). Of these donors, 

25% were without pharmaceutical treatment (HbA1c range 6.2–9.9; mean 7.6) and 75% 

were on diabetes medication, mostly oral agents (HbA1c range 6.3–11.2; mean 8.0) (Fig. 

1a). Pancreata from ND donors (n = 25) were identified in a similar fashion. Additional 

ND donors (n = 25) were identified and studied through partnerships with the Integrated 

Islet Distribution Program (IIDP) and the Alberta Diabetes IsletCore. Detailed information 

for each donor, including donor information, sample types, and experimental usage for each 

case, is available in Supplementary Table 1. De-identified medical histories provided both 

information for T2D staging as well as clinical characteristics to correlate with generated 

data. The Vanderbilt University Institutional Review Board declared that studies on de-

identified human pancreatic specimens do not qualify as human subject research.

Some human islets used in this research study were provided by the ADI IsletCore at 

the University of Alberta in Edmonton (http://www.bcell.org/adi-isletcore.html) with the 

assistance of the Human Organ Procurement and Exchange (HOPE) program, Trillium 

Gift of Life Network (TGLN), and other Canadian organ procurement organizations. Islet 

isolation was approved by the Human Research Ethics Board at the University of Alberta 

(Pro00013094). All donors’ families gave informed consent for the use of pancreatic tissue 
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in research. This study also used data from the Organ Procurement and Transplantation 

Network (OPTN) that was in part compiled from the Data Hub accessible to IIDP-affiliated 

investigators through IIDP portal (https://iidp.coh.org/secure/isletavail). The OPTN data 

system includes data on all donors, wait-listed candidates, and transplant recipients in 

the US, submitted by the members of the OPTN. The Health Resources and Services 

Administration (HRSA), US Department of Health and Human Services provides oversight 

to the activities of the OPTN contractor. The data reported here have been supplied by 

UNOS as the contractor for the Organ Procurement and Transplantation Network (OPTN). 

The interpretation and reporting of these data are the responsibility of the authors and in 

no way should be seen as an official policy of or interpretation by the OPTN or the US 

Government.

Pancreas procurement and processing

Pancreata were processed in Pittsburgh by R. Bottino in a consistent manner that included 

multiple tissue processing and fixation methods and simultaneous isolation of islets and 

collection of pancreatic tissue from the same pancreas when possible, as previously 

described39–41. Pancreata were received within 18 h from cross clamp and maintained 

in cold preservation solution on ice until processing, as described previously41. Pancreas 

was then cleaned from connective tissue and fat, measured and weighed. Prior to islet 

isolation, multiple cross-sectional slices of pancreas with 2–3 mm thickness were obtained 

from the head, body and distal tail, further divided into quadrants, and processed into 

paraformaldehyde (PFA)-fixed cryosections as described previously41. Islet isolation was 

performed via ductal collagenase infusion and purification by density gradient as described 

previously39,41, then shipped to Vanderbilt for further analysis following shipping protocols 

developed by the IIDP. Islets were cultured in CMRL 1066 medium (5.5 mM glucose, 

10% FBS, 1% penicillin-streptomycin and 2 mM l-glutamine) in 5% CO2 at 37 °C for 24–

48 h prior to reported studies16,41,42. Pseudoislets were cultured in Vanderbilt pseudoislet 

medium26. Limitations of tissue availability and processing dictated that not all assays could 

be performed on each donor.

Assessment of native pancreatic islet and pseudoislet function by macroperifusion

Dynamic hormone secretion from ND and T2D islets and pseudoislets was assessed by a 

standardized perifusion approach that interrogates multiple steps of the insulin secretory 

pathway, a protocol that has been adopted by the Human Islet Phenotyping Program of the 

IIDP to assess over 400 human islet preparations43. The experiment was performed at a 

perifusate flow rate of 1 ml min−1 and the effluent was collected at 3-minute intervals using 

an automatic fraction collector26,44, then islets were retrieved and lysed with acid-ethanol 

solution to extract. Insulin and/or glucagon concentrations in each perifusion fraction, as 

well as total hormone content, were measured by radioimmunoassay (RIA) (human insulin, 

RI-13K, Millipore; glucagon, GL-32K, Millipore), enzyme-linked immunosorbent assay 

(ELISA) (Human insulin, 10-1132-01, Mercodia; glucagon, 10-1281-01, Mercodia), or 

homogeneous time-resolved fluorescence assay (glucagon, 62CGLPEH, Cisbio). Pseudoislet 

proinsulin content was measured by ELISA (10-1118-01, Mercodia). AUC above baseline 

hormone release was calculated with the trapezoidal method in GraphPad Prism 8.0 as 

previously described26, using the following time point boundaries: insulin 16.7 mM glucose, 
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9–60 min (1st phase 9–24 min); insulin 16.7 mM glucose + IBMX, 63–90 min; insulin 

1.7 mM glucose + adrenaline, 90–114 min; insulin KCl, 120–150 min; glucagon 16.7 mM 

glucose, 12–51 min; glucagon 16.7 mM glucose + IBMX, 69–90 min; glucagon 1.7 mM 

glucose + adrenaline, 93–117 min; glucagon KCl, 120–144 min. In addition, we compared 

hormone secretory trajectories between ND and T2D using linear mixed-effect model45 that 

takes into consideration the underlying temporal correlation. In each model, natural splines 

were employed to capture nonlinear relationships between hormone secretory trajectory and 

time. The statistical significance (P < 0.05) of the interaction between the splines and group 

indicator (1 for T2D and 0 for ND), assessed by a likelihood ratio test, confirmed the 

difference in hormone secretory trajectory between the two groups.

Human islet transplantation

Immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/Sz (NSG)46 10- to 12-week-old male mice 

were maintained by Vanderbilt Division of Animal Care in group housing in sterile 

containers within a pathogen-free barrier facility housed with a 12 h light:12 h dark cycle 

and access to free water and standard rodent chow. All animal procedures were approved 

by the Vanderbilt Institutional Animal Care and Use Committees. Between 1,000 and 

2,000 islet equivalents per mouse (n = 4–8 mice per islet preparation) were transplanted 

beneath the kidney capsule. Randomization and blinding were not applicable. After 6 weeks, 

mice were fasted for 6 h and then injected with glucose + arginine (2 g per kg body 

weight) intraperitoneally as previously described16,41,42,47. Blood samples were obtained 

before (0 min) and after (15 min) injection and human-specific insulin was analysed by 

ELISA (Alpco, 80-ISNHU-E01.1) or radioimmunoassay (Millipore, RI-13K). Animals were 

euthanized after glucose + arginine stimulation and grafts were removed, fixed, and stained 

as previously described16,40,47.

Purification of α and β cells by FACS

To assess both the β and α cell-specific transcriptional landscapes as well as global islet 

dysregulation in the short-duration T2D cohort, we purified β and α cells by fluorescence-

activated cell sorting (FACS) using well-characterized cell surface antibodies and hand-

picked isolated islets for RNA-sequencing as described previously41,48,49. In brief, 0.025% 

trypsin was used to disperse islet cells by manual pipetting and subsequently quenched 

with RPMI containing 10% FBS. Cells were washed in the same medium and counted 

on a haemocytometer, then transferred to FACS buffer (2 mM EDTA, 2% FBS, 1× PBS). 

Indirect antibody labelling was completed via two sequential incubation periods at 4 °C, 

with one wash in the FACS buffer following each incubation. Primary and secondary 

antibodies, listed in Supplementary Table 2, have been characterized previously and used 

to isolate high-quality RNA41,48–50. Of note, there is no detectable change in expression 

of β cell surface marker NTPDase3 in T2D islets49, making this primary antibody suitable 

for the present study. Appropriate single-colour compensation controls were run alongside 

samples. For sorting of β cells for use in pseudoislets, quenching step post-dispersion 

was performed with 100% FBS at 1/3 volume trypsin. Cells then underwent an additional 

filtration step using a 40-μl strainer prior to staining. For all preparations, propidium iodide 

(0.05 μg per 100,000 cells; BD Biosciences) was added to samples prior to sorting for 

non-viable cell exclusion. Flow analysis was performed using an LSRFortessa cell analyser 
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(BD Biosciences), and a FACSAria III cell sorter (BD Biosciences) was used for FACS. 

Cells for RNA were collected into FACS buffer, washed once in 1× PBS, and stored in 

RNA lysis buffer for RNA extraction. Cells for pseudoislets were washed once in 1× PBS, 

resuspended in Vanderbilt pseudoislet medium, and processed as described in ‘Pseudoislet’. 

Analysis of flow cytometry data was completed using FlowJo 10.1.5 (Tree Star).

Traditional and multiplexed immunohistochemical imaging and analysis

Traditional immunohistochemistry.—Multiple sections from pancreatic head, body, 

and tail regions of 20 T2D and 11 age-matched ND donors were lightly PFA-fixed and 

prepared for immunohistochemistry and stained as described previously41,49,51. Primary and 

secondary antibodies and their dilutions are listed in Supplementary Table 2. Amyloid, 

a marker of islet pathology in T2D52,53, was visualized using a 2-min incubation in 

Thioflavin S (0.5% w/v; T-1892, Sigma) followed by a brief wash in 70% ethanol as 

described previously16,47,54. Images were acquired at 20× with 2× digital zoom using a 

FV3000 confocal laser scanning microscope (Olympus) or a ScanScope FL (Leica/Aperio) 

and processed using cytonuclear algorithms (HighPlex FL v3.2.1) or tissue classifiers via 

HALO software (Indica Labs) or morphometric measurement via Metamorph software 

v7.10 (Molecular Devices). Analyses were run on the entire tissue section or manually 

annotated islets as indicated in figure legends. Endocrine cell mass was quantified by 

using pancreas weight and the ratio of hormone positive cells as identified by cytonuclear 

logarithm within the entire pancreatic section from multiple blocks representing the head, 

body, and tail regions. To obtain islet capillary measurements, caveolin-1 channel was 

isolated and colour thresholding was used on a per-image basis to gather object data using 

the Integrated Morphometry Analysis function (Metamorph). The following analysis metrics 

represent mean ± standard error: endocrine cells (Fig. 2a and Extended Data Fig. 3e–g) 

16,151 ± 1,715 islet cells per donor and 570,508 ± 51,866 total cells per donor; endocrine 

cell area (Extended Data Fig. 3c,d) 2.34 ± 0.24 mm2 per donor; capillary morphology (Fig. 

2e) 48 ± 4 islets per donor; macrophage area (Fig. 2i) 0.64 ± 0.07 mm2 per donor; amyloid 

(Extended Data Fig. 3l) 108 ± 19 islets per donor; cilia (Extended Data Fig. 7d) 0.32 ± 

0.05 mm2 per donor; RFX6 (Fig. 4e) 1,863 ± 362 cells per donor; pseudoislets (Extended 

Data Fig. 8d) 2,797 ± 508 cells per sample. Islet grafts were stained, imaged, and analysed 

using the same technique described for tissue above, with graft area annotated by hand 

to exclude quantification of mouse kidney tissue. The following analysis metrics represent 

mean ± standard error: endocrine cells (Extended Data Fig. 1r) 2,109 ± 347 cells per donor; 

endocrine cell area (Extended Data Fig. 1r) 0.1606 ± 0.026 mm2 per donor; vascularization 

(Extended Data Fig. 1s) 0.1728 ± 0.031 mm2 per donor.

CODEX multiplexed imaging.—To visualize additional cell types modulating the 

islet microenvironment55, a subset of samples was analysed using CODEX56. Antibodies 

were purchased pre-conjugated from Akoya Biosciences or sourced from other vendors 

and conjugated in-house using the CODEX Conjugation Kit (Akoya Biosciences) or by 

Leinco Technologies (Supplementary Table 3). Ten-micrometre lightly fixed41 pancreas 

sections were mounted onto 22 × 22 mm glass coverslips (Electron Microscopy Sciences) 

coated in 0.1% poly-l-lysine (Sigma) and stained with the CODEX Staining Kit (Akoya 

Biosciences) in uncoated 6-well tissue culture plates (VWR) per manufacturer instructions. 
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Fluorescent oligonucleotide-conjugated reporters were combined with Nuclear Stain and 

CODEX Assay Reagent (Akoya Biosciences) in light-protected 96-well plates sealed with 

foil (Akoya Biosciences) and automated image acquisition and fluidics exchange were 

performed using the Akoya CODEX instrument and CODEX Instrument Manager (CIM) 

v1.29 driver software (Akoya Biosciences) integrated with a BZ-X810 epifluorescence 

microscope (Keyence). Tissue was hydrated in 1× CODEX buffer (10× CODEX Buffer 

diluted in Milli-Q water) and hybridization/stripping of the fluorescent oligonucleotides was 

performed using dimethyl sulfoxide (Sigma). After loading of coverslip into stage insert, 

tissue was visualized with Nuclear Stain diluted 1:1,000 in PBS and imaging area was set by 

centre point and tile number using BZ-X810 viewing software (Keyence). All images were 

acquired using a CFI plan Apo I 20×/0.75 objective (Nikon) with 30% tile overlap and 5 

z-planes (1.5 μm/z).

Processing and annotation of CODEX images.—A total of 16 tissue regions 

were captured from 6 ND and 10 T2D donors (mean 50 mm2 tissue per donor). Image 

alignment, stitching, background subtraction, and deconvolution were performed using the 

CODEX Processor v1.7.0.6 (Akoya Biosciences; see https://help.codex.bio/codex/processor/

technical-notes for details). Individual channel images (TIFF files) were imported into 

HALO software v3.1 (Indica Labs) for all analyses as described below. Tissue and islet 

areas were annotated by hand to exclude out-of-focus regions and poor tissue quality. Islets 

(estimated diameter ≥50 μm; mean 42 islets per donor) were annotated based on DAPI 

and CHGA channels. Cell segmentation and cell-type annotations were performed using the 

HALO HighPlex FL v3.2.1 module with consistent cytonuclear parameters (nuclear contrast 

threshold 0.456, maximum cytoplasm radius 0.48). Due to marker intensity variability 

among samples, thresholds were manually set for each marker and donor. Unless otherwise 

noted, cells were counted positive for a given marker if minimum intensity was reached in 

50% of cytoplasm area (see Supplementary Tables 3 and 4 for a complete list of markers and 

cell types). For cells with more variable morphology, positivity was also counted for nuclear 

area (30%: ARG1, CD11c, CD14, CD163, CD206, CD31, CD34, CD45, HLA-DR, IBA1, 

KRT, MCAM). Proliferating cells were counted only if minimum 60% of nuclear area met 

KI67 intensity threshold. Vascular structures (CD31) were also measured by random forest 

classification algorithm (HALO Tissue Classifier module).

The following analysis metrics represent mean ± standard error: endocrine cell area 

(Extended Data Fig. 3h) 0.88 ± 0.10 mm2 per donor; islet cell composition (Fig. 2c and 

Extended Data Fig. 3j) 7,322 ± 852 cells per donor; immune cells (Fig. 2h,j) 309 ± 43 

cells per donor; endothelial cell phenotypes (Extended Data Fig. 4e) 460 ± 92 cells per 

donor; macrophage phenotypes (Extended Data Fig. 4h) 191 ± 29 cells per donor; T cell 

phenotypes (Extended Data Fig. 4i,j) 40 ± 17 cells per donor.

High-dimensional, spatial and neighbourhood analyses.—The R implementation 

of the UMAP algorithm (https://CRAN.R-project.org/package=umap) was used for 

dimensionality reduction. Cell marker percentages obtained through HALO were 

standardized across islets (n = 255 ND islets and 426 T2D islets; mean 172 cells per islet), 

and default parameters were used for UMAP reduction (Fig. 2k and Extended Data Fig. 4k) 

Walker et al. Page 16

Nature. Author manuscript; available in PMC 2024 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://help.codex.bio/codex/processor/technical-notes
https://help.codex.bio/codex/processor/technical-notes
https://cran.r-project.org/package=umap


except for nearest neighbours (80) and minimum distance (0.05). For spatial analyses, CD31 

area classifications were converted to an annotation layer. A nearest neighbour algorithm 

(HALO Spatial Analysis module) was applied to obtain average distance of endocrine cells 

(n = 4,830 ± 692 cells per donor) to islet capillaries (CD31+ region) (Fig. 2f and Extended 

Data Fig. 4d).

For CN analysis, two methods were applied in parallel to CODEX data from annotated 

islets. In the community detection method, termed Dynamic CF-IDF (Fig. 2l and Extended 

Data Fig. 5a,d), a weighted undirected heterogeneous graph for each islet was constructed 

based on the cell types and normalized distance between cells. A greedy-based graph 

community detection method57 was applied to segment the graph into a set of cell 

communities, then cell communities were stratified into 6 cellular neighbourhoods (n = 

5,582 total cellular neighbourhoods with median 11 cells per cellular neighbourhood). Cell-

type enrichment was determined by a new proposed scoring function CF-IDF, which is 

a modification of the widely used text sequence analysis method term frequency–inverse 

document frequency scoring58. Our cell frequency (CF)-inverse dataset frequency (IDF) 

score emphasizes the cell type that is not only prevailing, but also uniquely representative 

in a group of target islets. Therefore, it will deemphasize the most dominant cell types 

(for example, α and β) throughout all the islets while paying more attention to the relative 

enrichment of less abundant cell types (for example, vascular and immune cells) in the 

local regions. The downstream analysis not only introduces insightful results on T2D feature 

analysis but also shows a robust performance across different resolution levels.

The second cellular neighbourhood analysis method, a k-means approach (Extended 

Data Fig. 5b,e,g), built on a previously published algorithm used to identify cellular 

neighbourhoods in the tumour microenvironment59. For each cell, we first found its 10 

nearest neighbours in the islet and assigned the ith nearest neighbour that was an α cell, 

β cell, macrophage, endothelial cell or γ cell, a score cos(iπ/20). Then we calculated the 

total score for each cell type, applied L1 normalization to the scores, and standardized 

them across all cells. The resulting representations of cells were finally used for k-means 

clustering to form 5 cellular neighbourhoods (n = 5,021 total cellular neighbourhoods with 

median 5 cells per cellular neighbourhood).

Transcriptional analysis of α and β cells and islets from ND and T2D donors

RNA isolation and bulk RNA sequencing.—RNA was extracted from sorted α and β 
cells (see ‘Purification of α and β cells by FACS’) or from pelleted whole islets using the 

Invitrogen RNAqueous-Micro Total RNA Isolation kit (Thermo Fisher AM1931). TURBO 

DNA-free (Ambion) was used to treat any trace DNA contamination. RNA was quantified 

by Qubit Fluorometer 2.0 and RNA integrity (RIN) was confirmed (RIN > 7) by 2100 

Bioanalyzer (Agilent). Amplified cDNA libraries were constructed using SMART-seq v4 

Ultra Low Input RNA-kit (Takara) and sequencing was performed on an NovaSeq platform 

(Illumina) using paired-end reads (100 bp) and 25 million reads per sample.

We processed the raw RNA-seq reads using FastQC (v0.11.8) for broad quality assessment. 

In brief, we examined the following parameters: (1) base quality score distribution, (2) 

sequence quality score distribution, (3) average base content per read, (4) GC distribution 
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in thereads, (5) PCR amplification issue, (6) overrepresented sequences, (7) adapter content. 

Based on the quality report of fastq files, we trimmed sequence reads using fastq-mcf 

(v1.05) and cutadapt (v2.5) to only retain high-quality sequence for further analysis. The 

paired-end reads were aligned to the GRCh37/hg19 human reference with GENCODE 

v19 gene annotation using STAR splice-aware aligner (v2.5.4b;–outSAMUnmapped Within 

KeepPairs)60.

We counted fragments mapping to features type in GENCODE v19 gene annotation using 

featureCounts from Subread package61. The gene list was pruned to contain only protein-

coding genes mapping to autosome and chrX, resulting in a total of 20,260 genes. We 

assessed libraries using comprehensive quality metrics generated by QoRTs62 as well as 

computed derived metrics. In brief, on the top of QoRTs reported metrics, we computed: 

(1) 5′–3′ gene coverage bias (as the ratio of coverage values at the 90th percentile and 

10th percentile of the coverage distribution); (2) Kolmogorov–Smirov test statistic between 

cumulative gene diversity of each library relative to median distribution of all libraries 

within each cell type and standardized to a mean of 0 and s.d. of 1 to yield a z-score; 

(3) number of reads mapped mapped to Xist and SRY genes; (4) average number of reads 

mapped to chrM; and (5) transcript integrity number (TIN)63 for each library. The labelled 

sex of donors was matched against the gene expression quantified for sex genes to rule 

out any sample swaps or mislabelling. We also computed principal components for TPM 

(transcript per million) normalized count matrix for each cell type in order to detect potential 

outliers.

Differential gene expression analysis.—As collection of these rare tissues spanned 

more than five years, we used a latent variable analysis to discern biological variation from 

technical variation and then examined the datasets by both differential gene expression and 

gene network analyses. We performed differential gene expression analysis between T2D 

and ND samples for each cell type individually using DESeq264. In order to minimize 

potential effects of known and unknown confounding factors, we included known covariates 

in the DESeq2 model as well accounted for unknown covariates using the RUVseq latent 

variable approach65. In brief, we used the following multi-step process: (1) we first removed 

genes from the raw count matrix that had less than 10 reads in fewer than 25% of the 

samples for that cell type. (2) We then ran a first-pass differential expression analysis using 

DESeq2 with age, sex, BMI and batch as known covariates. The output result was filtered 

for genes that were non-significant (that is, not differentially expressed between T2D and 

ND samples) and had P values > 0.5. These genes were used as ‘control’ or ‘empirical’ 

genes for the RUVSeq::RUVg function to estimate latent variables accounting for variation 

in the data not attributed to disease status. (3) The latent variables estimated from the 

RUVseq run were then used as additional covariates (on the top of age, sex, BMI and batch 

where applicable) for the second run of DESeq2. We selected the number of latent variables 

to provide the most reasonable separation between T2D and ND samples and minimal 

deviation from mean in the relative log expression plots. The output results from DESeq2 

were filtered for 1% FDR to generate the final list of genes that were differentially expressed 

between T2D and ND for each cell type. We performed functional enrichment analysis using 

RNA-Enrich66 and retained terms with an FDR threshold of 5%. Terms were condensed 
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using the RelSim function in REVIGO67 with similarity parameter set to 0.5 and visualized 

in semantic space using an.xgmml file imported into Cytoscape software68 v3.8.2.

Combined analysis of differentially expressed genes (fold change ≥1.5 or ≤−1.5; P < 0.01) 

was performed using Metascape69. For visualization of overlap between samples (Fig. 1i), 

each gene list (α, β and islet) was independently analysed to calculate all statistically 

significant (P < 0.01) ontology terms enriched (two-tailed hypergeometric test). Grey curves 

on the diagram that connect two lists indicate that an ontology term containing ≤100 genes 

was statistically enriched in both lists (that is, the genes in the two lists are not identical, 

but they are both members of terms that are statistically enriched in their respective list). For 

visualization of enrichment across samples (Fig. 1j), all three gene lists (α, β and islet) were 

provided and Metascape’s heuristic algorithm sampled the 20 top-score clusters, selected 

up to the 10 best scoring terms (lowest P values) within each cluster, and connected terms 

pairs with Kappa similarity above 0.3. The resulting network was exported as a.cys file and 

visualized using Cytoscape, with the most representative term name in each cluster selected 

manually.

Gene network analysis.—We adopted the WGCNA70 approach to create networks from 

the gene expression data. This approach created modules (eigengenes) of up to 2,000 

genes each, labelled by sample type and numbered consecutively (β cells, modules β00–

β48; α cells, modules α00–α54; and islets, modules i00-i67). Importantly, collapsing 

the expression patterns across >14,000 genes into a smaller number of modules reduced 

gene-level multiple testing burden and enabled association of transcriptomic profiles with 

sample features including donor traits71, islet functional parameters from the same donors 

defined by dynamic islet perifusion, and enrichment of open chromatin peaks to overlap 

GWAS variants. In brief, we first filtered genes following the same rule established in 

‘Differential gene expression’, where we only kept genes that had at least 10 reads in 

at least 25% of the samples for each cell type. We then processed raw counts using the 

varianceStabilizedTransformation function in DESeq2 package and used removeBatchEffect 

from the limma R package72 to adjust for effects of age, sex and BMI while protecting 

for disease status in the design matrix. The normalized and batch-corrected count matrix 

was then used as input to blockwiseModules to create a ‘signed hybrid’ network with 

‘bicor’ as the correlation function. The power (k) parameter was selected such that the 

scale free topology fit reached at least 80% fit. To examine cell-type modules associated 

with quantitative traits of interest, we utilized a linear regression-based framework. We: 

(1) inverse-normalized the raw quantitative trait; (2) adjusted for age, sex and BMI by 

linear regression; and (3) computed the spearman rank correlation between residuals and 

eigengene of all modules. Within each network, we also computed the module membership 

score and network connectivity for each gene. Estimated enrichment of curated gene 

lists22,73,74 (Supplementary Table 5) was calculated using Fisher’s exact test. Functional 

enrichment of genes in each module was performed using gprofiler275, and the results were 

visualized as a dotplot.

Integration of network analysis with chromatin accessibility.—We integrated 

chromatin accessibility information with gene network analysis using single-cell 
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combinatorial indexing on ATAC-seq (sci-ATAC-seq) data for α and β cells derived from 

our previously published study4. For each module within each cell type, we selected: (1) 

accessible sites that were present within a specified distance of the transcription start site 

(TSS) of the genes within that module; and (2) the distal chromatin peaks that were linked 

to the peaks within this set based on the Cicero peak interaction results from the same study. 

This set of TSS proximal and distal peaks for all of the genes within each module and for 

each cell type were then used for downstream enrichment analyses.

For variant enrichment analysis in the module linked peaks, we collected the latest published 

summary statistics for selected traits3,76. Using a threshold of ±10 kb to define our gene 

TSS boundary for linking peaks with modules, we created a set of accessible sites for each 

module. The union of peaks across all modules was used as a ‘bulk’ positive enrichment 

control. We then tested the enrichment of trait-associated variants from multiple GWAS 

across module peaks using GARFIELD37 and used a P value threshold of 5 × 10−8 as input 

parameter for selecting trait-associated variants.

Next, we considered whether specific transcription factor binding motifs (TFBMs) are 

enriched to occur in certain modules. To test this, we defined module linked peaks for each 

module as described before but using a threshold of ±1 kb from gene TSS. For each peak 

within a module, we then identified the peak summit and extended the summit by 50 bp 

in each direction. Using genomic sequence in this region as our test sequence, we used 

the Analysis of Motif Enrichment (AME, v5.3.2) tool from MEME suite77 (using default 

parameters) to identify enriched TFBMs represented in cisBP v.2.078. The control set of 

sequence was generated using –shuffle–parameter in AME that generates a control sequence 

by shuffling the test sequence but preserving the 2-mer frequency. The enrichment score 

was computed as scaled log2-transformed (true positives + 1)/(false positives + 1) for each 

TFBM.

Pseudoislet formation and assessment of RFX6 knockdown

Pseudoislets were formed as previously described26. In brief, nondiabetic human islets were 

hand-picked to purity and then dispersed with 0.025% HyClone trypsin (Thermo Scientific) 

for 7 min at room temperature before counting with an automated Countess II cell counter 

or manually by haemacytometer. Dispersed human islets or purified β cells (see ‘Purification 

of α and β cells by FACS’) were incubated in adenovirus at a multiplicity of infection of 

500 for 2 h in Vanderbilt pseudoislet medium before being spun and washed. Adenovirus 

containing U6 driven scramble or RFX6-targeted shRNA as well as CMV driven mCherry 

or mKate2 red fluorescent tag were prepared, amplified, and purified by Welgen. Cells 

were then resuspended in appropriate volume of Vanderbilt pseudoislet medium to allow 

for seeding into wells at 2,000 cells per 200 μl in each well of CellCarrier Spheroid Ultra 

Low Attachment microplates (PerkinElmer). Pseudoislets were allowed to reaggregate for 

six days before being collected and studied.

To assess knockdown, RNA was extracted from pseudoislets containing only β cells 

using an RNAqueous RNA isolation kit (Ambion). cDNA synthesis and quantitative 

reverse transcriptase PCR were performed as previously described40; in brief, cDNA was 

synthesized using a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems 
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4368814) according to the manufacturer’s instructions. Quantitative PCR (qPCR) was 

performed using TaqMan probes for ACTB (Hs99999903_m1) as endogenous control and 

RFX6 (Hs00941591_m1). Relative changes in mRNA expression were calculated by the 

comparative ΔCt method.

Multiome snRNA-seq and snATAC-seq

Isolation of nuclei.—Pseudoislet samples treated with RFX6 shRNA or scramble RNA 

were pooled together using a randomized study design, so the targeting and scramble 

conditions were not confounded by batch (Fig. 5a). To accomplish this, samples were 

allocated into 6 groups (batches) of n = 490–494 pseudoislets for nuclei isolation. A 

customized protocol was developed based on recommendations by 10x Genomics (https://

www.10xgenomics.com/resources/demonstrated-protocols/), which included optimization 

steps described below. In brief, the samples were suspended in 1× PBS and pelleted at 

2,000g for 3 min at 4 °C. The pellet was resuspended in lysis buffer (10 mM Tris-HCl 

7.4 pH, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1% NP40, 0.01% digitonin, 1% 

BSA, 1 mM DTT, and 2 U μl−1 RNAse inhibitor) and rocked in an Eppendorf thermomixer 

C (EP 5382000015) at 300g for 5 min at 4 °C. Keeping the samples on ice as much as 

possible, tubes were then transferred to a pre-chilled 2-ml glass dounce homogenizer and 

homogenized with 15 strokes of tight pestle B before being transferred to a 1.5-ml tube 

and centrifuged at 500g for 5 min at 4 °C. The resulting pellet was then resuspended in 1 

ml wash buffer (10 mM Tris-HCL 7.4 pH, 10 mM NaCl, 3 mM MgCl2, 1% BSA, 0.1% 

Tween-20, 1 mM DTT and 2 U μl−1 RNAse inhibitor) and centrifuged at 100g for 1 min 

at 4 °C. The supernatant was collected, filtered through a pre-wetted 30-μm filter, and 

centrifuged at 500g for 5 min at 4 °C. Nuclei were resuspended in 300 μl of wash buffer, 

then 300 μl of sucrose cushion (0.88 M sucrose, 1 mM DTT, 1 mM RNAse inhibitor, and 

10% wash buffer) was added to the bottom of the tube and the resulting layered solution 

was centrifuged at 1,000g for 10 min at 4 °C. Both layers of supernatant were removed, 

and pellet was resuspended in 1 ml wash buffer and centrifuged at 500g for 5 min at 4 °C. 

Nuclei were then resuspended in 30 μl of nuclei resuspension buffer before counting and 

quality assessment. The desired concentration of nuclei was achieved by resuspending the 

appropriate number of nuclei in 1× diluted nuclei buffer for joint (on the same nucleus) 

snATAC-seq and snRNA-seq multiome profiling. Nuclei were processed by the University 

of Michigan Advanced Genomics Core using the 10x Genomics Chromium platform at 

20,000 nuclei per well.

Multiome sample genotyping and imputation.—Samples were genotyped with the 

Infinium Multi-Ethnic Global-8 v1.0 kit using 50 ng I−1 DNA samples in two batches. 

Probes were mapped to Build 37. We merged the.ped files for the two batches along with 

samples from other projects that were genotyped on the same chip (resulting in a combined 

68 samples). We removed variants with multi mapping probes and updated the variant 

rsIDs using Illumina support files Multi-EthnicGlobal_D1_MappingComment.txt and Multi-

EthnicGlobal_D1.annotated.txt (downloaded from https://support.illumina.com/downloads/

infinium-multi-ethnic-global-8-v1-support-files.html). We performed pre-imputation QC 

using the HRC-1000G-check-bim. pl script (version 4.2.9) obtained from https://

www.well.ox.ac.uk/~wrayner/tools/ to check for strand, alleles, position, Ref/Alt 
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assignments and update the same based on the 1000 Genomes reference (https://

www.well.ox.ac.uk/~wrayner/tools/1000GP_Phase3_combined.legend.gz). We did not 

conduct allele frequency checks at this step (that is, used the–noexclude flag) since 

we had 68 samples from mixed ancestries. These filters resulted in 958,427 variants. 

We performed pre-phasing and imputation using the Michigan Imputation Server79. 

The standard pipeline (https://imputationserver.readthedocs.io/en/latest/pipeline/) included 

pre-phasing using Eagle280 and genotype dosage imputation using Minimac4 (https://

github.com/statgen/Minimac4) and the 1000 Genomes phase 3 v5 (build GRCh37/hg19) 

reference panel81. Post-imputation, we selected biallelic variants with estimated imputation 

accuracy (r2) > 0.3, variants not significantly deviating from Hardy Weinberg equilibrium (P 
> 10−6), minor allele frequency (MAF) in 1000 Genomes European individuals > 0.05 and 

minor allele count (MAC) > 1 in our 12 samples, resulting in 6,665,607 variants.

Data processing for RNA component.—The RNA component of the 

multiome data was processed using starSOLO (STAR v. 2.7.3a, with GENCODE 

v19 annotation; options–soloUMIfiltering MultiGeneUMI–soloCBmatchWLtype 

1MM_multi_pseudocounts–soloCellFilter None), which outputs the count matrices needed 

for most of the analyses60. Quality control metrics were gathered on a per-nucleus basis 

using a custom Python script on the corrected gene counts and aligned BAM file.

Following processing with STAR, we constructed a custom count matrix by combining 

information from the GeneFull and Gene matrices output by STAR. The GeneFull matrix 

contains per-gene counts based on intronic and exonic reads, while the Gene matrix contains 

per-gene counts based on exonic reads only. As nuclear RNA may contain introns, the 

GeneFull matrix should be preferred. However, due to overlapping transcript annotations 

that render some read gene assignments ambiguous, some genes may receive fewer counts 

in the GeneFull matrix than in the Gene matrix. The INS gene was an extreme example of 

this, receiving very low counts in the GeneFull matrix but high counts in the Gene matrix. 

To salvage counts for such genes, our custom matrix utilized the GeneFull counts for most 

genes but utilized the Gene counts for the subset of genes that had greater counts in the Gene 

matrix than in the GeneFull matrix.

Data processing for the ATAC component.—Adapters were trimmed using cta 

(https://github.com/ParkerLab/cta). We used a custom Python script, available in the Parker 

laboratory Github repository, for barcode correction. Barcodes were corrected in a similar 

manner as in the 10x Genomics Cell Ranger ATAC v. 1.0 software. In brief, barcodes were 

checked against the 10x Genomics whitelist. If a barcode was not on the whitelist, then we 

found all whitelisted barcodes within a hamming distance of two from the bad barcode. For 

each of these whitelisted barcodes, we calculated the probability that the bad barcode should 

be assigned to the whitelisted barcode using the Phred scores of the mismatched base(s) and 

the prior probability of a read coming from the whitelisted barcode (based on the whitelisted 

barcode’s abundance in the rest of the data). If there was at least a 97.5% probability that 

the bad barcode was derived from one specific whitelisted barcode, it was corrected to the 

whitelisted barcode.
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Reads were mapped using BWA-MEM82 with flags ‘-I 200,200, 5000 -M’ (v. 0.7.15-r1140). 

We used Picard MarkDuplicates (v. 2.25.1; https://broadinstitute.github.io/picard/) to mark 

duplicates, and filtered to high-quality, non-duplicate autosomal read pairs using SAMtools 

view83 with flags ‘-f 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30’ (v. 1.10). Quality control 

metrics were gathered on a per-nucleus basis using ataqv84 (v. 1.2.1) on the BAM file with 

duplicates marked.

Selection of quality nuclei for downstream analysis.—We performed rigorous 

QC of all RNA nuclei and only included those deemed as high-quality based on the 

following four definitions: (1) number of unique molecular identifiers (UMIs) >1,000; (2) 

mitochondrial fraction <0.2; (3) nuclei where the RNA profile was statistically different 

from the background or ambient RNA signal; and (4) nuclei were identifiable as a singlet 

and assignable to a sample using genotypes. We considered droplets with UMIs <10 to be 

empty and therefore representative of the background or ambient RNA profile. Top genes in 

the ambient RNA included highly expressed genes across prominent islet cell types such as 

INS, GCG and SST, along with several mitochondrial genes. We used the testEmptyDrops 

function from DropletUtils (v 1.6.1)85, specifying the lower parameter as 10 and selecting 

droplets with P < 0.05 as droplets significantly different from the ambient RNA profile. To 

identify singlets and assign to samples, we ran Demuxlet86 using using the BAM files and 

the genotype VCF file considering all post-QC variants in gene bodies with minor allele 

count (MAC) > 1. We used the command “demuxlet–sam $bam–tag-group CB–tag-UMI 

UB–vcf ${vcf}–alpha 0–alpha 0.5–field GT”, and selected singlets. To account for ambient 

RNA contamination while identifying singlets, we also masked the top 1% genes expressed 

in the ambient RNA and re-ran Demuxlet with the same parameters; nuclei were considered 

singlets and kept for downstream analysis if they were called as singlets in either Demuxlet 

run.

We also performed QC of the ATAC component of the multiome data. For ATAC, we 

required nuclei to have a minimum TSS enrichment (as calculated by ataqv) of 2, minimum 

filtered read count of 1.000 (ataqv ‘HQAA’ metric), and maximum mitochondrial fraction 

of 0.5. We also ran Demuxlet on the ATAC component (command: “demuxlet–sam $bam–

tag-group CB–vcf ${vcf}–field GT”) and required that a prospective nucleus be called as a 

singlet. The ATAC component of nuclei in two wells showed low TSS enrichment and all 

nuclei from these two wells were therefore excluded from analysis.

If the RNA and the ATAC component of a barcode both passed QC and the Demuxlet 

sample assignment was the same, both modalities were utilized for downstream analysis. If 

only the RNA component passed QC, only the RNA component was used in downstream 

analysis. As we performed clustering on the RNA component, we excluded the few (twelve) 

barcodes that passed ATAC QC and failed RNA QC. The final count was 15,825 (RNA) and 

5,706 (ATAC) high-quality nuclei for downstream analysis.

Removal of ambient RNA counts from single-nucleus gene expression UMI 
matrices.—Prior to clustering and downstream analysis, we used DecontX87 (celda v. 

1.8.1, in R v. 4.1.1)88 to adjust the nucleus × gene expression count matrices for ambient 

RNA. DecontX was run on a per-batch basis, as the amount of ambient contamination may 
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vary across batches. Decontaminated counts were generated via the decontX() function, 

passing barcodes with total UMI count ≤10 to the background argument. Rounded 

decontaminated counts were used for clustering and all downstream analyses. Nuclei with 

estimated contamination level >0.2 were excluded from downstream analysis.

Clustering of multiome data.—Nuclei were clustered on the RNA component using 

Seurat89–91 (v. 3.9.9.9010, in R v. 3.6.3). After normalizing counts with the NormalizeData 

function, we identified the top 2,000 variable features (FindVariableFeatures function, with 

selection. method=‘vst’) and scaled with the ScaleData function. We identified neighbours 

using the top 20 principal components and k.param = 20, and called clusters using resolution 

= 0.1 with n.start = 100. We used the top 20 principal components for generating the UMAP.

This clustering protocol identified 10 clusters. One of the smaller clusters shows expression 

of both INS and GCG, suggesting it may consist of doublets that were not caught by 

demuxlet. To verify this was a doublet cluster, we ran a different, genotype-independent, 

ATAC-based doublet detection method (AMULET; v. 1.0-beta, run with default parameters 

separately on data from each multiome well)92 on the ATAC nuclei that otherwise passed 

QC. This method tagged ~40% of the nuclei in the suspected doublet cluster as doublets, 

while only ~5% of nuclei in any other cluster were tagged as doublets. We therefore 

removed the small doublet cluster from the clustering and downstream analysis. Data are 

available via the UCSC Cell Browser93 at https://theparkerlab.med.umich.edu/data/public/

cellbrowser/?ds=Pseudoislet10XMultiome for further exploration.

Differential gene expression analysis.—Differential gene expression was performed 

within each cluster using DESeq2 (v. 1.28.0)64 on pseudobulk counts. UMI counts were 

summed across nuclei within a donor + construct + cluster. Only donors with paired 

data (RFX6–2896 and scrambled–mCherry constructs) were used, and the analysis was 

performed in a paired fashion (DESeq2 model: ~donor + construct). We used an FDR 

threshold of 5% for considering genes differentially expressed. To compare differential gene 

expression between multiome data and data from sorted β cells (Extended Data Fig. 9g), 

Metascape was utilized as described above (‘Transcriptional analysis of α and β cells and 

islets from ND and T2D donors’, ‘Differential gene expression analysis’).

Gene network exploration for the RNA component.—Single-cell regulatory network 

inference and clustering (SCENIC)94 was applied to the RNA modality (~15,300 nuclei) to 

identify cell-specific regulons (small gene regulatory networks of transcription factors and 

their target genes) and discern changes induced by RFX6 knockdown. Soft gene filtering 

was applied to post-QC nuclei to remove genes present in <1% of all the nuclei and 

used as the input for SCENIC. In brief, the following steps were performed: network 

inference based on GRNBoost2, regulon prediction (cisTarget), and cellular enrichment 

(AUCell). Adjacency matrices, listing interactions of transcription factors and a numerical 

score, were generated, as were lists of regulons, their regulon specificity scores (RSS), and 

UMAP of nuclei based on RSS. Using previously identified cluster labels for each nucleus, 

average RSS was calculated for each regulon to generate a ranked list for each cluster. For 

comparison between shRFX6 and control nuclei in the β cluster, absolute difference of the 

RSS score for each regulon was computed between the two groups to identify the most 
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differential regulons. Pathway enrichment was performed using Metascape as described 

above, using the input of genes (n = 220) contained in top 10 differential β regulons.

Per-cluster processing of ATAC component.—All ATAC reads from pass-QC, 

clustered nuclei were merged within each cluster. To generate per-cluster peaks, these BAM 

files were converted to single-ended BED format using bedtools bamtobed95 before calling 

ATAC-seq peak summits with MACS296 (flags -g hs–nomodel–shift −37–extsize 73 -B–

keep-dup all–call-summits). We removed summits in blacklist regions, filtered to FDR 0.1% 

summits, and then generated a peak list from the summits by extending the ATAC-seq peak 

summits for each cluster +/− 150 bps to get 300-bp peaks (within each cluster, if two 300-bp 

peaks overlapped the one with the greater MACS2 score was kept). We then removed peaks 

in blacklist regions. To get the ATAC peak counts used in the ATAC principal components 

analysis (PCA) and differential chromatin accessibility analyses, we determined the number 

of ATAC fragments overlapping each of these peaks in each of the per-cluster, per-donor, 

per-construct pseudobulk samples.

For visualization of ATAC signal, we generated a normalized bedGraph file using MACS2 

on the single-end BED file (macs2 callpeak command, with options–SPMR–nomodel–shift 

−100–extsize 200 -B–broad–keep-dup all) and then converted to bigWig format using the 

UCSC bedGraphToBigWig97. For PCA on the pseudobulk ATAC counts, we first removed 

any peaks on the mCherry or mKate2 contigs. We then converted peak counts to counts 

per million and removed the bottom 10% of features with the lowest average CPM across 

samples. For each peak, we filled any zeros with a value equal to half of the minimum 

non-zero CPM for that peak across samples. We then log transformed prior to performing 

the PCA.

Differential chromatin accessibility analysis.—Differential chromatin accessibility 

was performed within each cluster using DESeq2 (v. 1.28.0)64 on pseudobulk ATAC 

peak counts. Only donors with paired ATAC data (RFX6–2896 and scrambled–mCherry 

constructs) were used, and we additionally excluded donor 17277513 due to very low 

read counts. The DESeq2 analysis was performed in a paired fashion, with model: ~donor 

+ tss_enrichment + construct. To compute TSS enrichment for each pseudobulk sample, 

we merged all ATAC nuclei (regardless of cluster) from each donor and computed TSS 

enrichment with ataqv.

Testing for enrichment of peak subsets near differential genes.—We used a 

permutation test to determine whether the most significant peaks (‘top peaks’) from the 

beta cell differential peak analysis were enriched near beta cell differentially expressed 

genes. First, we assigned each peak to the gene with the nearest TSS (if multiple TSS 

were equally close, we took the TSS with the smallest chromosomal coordinate). We then 

calculated the fraction of top peaks whose nearest gene was differentially expressed. To 

get the null expectation for this value, we permuted the ‘DE/not DE’ gene labels, such 

that the same number of genes were always labelled as ‘DE’ but the identity of these 

differentially expressed genes changed in each permutation. While permuting, we split 

genes into deciles based on the expression of each gene and permuted the labels only 

within each decile (this controls for the fact that highly expressed genes are more likely 
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to be differentially expressed than lowly expressed genes due to statistical power in the 

differentially expressed analysis). We performed 10,000 permutations, in each permutation 

re-calculating the fraction of top peaks whose nearest gene was differentially expressed to 

build up the null distribution. We then calculated an empirical P value based on our observed 

value and the null distribution, adding a pseudocount to avoid a P value of 0 (P = (1 + 

no. of permutations where the test statistic was greater than or equal to our observed value)/

10,001).

Motif scanning for multiome motif enrichment analyses.—The motif scans were 

performed using FIMO (v. 5.0.4) with a background model calculated from the hg19 

reference genome98 and otherwise default parameters. We used the motifs from Kheradpour 

and Kellis 201499, excluding “*_disc” motifs; motifs from cisBP v. 2.078; motifs from Jolma 

et al. (2013)100; and custom RFX6 motifs generated using mouse Rfx6 ChIP-seq data from 

Piccand et al. (2014)33.

The custom RFX6 motifs were generated during a previous project25. Sequencing reads 

from Piccand et al. (2014)33 were mapped to the mouse mm9 genome101 using bwa 

(v. 0.7.12-r1039) and peaks were called using MACS2 (flags: -t MIN6_Rfx6-HA_IP.bam 

-c MIN6_Control-HA.bam -B–nomodel -g mm–keep-dup 1 -q 1.00e-4). The MEME (v. 

4.11.0)102 and DREME (v. 4.9.1)103 tools from the MEME suite104 were used to discover 

novel motifs in the resulting peaks. One non-repetitive motif from the MEME tool and two 

motifs from the DREME tool, bearing similarity to known RFX family motifs, were selected 

for use in downstream analysis.

Motif enrichment in most significant peaks.—We used logistic regression to measure 

enrichment of motifs in subsets of ATAC-seq peaks. We ran one model per peak category 

and motif. For testing for enrichment in the peaks that had the smallest P values and leaned 

towards higher signal in shRFX6 samples, we modelled:

peak_leans_higher_in_shRFX6 peak_gc_content + peak_size + n_motif_hits_in_peak

Where ‘peak_leans_higher_in_shRFX6’ is 1 if the peak was one of the most significant 

peaks in the ‘up in RFX6 KD condition’ direction and 0 otherwise; peak_gc_content was the 

GC content of the sequence within the peak; peak_size was the mean DESeq2-normalized 

count for the peak across the samples in the DESeq2 analysis; and n_motif_hits_in_peak 

was the number of motif hits in the peak as determined by the FIMO motif scans. The 

coefficient of the n_motif_hits_in_peak term was taken as the measure of motif enrichment. 

For testing for enrichment in the peaks that had the smallest P values and leaned towards 

lower signal in shRFX6 samples, we used the same model except the outcome variable was 

‘peak_leans_lower_in_shRFX6’.

Generation of ATAC footprint plots.—To generate the ATAC footprint plots, we first 

separated the motif occurrences into those within the beta cells ATAC peaks and those 

outside of peaks. For each of these two groups, we computed an aggregate Tn5 cut matrix 

for the 500 bps on either side of the motifs, using beta cell ATAC reads from each individual 

donor plus construct (using the make_cut_matrix script within the atactk package (https://
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github.com/ParkerLab/atactk); options -a -r 500). The cut matrices were generated separately 

for each donor+construct, utilizing only donors with paired ATAC data (RFX6–2896 and 

scrambled–mCherry constructs) and additionally excluding donor 17277513 due to very low 

ATAC read counts. To reduce the impact of Tn5 insertion sequence bias, we normalized 

the Tn5 cut frequency at each position for the motifs in peaks by the corresponding 

frequencies for the motifs outside of peaks. To adjust for technical differences (for example, 

TSS enrichment) between the donors plus constructs, we then divided these normalized 

cut frequencies by the average normalized cut frequency between the −500 and −400 bp 

positions.

GWAS enrichment in most significant peaks.—We considered if β cell ATAC-seq 

peaks that score highly for differential accessibility, as measured by P value, are specifically 

enriched to overlap T2D GWAS variants. We compared the enrichment of T2D (adjusted 

BMI) GWAS variants (n = 3,062,361) to overlap top 5,000 ATAC-seq differential peaks 

leaning up and down with the remaining peaks for β cell using GARFIELD37. Using a 

P value threshold of 10−5, we also performed a conditional analysis where GARFIELD 

evaluates if both annotations are conditionally independent of each other in the enrichment 

model. The coefficients corresponding to each annotation from the conditional enrichment 

model were shown along with the 95% confidence interval. To ensure robustness of our 

results, we repeated the analysis for top 2,000 (up and down each) and top 10,000 (up and 

down each) differential peaks.

Biobank interrogation and MR analysis

MR was performed to explore causal effects of RFX6 expression in human islets on T2D. 

Seven independent instrumental variables were selected from the islet eQTL analysis of 

InsPIRE27 (P value < 0.01; linkage disequilibrium (LD) pruning with 50 SNP windows, 5 

SNPs each step, and LD < 0.2 by PLINK and based on an LD panel from the 1000 Genomes 

Project European population81). Data from the UK Biobank3 and the European T2D meta-

analysis from Vujkovic et al.9 were used to determine the association between instrumental 

variables and T2D status. Four MR approaches were performed: Egger, weighted median, 

dIVW and PRESSO. These approaches offer different strategies for estimating the causal 

effects of the exposure (RFX6 expression) on outcome (T2D). MR-Egger uses the intercept 

to correct for pleiotropic effects of instrumental variables105, while the more precise 

weighted median approach offers a robust effect-size estimation from median values even 

in the presence of invalid instrumental variables106. The dIVW method removes the weak 

instrument bias of inverse-variance weighted estimator and is more robust under many 

weak instruments, formulated using a bias correction factor107. Similar to MR-Egger, MR-

PRESSO quantifies the horizontal pleiotropy and estimates the causal effect after outlier 

removal108. MR-Egger, weighted median, and dIVW approach were performed using the 

R package Mendelian-Randomization109, and robust regression was applied for MR-Egger. 

MR-PRESSO was conducted with its R package, MR-PRESSO.

The Integrated Network for Systematic analysis of Pancreatic Islet RNA Expression 

(InsPIRE) consortium data comprise collected human islet tissue and genetic data from 

420 participants. The islet transcriptome was profiled by Illumina HiSeq2000 platform. The 
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sequencing reads were aligned to GRCh37 reference genome by GEM, raw read counts were 

scaled to ten million reads to address inconsistent library size and scaled read counts were 

normalized via quantile normalization. All individuals were genotyped on the OmniExpress 

and Omni2.5 genotype arrays and imputed with 1000 Genomes phase I as reference panel. 

Cis-eQTL analysis was restricted to the 1-Mb region upstream and downstream of the 

TSS, and fastQTL was conducted for the eQTL analyses with the adjustment of gender, 

4 genetic principal components, 25 transcriptome principal components, and a variable 

indicating experimental batch. Additional details regarding the data and eQTL analyses have 

been previously published27. The human islet eQTL results were downloaded from https://

zenodo.org/record/3408356#.Yo0B-5PMKCc.

UK Biobank is a large nation-wide biobank study including genetic and medical data for 

over 500,000 participants aged110 40–69. All individuals were genotyped by UK Biobank 

Axiom Array and imputed to the Haplotype Reference Consortium (HRC) reference 

panel111. T2D status was determined via self-reported medical history and medication, as 

previously described3. T2D GWAS was performed in 19,119 cases and 423,698 controls 

of European ancestry3. BOLT-LMM, a mixed-effect model, was applied to adjust for 

population structure and relatedness112. Additional details of this analysis have been 

previously published3. Summary statistics from this T2D GWAS in UK Biobank were 

downloaded from http://diagram-consortium.org/. Summary statistics from the European 

T2D meta-analysis9 were downloaded from dbGAP (study phs001672.v4.p1, analysis 

pha004945.v1.p1).

Statistical information

Specific statistical tests used for each dataset are described in the figure legends and text 

where appropriate. Data are represented as mean ± s.e.m. unless otherwise noted. A P value 

of 0.05 was considered significant except for bulk RNA-seq differential expression where 

we used a more stringent cut-off of 0.01. Statistical comparisons were performed using 

GraphPad Prism software 8.0 or using R and are specified in the figure legends.
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Extended Data

Extended Data Fig. 1 |. (related to Fig. 1). Ex vivo and in vivo functional profiling of islets from 
donors with early T2D demonstrates reduced stimulated insulin secretion.
(a-b) Matching of BMI (a) and age (b) in n = 23 ND and n = 12 T2D independent donors 

for perifusion experiments. (c-m) Perifusion metrics for islets from n = 23 ND and n = 

12 T2D independent donors. (c) Basal insulin secretion calculated as the average of the 

first three points of perifusion trace. (d-e) Integrated area under the curve (AUC) breaking 

down the total 16.7 mM glucose response into the first phase (d; through minute 24) 
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and second phase (e; remainder of stimulation). Both first and second phases of insulin 

secretion were reduced, with the first phase showing a more significant reduction. (f) 
Area “under” the curve calculated from trace baseline for inhibition with low glucose and 

epinephrine. (g-k) Dynamic glucagon secretory response (g) measured by islet perifusion 

and secretory response as area under the curve (AUC) (h-j) normalized to islet volume. Ad, 

adrenaline (μM); G, glucose (mM); IBMX, isobutylmethylxanthine (μM); KCl, potassium 

chloride (mM). (k) Basal glucagon secretion calculated as average of first three points of 

perifusion trace. (l) Area “under” the curve calculated from trace baseline for inhibition with 

high glucose; both ND and T2D islets showed glucose-mediated suppression of glucagon 

secretion. (m) Glucagon content normalized to islet volume. (n) Pearson correlation of 

donor attributes to insulin and glucagon secretory metrics highlighted a significant negative 

correlation between donor HbA1c and stimulated insulin secretion (r < −0.30, P < 0.05). 

(o) Schematic of human islet transplantation and in vivo assessment of function. (p-q) After 

six weeks T2D islets secreted less human insulin than ND islets, especially after stimulation 

with glucose/arginine (p: average per donor of n = 7 ND and n = 8 T2D independent 

islet preparations; q: n = 41 individual mice with engrafted ND islets and n = 45 

individual mice with engrafted T2D islets). Blood glucose, human insulin levels, and human 

insulin:blood glucose ratio were measured at 0’ (six-hour fasted) and 15’ after glucose and 

arginine administration in mice with human islet grafts. (r-s) Endocrine composition (r) 

and vascularization (s) of islet grafts from n = 5 individual mice representing n = 5 ND 

donor islet preparations and n = 5 individual mice representing n = 5 T2D donor islet 

preparations. Engraftment was similar between ND and T2D islets. Scale bars, 100 μm. 

Data in panels a-m and p-s show mean + SEM; statistical results (e: two-tailed linear 

mixed-effect model, P = 0.518; a-d, f-k, s: two-tailed t-test; p-r: two-way ANOVA with 

Šídák’s multiple comparisons test) indicated as follows: *P < 0.05, **P < 0.01, ***P < 

0.001, **** P < 0.0001.
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Extended Data Fig. 2 |. (related to Fig. 1). Transcriptional analysis of islets and sorted α and β 
cells reveals dysregulation of metabolic pathways in T2D β cells and immune signaling in T2D 
islets.
(a-c) Volcano plots illustrating differentially expressed genes between ND and T2D β cells 

(a; 352 genes), α cells (b; 248 genes), and islets (c; 565 genes) as obtained by DESeq264 

(two-sided; multiple hypothesis corrected at FDR < 0.01). Lines denote cutoffs for fold-

change (±1.5) and significance (FDR < 0.01); genes passing both thresholds are colored and 

select genes are labeled. (d-f) Enriched gene ontology terms (two-sided; multiple hypothesis 

corrected at FDR < 0.05) obtained from RNA-Enrich66 were condensed using the RelSim 

function of Revigo (similarity = 0.5) and plotted in semantic space to emphasize relatedness. 

Dot size represents odds ratio and color represents p-value. Select terms are labeled. For 

α cells gene changes were most evident in amino acid and steroid signaling pathways and 

regulation of blood vessel morphology and for islets in cytokine signaling and other immune 

terms.

Walker et al. Page 31

Nature. Author manuscript; available in PMC 2024 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 3 |. (related to Fig. 2). Parallel approaches of multiplexed imaging and 
high-throughput traditional immunohistochemistry enable detailed profiling of the endocrine 
compartment of the islet.
(a) High-throughput traditional immunohistochemistry (IHC) with whole-slide imaging was 

applied across pancreas head, body, and tail regions for the entire donor cohort, and in 

parallel, a subset of samples was analyzed with a 28-marker panel using co-detection by 

indexing (CODEX), a multiplexed technique enabling fluorescence-based imaging of large 

tissue sections without tissue destruction to spatially resolve many cellular phenotypes. 

A full list of inclusionary and exclusionary markers for cellular phenotypes analyzed is 
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provided in Supplementary Table 4. (b-g) Analysis by traditional IHC of tissue from n = 

11 ND and n = 20 T2D independent donors. (b) Pancreas weight measured during organ 

procurement was used to calculate endocrine cell mass in Fig. 2a. (c-g) Cross-sectional area 

(c-d) and cytonuclear quantification (e-g) of β cells (CPEP; green), α cells (GCG; red), and 

δ cells (SST; blue). Individual donor data shown in stacked bar graphs (c, e); stratification 

by pancreas region (d, g) includes horizontal lines (solid, ND; dotted, T2D) for mean values 

from combined analysis (‘Aggregate’). Donor-to-donor variability in β and α cell ratio was 

notable, underscoring the challenge in working with heterogeneous human tissues113, but no 

differences were detected between groups in this cohort30,114–116. (h-j) Analysis by CODEX 

of tissue from n = 6 ND and n = 10 T2D independent donors. (h) Cross-sectional area of 

endocrine cell types as measured by CODEX, including rarer γ and ε cell populations. (i) 
Correlation of paired cell type measurements from traditional IHC (x-axis) and CODEX 

(y-axis); the two methods were highly concordant (R2 = 0.8499, slope=0.9828, P < 0.0001; 

two-tailed linear regression). (j) Abundance of endocrine and non-endocrine cells in ND 

and T2D islets; one vertical bar per islet and colored by cell type. Islets are grouped by 

donor and ordered from largest (highest total cell number) to smallest. See also Fig. 2c. (k) 
Rare cells positive for chromogranin A (CHGA; red) but negative for all hormones (green), 

postulated to represent dedifferentiated endocrine cells117, were present in both ND and T2D 

at similar proportions. Scale bars, 50 μm; arrowheads denote CHGA+ hormone− cells. (l) 
Amyloid prevalence (% total islets with amyloid, averaged over multiple regions) for n = 

11 ND and n = 20 T2D independent donors. (m) Correlation of amyloid prevalence with 

β, α, and δ cell populations as percentage of total endocrine cell number or cross-sectional 

area; one symbol per donor with 95% confidence interval of linear regression (shading). No 

slopes were significantly nonzero at P < 0.01 threshold. Traditional IHC data: panels c-h, 
l-m; CODEX data: panels i-k. Data in panels b, d, f-h, and l show mean + SEM; statistical 

results (b, l: two-tailed t-test; d, f-h: two-way ANOVA with Šídák’s multiple comparisons 

test) indicated as follows: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. None of 

the variables shown had a statistically significant association with disease duration (Pearson 

correlation, threshold P < 0.05).

Walker et al. Page 33

Nature. Author manuscript; available in PMC 2024 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 4 |. (related to Fig. 2). Integration of multiplexed imaging and transcriptional 
profiling highlight disrupted capillaries and immune cells within T2D islets.
(a) Gene expression fold-change (DESeq264; two-sided and multiple hypothesis corrected 

at FDR < 0.05) of selected vascular and neuronal ligands and their receptors in β cells, 

α cells, and islets; • FDR < 0.05; * FDR < 0.01. Alpha cells expressed more angiogenic 

ligands and receptors than β cells. (b-c) RNA-sequencing analysis highlighted enrichment 

in T2D samples for processes controlling blood vessel size, particularly in α cells, as 

well as regulation of growth factors critical to islet capillary maintenance. Panel (b) shows 
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select vascular-related ontology terms (RNA-Enrich66; two-sided and multiple hypothesis 

corrected at FDR < 0.05); panel (c) shows Metascape visualization of select terms enriched 

for differentially expressed genes (two-tailed hypergeometric test)69 in T2D α cells (left) 

and islets (right). (d) Average distance of each endocrine cell type to nearest capillary (n = 

6 ND and n = 9 T2D independent donors). Interestingly, α and δ cells were slightly closer 

to capillaries than β cells in both ND and T2D islets. (e) Phenotypes of endothelial cells 

(CD31; red) defined by single or dual positivity for HLA-DR (green) and CD34 (blue). 

Examples of each combination (HLA-DR+ CD34−, CD34+ HLA-DR−, HLA-DR+ CD34+, 

and HLA-DR− CD34−) are shown to right. Data from n = 6 ND and n = 10 T2D independent 

donors. Scale bars, 25 μm. (f-g) Enrichment in T2D β cells and islets for cytokine 

signaling and immune cell recruitment pathways118,119. Panel (f) shows select immune-

related ontology terms (RNA-Enrich66; two-sided and multiple hypothesis corrected at FDR 

< 0.05); panel (g) shows magnification of select clusters depicted in Fig. 1j (terms enriched 

across β, α, and islet samples). (h-i) Macrophages (IBA1+) and T cells (CD3+) phenotyped 

by various cell surface markers; insets show additional cells to illustrate phenotypic variety. 

Proinflammatory (HLA-DR+), anti-inflammatory (CD163 and/or CD206+), helper (CD4+), 

and cytotoxic (CD8+) phenotypes are detailed in Supplementary Table 4. Scale bars, 25 

μm (h, i inset) and 50 μm (i). Data from n = 6 ND and n = 10 T2D (h) or n = 5 ND 

and n = 8 T2D (i-j) independent donors. (j) Expression of HLA-DR in CD4+ and CD8+ 

T cell populations. (k) High-dimensional component analysis of islet cell composition per 

islet (n = 681), shown by donor; corresponds to Fig. 2k. RNA data: panels a-c, f-g; * 

FDR < 0.05; CODEX data: panels d, h-j. Bar graphs in panels d-e and h-j show mean + 

SEM with symbols representing individual donors; statistical results (d: one-way ANOVA 

with Tukey’s multiple comparisons test; e, h-i: two-way ANOVA with Šídák’s multiple 

comparisons test; j: two-tailed t-test) indicated as follows: * P < 0.05, ** P < 0.01, *** 

P < 0.001, **** P < 0.0001. None of the variables shown had a statistically significant 

association with disease duration (Pearson correlation, threshold P < 0.05).
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Extended Data Fig. 5 |. (related to Fig. 2). Cellular neighborhood assignment and (d-e) 
corresponding cell composition changes in T2D and ND islets.
(a) Heat map showing cellular neighborhoods (CNs) identified by CF-IDF method and 

representative islet image with cell and CN annotation overlay. See Methods for more 

details. Scale bar, 50 μm. (b-c) A k-means cellular neighborhood analysis (b) was applied 

in parallel, and results were highly concordant between the two methods (c; R2 = 0.9542, 

slope = 1.058, P < 0.0001; two-tailed linear regression). Scale bar (b), 50 μm. Bar graphs 

show mean + SEM with symbols representing individual donors. (d-e) Differential cell type 

enrichment (two-tailed t-test) in T2D vs. ND islets by CF-IDF (d) and k-means (e) analyses. 

ECs and pericytes were depleted in β CNs (CN1) of T2D islets, consistent with our findings 

of decreased proximity between β cells and ECs in T2D. Symbols indicate unadjusted 
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P-values as follows: ◦ P < 0.2, • P < 0.1, *P < 0.05. (f-g) Correlation of cell compositions 

across CNs; these analyses ask whether cell type frequencies are correlated between CNs, 

i.e., if there was evidence for connectivity between spatially distinct regions. Panel (g) shows 

results from k-means method; see also Fig. 2l (CF-IDF method). All cellular neighborhood 

data is derived from CODEX imaging of tissue from n = 6 ND and n = 10 T2D independent 

donors.

Extended Data Fig. 6 |. (related to Fig. 3). WGCNA emphasizes α and islet cell gene modules 
associated with donor and islet traits as well as those enriched in GWAS loci.
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(a-d) Though α cell modules showed weaker correlations to donor and functional traits than 

did β cell modules, several modules were significantly enriched for cilia-related genes (a) 

and α08 was also enriched for α cell genes differentially expressed in T2D α cells (b). 

Both α08 and α16 significantly inversely correlated with epinephrine-mediated glucagon 

secretion and were closely related across functional parameters (c). Module α08 showed 

significant enrichment for T2D GWAS variants (d). See also Supplementary Fig. 4b. (e-g) 
Several islet modules showed notable enrichment for immune- and matrisome-related genes 

(e). Module i25 correlated positively with T2D status (f) and inversely with basal insulin 

secretion and GSIS, while i26 correlated inversely with KCl-mediated insulin secretion 

(g). See also Supplementary Fig. 4c. Panels a and e show module eigengenes clustered 

by similarity and relative enrichment of curated gene lists (see also Supplementary Table 

5). Panels b and f provide correlation to donor characteristics, enrichment of differentially 

expressed (DE) genes, and total number of genes per module (• P < 0.05; * P < 0.01). 

Modules of interest highlighted (b: red, f: blue). Panels c and g show module correlation 

to α and β cell function (Fig. 1); significant associations highlighted (yellow). For islets 

(g), modules were correlated to both insulin and glucagon secretion (G + IBMX, 16.7 mM 

glucose with 100 μM isobutylmethylxanthine; 16.7 G, 16.7 mM glucose; 16.7 G 1°, first 

phase; 16.7 G 2°, second phase; 1.7 G+Epi, 1.7 mM glucose and 1 μM epinephrine; KCl, 20 

mM potassium chloride). Panel d shows α cell module enrichment for GWAS traits (FIns, 

fasting insulin; 2hGlu, 2-hour glucose; FGlu, fasting glucose; * FDR < 0.01). Panels a, e, b 
and f (DE genes): two-tailed Fisher test adjusted for multiple comparisons; panels c, g, b and 

f (donor traits): t-test, unadjusted, using Spearman correlations (see Methods for additional 

details); panel d: enrichment using GARFIELD37.
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Extended Data Fig. 7 |. (related to Fig. 3). Both transcriptomic and histologic data suggest 
changes in cilia processes in early T2D.
(a) Magnification of select clusters depicted in Fig. 1j (terms enriched across β, α, and 

islet samples). (b) Fold change of validated cilia-related genes (shown here, those ≥ |1.5| 

in both α and β cells); the majority were expressed at higher levels in T2D compared to 

ND. (c-d) Visualization by immunohistochemistry of cilia (ARL13B; red) and quantification 

of abundance, density, and size in tissue from n = 8 ND and n = 8 T2D independent 

donors. Tissue sections are from the same donors shown in panel b. Scale bars, 50 μm. Bar 

graphs show mean + SEM with symbols representing individual donors; statistical results (d: 

two-tailed t-test) indicated as follows: * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 

0.0001.
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Extended Data Fig. 8 |. (related to Fig. 4). RFX motif enrichment across β cell modules and β cell 
RFX6 reduction in pseudoislets impairs insulin secretion.
(a) Enrichment of selected transcription factor120 motifs in β cell modules, calculated 

using the AME tool from MEME-Suite with Bonferroni correction77; log10(P-values) are 

unadjusted. (b) Schematic of adenoviral shRNA delivery and formation of pseudoislets, 

which mirror native human islet architecture26,121. (c) Relative RFX6 mRNA expression 

in β cells treated with scramble shRNA (‘control’) or RFX6 shRNA (‘shRFX6’). Data 

represents n = 3 independent islet preparations. (d) RFX6 knockdown did not change β or 

α cell proportion (n = 4 independent islet preparations); acute (6-day) reduction of RFX6 
expression does not lead to β cell loss. (e) Control and shRFX6 pseudoislets exhibited 

similar size and morphology. Transduced cells marked by mCherry; distribution of β cells 
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shown by C-peptide (CPEP; blue) and α cells by glucagon (GCG; green). Scale bars, 

200 μm (morphology) and 50 μm (immunostaining). (f-i) Dynamic insulin secretion and 

metrics equivalent to Fig. 4f, g but normalized by total insulin content (h) in control 

and shRFX6 pseudoislets. (i) Proinsulin content and proinsulin:insulin ratio in control 

(scramble) and shRFX6 pseudoislets. Proinsulin content was not significantly greater in 

shRFX6 pseudoislets and the proinsulin:insulin ratio was comparable to controls, suggesting 

secretory defects were not due to inappropriate insulin processing. Functional data (f-i) 
represents n = 6 independent islet preparations. Data in panels c-d and f-i show mean + 

SEM; statistical results (c-d, g-i: two-tailed t-test; f: linear mixed-effect model) indicated as 

follows: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Extended Data Fig. 9 |. (related to Fig. 5). RFX6 controls stimulated insulin secretion through 
genome-wide chromatin alterations disrupting transcripts controlling exocytotic pathways.
(a) Post-QC nuclei counts from control and shRFX6 pseudoislets. (b) Abundance of 

fluorescent marker gene expression (mCherry/mKate2) in α and β cell nuclei. Reporter 

expression was much higher in β cell nuclei than in α cell nuclei, consistent with 

the previously observed preferential adenoviral targeting of β relative to α cells26. (c) 
Proportion of differentially expressed (DE) genes per cell type. Nuclear RFX6 was not 

among those reduced in β cell nuclei, consistent with shRNA silencing occurring in the 
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cytoplasm. (d) Pathway enrichment (g:Profiler75, two-tailed hypergeometric test) for DE 

genes (FDR < 0.01); second two columns separate genes up- or downregulated in shRFX6. 

(e-f) To identify gene regulatory networks driving cell states, we employed Single-Cell 

rEgulatory Network Inference and Clustering (SCENIC) and discovered cell type specific 

regulons governing cell identity. (f) UMAP clustering of nuclei (RNA component) by 

SCENIC using regulon activity (left) and average regulon activity across cell types (right). 

See also Fig. 5d. (g) To investigate overlap in differentially expressed genes between 

shRFX6 β cell nuclei and sorted T2D β cells, we compared the top 1,000 most significant 

DE genes in shRFX6 vs. control β cell nuclei (blue) and T2D vs. ND sorted β cells (red). 

Circos plot illustrates commonality at the level of gene IDs (purple) or ontology term 

enrichment (grey; p < 0.01). Metascape network analsyis69 displays a subset of enriched 

terms, where edges denote term similarity and node colors represent contribution of each 

gene list. Common pathway enrichment related to microtubule cytoskeleton organization, 

ion transport, and regulation of protein secretion. (h-i) Motif enrichment for top 2,000 

(h) or 10,000 (i) RFX6-sensitive up- and downregulated ATAC peaks in shRFX6 β cell 

nuclei. Motifs with highest significance are labeled in top panels; significant RFX motifs 

(or the single RFX motif closest to significance, in the case that no RFX motifs reach 

significance) are labeled in bottom panels. (j) Enrichment of top RFX6-sensitive up- and 

downregulated ATAC peaks (n = 2,000, 5,000, or 10,000) in shRFX6 β cell nuclei near 

shRFX6 β cell differentially expressed genes. (k-l) Single value odds ratio of T2D GWAS 

enrichment (k) and model estimate from conditional analysis (l) of top 2,000 or 10,000 

RFX6-sensitive peaks; see Methods for details. Nominal P-values for panel k, left to 

right: 0.00336, 5.53e-28, 0.0194, 9.28e-22. (m) Model of Mendelian randomization (MR) 

depicting the relationship of an instrumental variable (here, RFX6 SNPs) related to exposure 

(RFX6 expression) and outcome (T2D). Dotted lines denote assumptions of no association 

while solid and dashed lines indicate disease causality. (n) MR analyses using the European 

ancestry cohort from Vujkovic et al. meta-analysis9 (n = 1,114,458 independent samples) 

resulted in point estimates that were directionally consistent with the findings for the UK 

Biobank (see Fig. 5k). The heterogeneity across contributing studies (for example Million 

Veterans Program data reflect an older T2D case set, more comorbidities, and a strong 

male bias compared to UK Biobank) likely reduces our power. We leveraged several MR 

approaches to determine whether results were robust to their varying assumptions. Debiased 

inverse variant weighted method (robust to weak instrument bias): causal effect = −0.084, 

P = 0.065; Pleiotropy RESidual Sum and Outlier (PRESSO) method (removes outlier 

instrumental variable effects): causal effect = −0.073, P = 0.251; weighted median method 

(robust when up to 50% of instrumental variables are invalid): causal effect = −0.045, P = 

0.372. Results from MR-Egger are not shown due to strong weak instrument bias (I2_GX = 

0). Error bars in panels l and n represent 95% confidence intervals.
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Extended Data Fig. 10 |. (related to Fig. 5). Summary schematic of key molecular alterations in 
short-duration T2D cohort and of the convergence of genetic risk on an RFX6-mediated gene 
regulatory network.
(a) Major β cell-intrinsic and islet microenvironment alterations that define islet dysfunction 

in early T2D. Observations from transcriptomic and histologic studies revealed no change 

to endocrine cell composition but evidence of dysregulated β cell processes and modest 

changes to intraislet vascular and immune cell populations. Insulin secretion was reduced 

and persisted in a nondiabetic environment; glucagon hypersecretion was not observed122. 

(b) After identifying RFX6 as a candidate disease-associated gene through unbiased 

analysis of a small cohort (left panel; labels 1–2), we used two approaches for validation: 

first, molecular perturbation of RFX6 in β cells of primary human pseudoislets allowed 

functional, transcriptomic and epigenomic analyses (top right panel; labels 3–4) and 

second, integration of UK Biobank data allowed population-scale genetic relationship to be 

examined (bottom right panel; label 5). Reduction of RFX6 led to reduced insulin secretion 

defined by transcriptional dysregulation of vesicle trafficking, exocytosis, and ion transport 

pathways that was mediated by genome-wide chromatin architectural changes overlapping 
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with T2D GWAS variants. Furthermore, Mendelian randomization analysis revealed that 

reduced islet RFX6 expression is causally associated with T2D.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Integrated analysis of islet function, gene expression, and tissue architecture in a cohort 
of donors with early T2D reveals reduced stimulated insulin secretion ex vivo and in vivo and 
highlights dysregulated pathways in purified β and α cells as well as whole islets.
a, Top, schematic of disease progression from ND to pre-diabetes (pre-DM) and T2D, 

highlighting the progressive loss of functional β cell mass (red shading represents 

the disease stage targeted with this cohort); bottom, clinical cohort profile. See also 

Supplementary Table 1. HbA1c, haemoglobin A1C test. b, Application of multiple 

modalities, including ex vivo and in vivo islet function, tissue architecture and 

microenvironment, and cell type-specific gene expression in the study. Coordinated study 

on islets and tissue from same donor enabled integration between analyses (green arrows). 

RNA-seq, RNA sequencing. c, The dynamic insulin secretory response (P = 0.0005) of islets 

from ND (n = 23) and T2D (n = 12) independent donors measured by islet perifusion. 

Treatments (and concentrations) are shown along the top of the graph: Ad, adrenaline 

(μM); G, glucose (mM); IBMX, isobutylmethylxanthine (μM); KCl, potassium chloride 

(mM). d–f, Secretory response, quantified as area under the curve (AUC), to glucose (d), 
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cAMP (e), and KCl (f). IEQs, islet equivalents. g, Islet insulin content normalized to islet 

volume. h, Schematic of RNA sample collection and analysis. A latent variable analysis 

separated biological from technical variation, followed by examination by both differential 

gene expression and gene network analyses. FC, fold change; FDR, false discovery rate. i, 
Common differentially expressed genes in T2D β cell, α cell and islet samples at the level of 

gene ID (purple curves) or ontology term enrichment (grey curves; P < 0.01). j, Metascape 

network showing a subset of enriched terms from differentially expressed genes (two-tailed 

hypergeometric test). Edges denote similarity and node colours reflect the contribution of 

sample(s). Of note, endoplasmic reticulum processing and unfolded protein pathways were 

more enriched in islets than in isolated α or β cells. Data in c–g are mean + s.e.m. c, 

Two-tailed linear mixed-effect model. d–g, Two-tailed t-test indicated as follows. *P < 0.05, 

**P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 2 |. Integrated tissue analysis reveals no change to endocrine cell mass or number and 
modest changes in intraislet capillaries, T cells and cellular neighbourhoods in the early T2D 
cohort.
a, The mass of β, α and δ cells in 11 independent ND donors and 20 independent T2D 

donors. b, Representative images of islets from CODEX imaging; insets show γ and ε 
cells. c, Relative proportions of islet endocrine, vascular, stromal and immune cells. d, 

Representative images of islet capillaries, pericytes and extracellular matrix (ECM). EC, 

endothelial cell. e, Islet capillary density and area per capillary in n = 11 ND and n = 17 

T2D donors. P = 0.0268. f, Spatial analysis of endocrine cells and islet capillaries in n = 6 

ND and n = 9 T2D donors. g,h, Islet immune cell phenotypes and composition. β cells: P 
= 0.0247; α cells: P = 0.0479. DC, dendritic cell; NK, natural killer. i,j, Islet macrophage 

(i; n = 11 ND and n = 20 T2D) and T cell (j; n = 6 ND and n = 10 T2D; P = 0.0246) 

abundance. k, High-dimensional component analysis by uniform manifold approximation 

and projection (UMAP) of islet cell composition per islet (n = 255 ND, n = 426 T2D). 

l, Cellular neighbourhood changes in T2D versus ND islets. Line thickness and colour 

indicate correlation and confidence, respectively. a,e,i, Traditional immunohistochemistry 

data. b–d,f–h,j–l, CODEX data. Scale bars, 50 μm (inset in b, 25 μm). Bar graphs show 

mean + s.e.m. Two-way ANOVA with Šídák’s multiple comparisons test (a,f); two-tailed 

t-test (e,i,j). None of the variables shown had a statistically significant association with 
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disease duration (Pearson correlation, threshold P < 0.05). *P < 0.05, **P < 0.01, ***P < 

0.001, ****P < 0.0001.
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Fig. 3 |. WGCNA distinguishes β cell gene modules associated with donor and islet traits as well 
as those enriched in GWAS loci.
a, Relative enrichment of β cell modules (eigengenes) for curated gene lists, based on 

genes present in each module (two-tailed Fisher test, adjusted for multiple comparisons). 

See also Supplementary Table 5. AA, amino acid; carb., carbohydrate; endo., endocrine; 

metab., metabolism; mod, modification; ox. phosph., oxidative phosphorylation; proc. 

processes; Syst., system; trans., transduction. b, Module correlation to donor characteristics, 

enrichment of differentially expressed (DE) genes (two-tailed Fisher test, adjusted for 

multiple comparisons; •P < 0.05, *P < 0.01) and total number of genes per module. Modules 

of interest are highlighted in green. c, Module correlation to β cell functional traits described 

in Fig. 1; significant associations are highlighted in yellow. G + IBMX, 16.7 mM glucose 

with 100 μM isobutylmethylxanthine; 16.7 G, 16.7 mM glucose; 16.7 G 1°, first phase; 

16.7 G 2°, second phase; 1.7 G + Ad, 1.7 mM glucose and 1 μM adrenaline; KCl, 20 

mM potassium chloride. d, Module enrichment for GWAS traits using GARFIELD37. β 
is the regression coefficient indicating effect size and direction; SE quantifies the estimate 

variability. FIns, fasting insulin; 2hGlu, 2-hour glucose; FGlu, fasting glucose. See also 

Supplementary Fig. 4. Correlations (donor and functional characteristics) were run with a 

t-test, unadjusted, using Spearman correlations; see Methods for additional details.
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Fig. 4 |. Expression of RFX6, a central regulator of transcript changes in early T2D, is reduced in 
T2D β cells.
a, Overall connectivity of individual genes based on β cell WGCNA; selected genes with 

high connectivity scores are labelled. b, Cross-module and within-module connectivity of 

individual genes based on β cell WGCNA; selected transcription factor genes are labelled. 

c, Fold change in T2D β cell RNA expression of transcription factor genes highlighted 

in a. Vertical lines denote fold change of ±1.5. d,e, Images (d) and quantification (e) of 

expression of RFX6 in β cells and α cells of n = 11 ND and n = 13 T2D donors. Two-tailed 

t-test. Scale bars, 50 μm. f, Pseudoislet insulin secretion assessed by perifusion; n = 6 

independent islet preparations. g, Basal insulin secretion and area under the curve (AUC) for 

secretory response to each stimulus. Two-tailed t-test. Data in e–g are mean + s.e.m. *P < 

0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 5 |. Molecular perturbation and population analyses demonstrate that regulatory GWAS 
variants are enriched in the RFX6 network.
a, Scramble shRNA (control) and RFX6 shRNA (shRFX6) pseudoislets (n = 7 matched 

donors) were multiplexed for single-nucleus RNA-sequencing (snRNA-seq) and single-

nucleus ATAC-seq (snATAC-seq) multiome profiling using a randomized block study 

design. n = 15,825 (snRNA-seq); n = 5,706 (snATAC-seq) nuclei. b, Cell-type assignment 

by clustering on snRNA-seq data. c, Pseudobulk ATAC-seq signal at marker genes. d, 

Pathway enrichment of genes (n = 220; g:Profiler, two-tailed hypergeometric test) in top 

10 differential β cell regulons (shRFX6 versus control). Significantly enriched pathways 

highlight a broad similarity of β cells to neurons as electrically active and secretory cells. 

e,f, Motif enrichment for top 5,000 RFX6-sensitive upregulated (e) and downregulated 

(f) ATAC-seq peaks in shRFX6 β cell nuclei. Right panels show enlarged views of the 

outlined area. g,h, Single-value odds ratio of T2D GWAS enrichment (g; nominal P 
values 0.00478 (RFX6-sensitive peaks) and 3.613 × 10−25 (remaining peaks); Bonferroni 

correction) and model estimate from conditional analysis (h) of RFX6-sensitive peaks. 

Enrichment remained significant after conditional analysis controlled for remaining (not 

RFX6-sensitive) peaks. i, Interrogation of UK Biobank data to analyse RFX6 non-coding 

regulatory SNPs. j, Genetic association (causal effect, beta) of RFX6 regulatory SNPs (n = 
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7) with islet RFX6 expression (n = 420 independent samples) and T2D trait (n = 442,817 

independent samples). Each symbol represents one SNP and error bars show standard 

errors. All eQTL effects are oriented in the same direction (effect allele leads to reduced 

expression). Best fit line from MR-Egger is shown in red, indicating that decreased islet 

RFX6 expression is associated with increased risk for T2D. k, MR analysis on UK Biobank 

European ancestry reveals significant causal association of RFX6 expression with T2D risk 

(exposure, RFX6 expression; outcome, T2D). Negative estimate values indicate an inverse 

causal relationship between exposure and outcome (decreased RFX6 expression leads to 

increased T2D risk). h,k, Data are mean ± 95% confidence interval.

Walker et al. Page 59

Nature. Author manuscript; available in PMC 2024 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Dynamic functional analysis
	Islet, β cell and α cell transcriptomes
	Endocrine cell mass
	Islet microenvironment
	Co-expression network analyses
	Targeted molecular perturbation of RFX6
	Large-scale population genetics of RFX6
	Discussion
	Integration of functional, transcriptional and spatial analyses
	Gene modules of genetic risk in early T2D
	Role of RFX6 in early T2D β cell dysfunction

	Online content
	Methods
	Human participants
	Pancreas procurement and processing
	Assessment of native pancreatic islet and pseudoislet function by macroperifusion
	Human islet transplantation
	Purification of α and β cells by FACS
	Traditional and multiplexed immunohistochemical imaging and analysis
	Traditional immunohistochemistry.
	CODEX multiplexed imaging.
	Processing and annotation of CODEX images.
	High-dimensional, spatial and neighbourhood analyses.

	Transcriptional analysis of α and β cells and islets from ND and T2D donors
	RNA isolation and bulk RNA sequencing.
	Differential gene expression analysis.
	Gene network analysis.
	Integration of network analysis with chromatin accessibility.

	Pseudoislet formation and assessment of RFX6 knockdown
	Multiome snRNA-seq and snATAC-seq
	Isolation of nuclei.
	Multiome sample genotyping and imputation.
	Data processing for RNA component.
	Data processing for the ATAC component.
	Selection of quality nuclei for downstream analysis.
	Removal of ambient RNA counts from single-nucleus gene expression UMI matrices.
	Clustering of multiome data.
	Differential gene expression analysis.
	Gene network exploration for the RNA component.
	Per-cluster processing of ATAC component.
	Differential chromatin accessibility analysis.
	Testing for enrichment of peak subsets near differential genes.
	Motif scanning for multiome motif enrichment analyses.
	Motif enrichment in most significant peaks.
	Generation of ATAC footprint plots.
	GWAS enrichment in most significant peaks.

	Biobank interrogation and MR analysis
	Statistical information

	Extended Data
	Extended Data Fig. 1 |
	Extended Data Fig. 2 |
	Extended Data Fig. 3 |
	Extended Data Fig. 4 |
	Extended Data Fig. 5 |
	Extended Data Fig. 6 |
	Extended Data Fig. 7 |
	Extended Data Fig. 8 |
	Extended Data Fig. 9 |
	Extended Data Fig. 10 |
	The HPAP Consortium
	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Fig. 5 |

