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Colorectal cancer is caused by a sequence of somatic genomic alterations affecting
driver genesin core cancer pathways'. Here, to understand the functional and
prognostic impact of cancer-causing somatic mutations, we analysed the whole
genomes and transcriptomes of 1,063 primary colorectal cancers in a population-
based cohort with long-term follow-up. From the 96 mutated driver genes, 9 were not
previously implicated in colorectal cancer and 24 had not been linked to any cancer.
Two distinct patterns of pathway co-mutations were observed, timing analyses
identified nine early and three late driver gene mutations, and several signatures

of colorectal-cancer-specific mutational processes were identified. Mutations in
WNT, EGFR and TGFf3 pathway genes, the mitochondrial CYB gene and 3 regulatory
elements along with 21 copy-number variations and the COSMIC SBS44 signature
correlated with survival. Gene expression classification yielded five prognostic
subtypes with distinct molecular features, in part explained by underlying genomic
alterations. Microsatellite-instable tumours divided into two classes with different
levels of hypoxia and infiltration ofimmune and stromal cells. To our knowledge,
this study constitutes the largest integrated genome and transcriptome analysis of
colorectal cancer, and interlinks mutations, gene expression and patient outcomes.

The identification of prognostic mutations and expression subtypes can guide future
efforts toindividualize colorectal cancer therapy.

Colorectal cancer (CRC) is the third most common and the second
deadliest tumour type in both sexes, with 1,900,000 new cases and
900,000 deaths annually. About 20% of patients have metastatic dis-
ease already at diagnosis, and another 20% will develop metastases
later?. From exome®” and whole-genome®° sequencing, the mutational
landscape of CRC is best characterized in coding regions, whereas
non-coding regions remain understudied. Approximately 80-85% of
CRCsare classified as copy-number altered microsatellite stable (MSS),
10-16% as highly mutated with microsatellite instability (MSI) and 1-2%
as ultramutated resulting from somatic POLE mutations*™. The MSI
status predicts response to checkpoint inhibitors'?, whereas KRAS,
NRAS and BRAF mutations predict poor response to EGFR-targeted
therapies®™. The WNT, EGFR-KRAS-BRAF, PIK3CA, TGFf and p53 path-
waysare regulated by mutations in CRC', and several driver gene muta-
tionsin these pathways have been linked to prognosis. To advance the

understanding of CRC pathogenesis, identify driver events and find
prognostic features, we analysed whole genomes along with tumour
transcriptomes in a large, population-based CRC cohort with clinical
outcomes.

Mutational landscape

We obtained high-quality whole-genome sequences (average 53-fold
coverage) from patient-matched tumour and unaffected control sam-
ples along with tumour transcriptome sequence (average 30 million
paired reads; Supplementary Table 1) from 1,063 out of 1,126 CRC
cases. Ofthe1,063 CRCs, 943 were primary tumour surgical specimens
and 120 were primary tumour biopsies. Control samples were taken
from peripheral blood for 522 cases and from adjacent tissue for 541
cases, which did notintroduce batch effects (Supplementary Table 2).
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Fig.1|Somatic mutation analysis of 1,063 CRC genomes identifies 96 driver
genes. Somatic mutations were called (Methods) and significantly mutated
geneswereidentified using dNdScv.a, The 96 genes mutated at asignificant
levelin this cohort. The association of driver genes with survival (HR) is shown
for HM and nHM tumours (multivariable Cox regression). The association of
driver genes with clinical and genomic features is shown by the proportion of
tumours affected (Fisher’s exact test). *FDR-adjusted P < 0.05. The mutation
typeand prevalenceisindicated on the right, including a description of the
affected pathway. Colour keys for HR for OS and RFS, and for genomic feature
proportions are shown on the far right. Genes that were not previously
designated asdriversin CRC (orange) orinany cancer type (blue) are indicated.

Of all of the patients, 126 (12%) had been pretreated before the tumour
specimens were obtained at surgery, and 92 of these samples were
rectal cancerstreated with either chemoradiotherapy or radiotherapy
before surgery.

In total, 96 mutated driver genes were identified, and 1,056 (99%)
of the tumours had a somatic mutation in at least one of these (Fig. 1a
and Supplementary Table 3). On the basis of the total mutation count,
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b, The prevalence of total (blue) and non-synonymous (red) mutationsineach
tumour. Cut-offs for HMand nHM areindicated (grey line). The clinical features
and mutation status for selected genes are shown at the bottom. Mutations
thatare consideredtobedriversare either probably oncogenic mutations
annotated by OncoKB or hotspots catalogued by Cancer Hotspots. c, DNA
damage response (DDR) gene mutations in the 15 out of 21HM tumour cases
that were MSS. Not all DNA damage response genesincluded here can be
interpreted as the direct cause of the high TMB in these MSS samples. Top, the
total non-synonymous mutation counts for each sample are coloured by the
affected oncogenic pathways. ADENOCA, adenocarcinoma; BER, base excision
repair; HRR, homologous recombination repair; MMR, mismatch repair.

242 (23%) tumours were hypermutated (HM) with >23.16 mutations
per megabase (Fig. 1b and Supplementary Table 4). Compared with
non-hypermutated (nHM) cases, the HM cases were older (median age,
76 versus 71years), female and had right-sided, mucinous, high-grade
(poorly differentiated or undifferentiated) and stage Il tumours
more often™ (Supplementary Table 5). The MSI criteria (MSIsensor
score > 3.5; Methods) were fulfilled in 223 (21%) patients, of which only



2werenHM. This population-based cohort, representative of Swedish
patients with CRC (Supplementary Table 6), contrasts with cohorts with
younger, fitter patients in whom MSI prevalence is lower”. In total, 15
HM tumours were MSS with POLE or other DNA-damage-repair gene
mutations (Fig.1c) and 6 were MSS with high non-coding tumour muta-
tion burden (TMB) but no repair gene mutations. Not all repair gene
mutations in the HM MSS tumours were drivers; thus, it may not fully
explain their high TMB. Analyses in three groups (HM, nHM and the
entire cohort of tumours) identified 96 unique driver genes, along with
13 additional subtype-specific drivers (Supplementary Table 3). In the
HM tumours, genes mutated in more than 20% of the cases belonged
to the TGFB-BMP, WNT, RTK-RAS, ribosomal proteins, epigenetic
regulation, PI3K, SCF complex, p53 and immune system pathways, and
the most frequently recurring mutations werein ACVR2A (p.K437Rfs*5;
78%), BRAF (p.V60OE; 65%) and RNF43 (p.G659Vfs*41; 57%). Correspond-
ingly, the WNT, p53, RTK-RAS, PI3K, SCF complex and TGF3 pathways
had genes mutated in more than10% of nHM tumours (Fig. 1aand Sup-
plementary Table 3). The most common hotspot mutations in nHM
tumours were KRAS p.G12D (15%) and p.G12V (11%).

Of the 96 driver genes, the 24 that had not previously been desig-
nated as driversinany cancer'®” were linked to BMP (RGMB) and EGFR
(AREG) signalling, cell cycle (CEP170 and SKA3), immune system (PIGR
and CSF3),iontransport (SLC12A2and CYB561A3), metabolism (PIGW,
CYP2A6 and CYP7BI), mRNA splicing (SREK1IPI), protein transport
(WASHC2C and SLC46A3), transcriptional regulation (FOXP2, NANOGPS,
TBP and ZNF554), ribosomal proteins (RPS15, RPS16 and RPS6) and
other pathways (CBWDI, PRAC2 and ANKRD40). Nine drivers that
had not previously been observed in CRC* 381011182 ywere [inked to
the immune system (CDHI), histone modification (SETDS), transcrip-
tionregulators (MIDEAS and NONO), P13K signalling (TYRO3), cellular
response (FLCN), ribosomal proteins (RPL10 and RPL22) and UCH pro-
teinase (MBD6).

Twodistinct patterns of RTK-WNT pathway co-mutations—(1) KRAS,
APCand AMERI, and (2) BRAF and RNF43—were identified (Extended
DataFig.1laand Supplementary Table 7). For the KRAS, APC and AMERI
group, the nHM tumours had co-occurring PIK3CA (FDR-adjusted
P=1.98 x107%) and TCF7L2 (FDR-adjusted P=4.57 x 10™*) and mutually
exclusive TP53 (FDR-adjusted P=1.06 x 10”7) and NRAS (FDR-adjusted
P=1.76 x107°) mutations. In the BRAF and RNF43 tumours, co-occurring
mutations were observed in ACVR2A (FDR-adjusted P=0.06) in HM
tumours, and AKT1 (FDR-adjusted P= 0.03) and TYRO3 (FDR-adjusted
P=0.08) in the nHM tumours (Extended Data Fig. 1b). In the TGF[3
pathway, co-occurring mutations were found in SMAD2 and SMAD3
(FDR-adjusted P=1.03 x107°) in nHM tumours, whereas TGIFI
co-occurred with PIK3CA (FDR-adjusted P=0.09) in the HM cases.
The HM tumours had mutually exclusive mutationsin B2M and HLA-A
(FDR-adjusted P=0.07)%, and co-occurring mutations in KMT2B and
CD58 (FDR-adjusted P=0.01) and ERBB3 (FDR-adjusted P=0.09).Inall,
weidentified 33 additional CRC drivers along with previously unidenti-
fied co-mutation patterns within and across CRC pathways.

SVs and timing analyses

To encompass all types of genomic events in the progression of CRC,
we compiled copy-number variants (CNVs) and structural variants
(SVs)®. The most common chromosome arm aberrations were gains
of 7p and 20q in around 50% of tumours, and loss of heterozygosity
(LOH) of 17p,18p and 18q in more than 40% (Fig. 2a). Novel focal CNVs
identifiedinnHM tumoursincluded deletions of 15q24.3 (25%) contain-
ing MIR3713,22q12.3 (24%) and 8p11.22 (19%) containing ADAM-family
protease genes. The frequency of gene CNVs was higher in nHM com-
pared with in HM tumours, affecting an average of 55% versus 11% of
the driver genes. The drivers most frequently affected by CNVs were
GNAS and ASXL1, for which 82% and 81% of nHM tumours had gains and/
or amplifications, whereas SMAD4 (79%), SMAD2 (77%) and TP53 (76%)

had more deletions and LOH. In HM tumours, the antigen-presenting
genes HLA-B (26%), HLA-A (25%) and TAP2 (24%) had the highest LOH
frequency, whereas TRPSI (26%), ACVRIB (22%), CYP7B1 (22%), MBD6
(22%) and ERBB3 (22%) had the highest frequency of gains (Extended
Data Fig. 2a and Supplementary Table 8). Deletions were the most
common SV, primarily in high-grade (FDR = 0.011) and less in stage |
(FDR =0.021) tumours. Translocations were more common in older
patients (FDR-adjusted P=0.004), and in HM (FDR-adjusted P= 0.014),
MSI (FDR-adjusted P=0.003) and high-grade (FDR-adjusted P=0.003)
tumours. By contrast, inversions and tandem duplications were
less common in HM (FDR-adjusted P=4.69 x 10 and 0.0091), MSI
(FDR-adjusted P=2.75 x10**and 0.029) and right-sided (FDR-adjusted
P=6.45x10"%and 0.005; Fig. 2b) tumours. Half of driver gene SVs
were deletions, most frequently affecting tumour suppressor genes
including RUNX1 (n=38), PTEN (n=33) and SMAD3 (n = 30). The most
frequently affected DNA repair gene was RADS1B (n = 33; Extended
Data Fig. 2b). Extrachromosomal DNA (ecDNA) was observed in 250
tumours (24%), of which 91% were nHM (P= 2.9 x 10~°). Circular ampli-
conswere foundin 87 (35%) of ecDNA" cases, and the oncogenes most
frequently contained were ERBB2 (n=9;10%), FLT3 (n=7; 8%), CDX2
(n=7;8%),CDKI2(n=5;6%)and MYC (n = 5; 6%; Supplementary Fig.1a).
Tumour ecDNA correlated with shorter survival inapan-cancer study?®,
but no ecDNA-type-dependent differences in overall survival (OS) or
recurrence-free survival (RFS) were observed here (Supplementary
Fig.1b).

The sequence of genomic events during CRC evolution has not previ-
ously been determinedinalarge set of nHM tumours®. Here the earliest
events were somatic mutationsin APC, TP53, KRAS, BRAF and ZFP36L2,
followed by TCF7L2, FBXW7, BCL9L and SOX9 and loss of chromosomes
17p and 18. Among them, (1) TP53 and 17p loss are known early muta-
tions that are frequently found in multiple cancers; (2) APC, KRAS, BRAF
and TP53mutations drive CRC development; and (3) ZFP36L2, TCF7L2,
BCL9L and SOX9are previously unknown early events in cancer®. Late
or subclonal events included whole-genome duplication, gains of 1q,
6p,9p,12,16p,17qand 19q, and mutationsin TRPS1, GNAS and CEP170
(Fig.2cand Supplementary Table 9). These findings inform strategies
for early detection and events of potential relevance for CRCinvasion
and metastasis.

Mutational signatures

Mutational signatures in CRC have been linked to ageing, mismatch
repair (MMR) deficiency, polymerase proofreading, colibactin expo-
sure and unknown aetiologies”. Here a de novo analysis identified 27
single-base substitution (SBS; Supplementary Fig. 2), 8 doublet-base
substitution (DBS; Supplementary Fig. 3) and 11 small insertion
and deletion (ID; Supplementary Fig. 4) signatures (Extended Data
Fig. 3a-c and Supplementary Tables 10 and 11). Of the 27 SBS sig-
natures, 25 decomposed to 32 COSMIC SBS signatures” (Extended
Data Fig. 3a and Supplementary Tables 12 and 13). A new signature,
termed SBS-CRC1, was found in 17 tumours, all MSI or POLE mutant,
and correlated with the defective DNA MMR SBS15 signature (r = 0.40,
FDR-adjusted P=7.82 x107*°; Supplementary Table 14). Another new
signature, SBS-CRC2, was observed in 17 cases with low-grade and MSS
tumours, and correlated with the signature of unknown aetiology
SBS128% (cosine similarity = 0.94; Supplementary Table 15). Notably,
HM tumours with the DNA MMR SBS44 signature were primarily right
colon (85% versus 70%, P= 0.0064), BRAF V600OE mutated (70% versus
45%, P=0.0015), less frequently stage IV (4% versus 15%, P = 0.0386)
and had longer OS (multivariable hazard ratio (HR) = 0.558, 95% con-
fidence interval (CI) = 0.319-0.974; Extended Data Fig. 3d). Of the
8 DBS signatures, 3 could be decomposed to 6 COSMIC DBS signatures
(Extended DataFig.3b and Supplementary Tables 12 and 13). The new
DBS-CRC3 signature had the highest somatic mutation density and
occurredin98% of MSI cases. The defective DNA MMR signatures SBS15
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Fig.2|Structural variation and relative timing of somatic eventsin CRC.
a,Gene CNVsindriver genes displayed by type: LOH (green), deletion (yellow)
and amplification (red). The bar height is proportional to the fraction of
tumours with respective alteration. The 91autosomal driver genes are
indicated asoncogenes (O; purple), tumour suppressor genes (S; orange), both
(S, O; red) or genes withan unknown role (black), and are displayed by genomic
location.b, The SVlandscape for deletions, inversions, tandem duplications
and translocations displayed by clinical, genomic and transcriptomic features.
Theboxesrepresenttheinterquartile ranges (IQRs) between the firstand third

and SBS44 strongly correlated with DBS-CRC3 (r=0.61and r=0.84,
FDR-adjusted P=3.88 x10%and P=8.11 x 10%%), which was similar to
the MMR deficiency signature DBS19 described previously® (cosine
similarity = 0.87; Supplementary Table 15). The signatures SBS10a and
SBS10b, associated with MSS POLE mutated tumours, co-occurred with
SBS28% (r=0.48 and 0.61, FDR-adjusted P=5.13 x 10*?and 5.04 x10™%)
and the new DBS-CRC5 signature (r = 0.43, FDR-adjusted P= 8.21 x107;
Supplementary Table 14). Lastly, from the 11 ID signatures, 9 decom-
posed to 9 COSMIC ID signatures, of which the most frequent, ID1 (in
87%) and ID2 (in 98%), are related to DNA slippage during replication?
(Extended DataFig.3cand Supplementary Tables 12 and 13). Notably,
the new ID-CRC1 signature had the highest somatic mutation den-
sity (>10 mutations per Mb), and 89% of cases with ID-CRC1 also had
the defective DNA MMR signature SBS44. Together, 47 known and
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Mutation type

quartiles, the centreline represents the median, and the whiskers extend
tol.5xthe QR fromthe top and bottom of the box. Statistical analysis was
performed using two-sided Wilcoxon rank-sum tests; *FDR-adjusted P< 0.05,
**FDR-adjusted P<0.01, ***FDR-adjusted P< 0.001, ****FDR-adjusted P< 0.0001.
¢, The prevalence and relative timing of driver gene mutations and SVsin 801
nHM CRC tumours by PhylogicNDT. Early/clonal (green), intermediate (black)
and late/subclonal (purple) alterations are indicated. WGD, whole-genome
duplication.

9 previously unknown (Extended Data Fig. 3e) mutational signatures
were identified, of which SBS28 and DBS-CRC5 were associated with
POLE mutant MSS CRC, the SBS-CRC1, DBS-CRC3 and ID-CRC1 signa-
tures with MMR, and the DNA MMR SBS44 signature in HM tumours
with longer OS.

Mitochondrial genomes

High median copy numbers and enrichment of truncating mutations
characterize CRC mitochondrial DNA (mtDNA)*°. We identified 3,982
single-nucleotide variants (SNVs) and 949 indel mutations in mtDNA
in1,027 (97%) tumours (Supplementary Table 16). The mtDNA muta-
tions were most frequent in the non-coding promoter D-loop (48%)
and in the complex I genes ND5 (41%) and ND4 (30%; Extended Data



Fig. 4a). Truncating mutations were enriched in ND5 and ND4, repre-
senting 35% and 29% of mutations. Like in other cancer types, missense
mtDNA mutations were more frequently near-homoplasmic (variant
allele frequency (VAF) > 60%) compared with silent and truncating
mutations, and their overall dN/dS ratio was close to 1 at different
VAFs (Extended Data Fig. 4b,c). Truncating mutations with VAF > 60%
occurred in 6.6% of tumours, compared with <3% in other cancers®,
suggesting that mitochondrial dysregulation is important for CRC
tumorigenesis. While HM status did not correlate with mtDNA mutation
counts, age at diagnosis did (Extended Data Fig. 4d). Co-occurrence
but not mutual exclusivity was observed between mtDNA muta-
tions (Extended Data Fig. 4e). Mitochondrial genome copy number
(mtDNA-CN)was lower inright colon, high-grade and HM tumours (Sup-
plementary Fig.5a). When divided into low (n =127) and high (n = 912)
tumour mtDNA-CN groups, there was a trend toward longer OS in
high-mtDNA-CN cases (Supplementary Fig. 5b—d). The mtDNA-CN cor-
related positively with clock-like (SBS1and SBS5) and ROS (SBS18) SBS
signatures but negatively with most MMR signatures (Supplementary
Fig.5e-g).

Prognostic alterations

Compared with cohorts from clinical trials, referral hospitals or actively
treated patients, patient age was higher (median age, 72 versus 54-68
years), right-sided tumours were more common (47% versus 30-39%)
and the fraction of MSI cases was higher (21% versus 8-12%) in this
cohort, leading to different prognostic cohort features**", When
compared with all surgically resected CRCs in Sweden, rectal, stage |
and stage IV tumours were slightly under-represented, but OS was
similar (Supplementary Table 6). Inall, the cohortis representative of
theresected Swedish CRC patient populationand, as such, of Western
real-life populations?.. The MSS cases had shorter RFS (P = 0.048)
compared with MSI cases, while non-pretreated stage IV MSI cases
had shorter OS (P=0.004) compared with their MSS counterparts.
The worst OS and RFS were observed in patients aged >80 years, and
for high-grade and more-advanced-stage tumours. For non-pretreated
stage I-Ill cases, tumour location in the rectum or left colon was cor-
related with longer OS (P=0.032) but not RFS (P= 0.365). Right-sided
colontumours correlated with shorter OS only for stage IV cases receiv-
ing first-line chemotherapy without metastasectomy (P=0.0003;
Supplementary Table 17).

Based on 994 (94%) patients that had 5-year survival data, of which
219 (22%) had HM CRC, we identified mutated driver genes associ-
ated with OS or RFS (Supplementary Table 18). Inthe nHM group, APC
mutations correlated with longer OS (HR = 0.61, 95% Cl = 0.46-0.82)
and RFS (HR = 0.68, 95% CI = 0.49-0.94)*, MT-CYB mutations with
longer OS (HR =0.59, 95% CIl = 0.43-0.82) and RFS (HR = 0.67, 95%
Cl=0.47-0.94; Supplementary Table 19), and SIN3A mutations with
longer OS (HR = 0.11, 95% Cl = 0.02-0.79). Mutations in ARHGAPS,
BRAF* and RNF43** correlated with shorter OS (HR =4.09, 1.58 and
2.30;95% C1=1.79-9.33,1.10-2.27 and 1.37-3.84) and RFS (HR = 2.68,
1.65and 2.03;95% C1=1.09-6.59,1.08-2.53 and 1.07-3.85), and ARID2
mutations withshorter OS (HR =2.07,95% Cl =1.17-3.65). By contrast,
HM cases with ARHGAPS, RNF43and TGFBR2 mutations had longer RFS
(HR=0.40,0.43and 0.34;95% Cl = 0.19-0.85,0.23-0.78 and 0.19-0.62),
whereas BCL9 and TRPSI correlated with shorter OS (HR =1.89 and
1.77;95% C1=1.11-3.20 and 1.03-3.03), and PCBPI with shorter RFS
(HR=4.22,95% Cl=1.40-12.74).

We analysed candidate cis-regulatory elements (cCREs) in nHM
tumours and identified 7 proximal enhancer-like, 1 promoter-like, 7
DNase-only and 11 CTCF-only elements along with 34 differentially
expressed linked genes (Supplementary Table 20). Of the genes with
deregulated expression, /D2 and HS3ST1 had regulatory element
mutations linked to shorter OS (HR = 3.49 and 2.94, 95% C1 =1.62-7.53
and 1.29-6.70; Supplementary Table 21) and DAPK1 with shorter RFS

(HR=2.68, 95% Cl =1.25-5.74). Targeting /D2 reduced CRC growth
in vivo and its expression was increased by WNT signalling under
hypoxia®3¢, and DAPKI loss was linked to invasiveness of CRC cells®,
supporting their roles in CRC pathogenesis.

Prognostic CNVs in nHM tumours included known events such as
amplification of 20q11.1, 20q11.21 and 20q13.33, and loss of 16p13.3,
along with unknown events in which amplifications correlated with
longer survival, and losses with shorter survival. For the HM tumours,
we identified five prognostic CNVs linked to shorter survival includ-
ing the known -4g22.1 event (Supplementary Table 22). Patients with
nHM tumours with SMAD4 deletion had shorter RFS (HR =2.13, 95%
Cl=1.04-4.34), and those with TCF7L2 translocation had shorter OS
(HR =4.82,95% Cl =2.10-11.03) and RFS (HR = 7.50, 95% CI = 2.72-20.69;
Supplementary Table 23). Together, we observed associations with
prognosis for mutations in 12 known cancer genes, 21 CNVs, 1 mito-
chondrial gene and 3 regulatory elements (Table 1).

Expression of drivers and fusion genes

High-quality genome and transcriptome sequences from the same large
setof tumours enable integrated analyses of gene mutations and gene
expression levels. Tumour mutations in RTK-RAS, PI3K, p53 and TGF3
pathway genes EGFR, KRAS, PIK3CA, CDKN2A, TGFBR1and ACVR2A were
associated with increased gene expression, while mutations in APC,
PTEN and TP53 all had decreased expressionin nHM and HM tumours
(Fig. 3 and Supplementary Table 24). Although nonsense-mediated
decay cancomplicateinterpretation of differential gene expression lev-
els® among the WNT pathway driver genes, RNF43, AXIN2,SOX9, ZNRF3,
CTNNBI and AMER1 had 55-334% higher expression in tumours while
TCF7L2,APCand CTNNDI1had 15-24% higher expressionin unaffected
control colorectal tissue (Supplementary Table 25). Tumours with
SOX9or TCF7L2mutations had increased expression of the respective
genes, while other mutant WNT pathway drivers had reduced tumour
expression (Extended Data Fig. 5). Notably, tumours with RTK/WNT
pathway BRAF and RNF43 co-mutations had higher expression of BRAF
and lower expression of RNF43 compared with wild-type tumours and
tumours carrying mutations of only one gene (Extended Data Fig. 1a).
Decreased expression coupled to mutation characterized several genes
related to antigen presentation (HLA-A, B2M and CDH]1), transcription
regulation (ASXL1and NONO), apoptosis (BAX), histone modification
(KMT2B) and ribosomal functions (PPL22) (Extended Data Fig. 5 and
Supplementary Table 25).

A total of 621 fusion transcripts were expressed in 338 nHM (41%)
and 78 HM (32%) tumours, 17 of which were recurrent (Supplementary
Fig. 6a). The most frequently fused genes were PTPRK (n =27 tumours),
RSPO3 (n=25), SEPTIN14 (n=24), FBX025 (n=24) and FBRSL1 (n=19;
Supplementary Fig. 6b). Of the fusions, 15 were known CRC drivers,
including NTRK, BRAF and ERBB2 fusions, the PTPRK-RSPO3 fusion
shown to promote differentiation and loss of stemness®***°, and the
uncharacterized FBXO25-SEPTIN14 fusion (Supplementary Fig. 6¢,d).

Prognostic gene expression signature

Mutational and transcriptional datacan be used to develop subtyping
classifiers in which the contributions of underlying genomic events
are defined. The Consensus Molecular Subtypes (CMS) classification
system is the state-of-the-art gene expression-based classification of
CRC*but, as most CRCs are composed of several CMS subtypes when
deconvoluted*, a refined classification at the single-cell resolution
(iCMS) hasbeen proposed’. As CMS is based on 18 datasets generated
using different technologies, we examined whether unsupervised
de novo classification of the cases here would recapitulate CMS or
iCMS. In this new classification, termed CRC prognostic subtypes
(CRPSs), 97% of CMS1 tumours were classified as CRPS1, CMS2 tumours
weredistributed between CRPS2 (39%) and CRPS3 (59%), 68% of CMS3
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Table 1| Prognostic genomic features by hypermutation status

Feature

nHM

HM

Longer survival

Shorter survival

Longer survival

Shorter survival

Coding driver gene mutation

APCoS,RFS

ARHGAP5OSFFS

ARHGAP5®S

BCL9®®

SIN3A%®

PCBPT®F®
TRPS1°®

RNF43%
TGFBR2¥S

ARID2®
BRAF OS,RFS
RNF 43057

Mitochondrial gene mutation MT-CYBOSRFS

Non-coding driver gene mutation -

1D2°° - -
HS3ST1®
DAPKI®

CNV +8p11.198
+20q11.105RF
+20q11.21°
+20q13.12°8
+20q13.33%

-4q341° -
-8p23.1°°
~11p15.57
-12q24.33%%
-16p13.37
—17p12%Fs
~17p13.3%
1712
-1721.2%
-17q21.31°
-17G25.305RF
-21p12%

-3p21.31%
~4q22.17F
~1p15.505/Fs
-15026.3%F
+19q11°%

SV -

SMAD4™S - -
TCF7L2°%%

Mutational signature -

- SBS44°° -

Prognostic features identified by multivariable Cox with adjustment for tumour site, pretreatment status, tumour stage, age group and tumour grade. OS, overall survival for stages I-IV.

RFS, recurrence-free survival for stages I-Il.

tumours were classified as CRPSS, and CMS4 tumours were distributed
between CRPS2 (38%) and CRPS4 (45%; Fig. 4a and Supplementary
Fig. 7). Importantly, CRPS assigned all but 3 tumours, while 192 (18%)
remained unclassified by CMS, most of which were assigned to CRPS1
and CRPS2.The CRPS1group contained 88% of the HM cases, whereas
only 56% were classified as CMS1. Accordingly, CRPS1 tumours most
often occurredinright colon (79%), in older (median age, 76 years) and
female (61%) patients and had the highest prevalence of somatic SNVs
and the lowest of CNVs (Supplementary Table 1 and Extended Data
Fig. 6a-c). The CRPS2 and CRPS3 subtypes were distributed equally
between anatomical locations and had low frequencies of BRAF muta-
tions (Extended Data Fig. 6a). The CRPS4 tumours were often rectal
(47%), and exhibited stromal, TGF3 and WNT pathway activation,
consistent with CMS4 (Fig. 4b and Supplementary Table 26). Finally,
CRPSS5 tumours were often from the right colon (46%), displayed WNT
signalling repression (Supplementary Table 26) and had the highest
prevalence of KRAS, PIK3CA and FBXW7 mutations, but fewer TP53muta-
tions and CNVs compared with CRPS2-CRPS4 (Fig. 4b and Extended
DataFig. 6a,b). The distribution of reclustered CRPS cases was robust
toremoval of stage IV and pretreated cases (Supplementary Fig. 8a-d).
The CRPS subtypes were prognostic for OS in stages I-1V (P=0.01),
RFSinstagesI-1ll (P=0.025; Fig. 4c) and for survival after recurrence
(P=0.034;Supplementary Fig. 8e), with CRPS2 and CRPS3 associated
with the longest OS and RFS, CRPS4 with shortest OS and RFS, CRPS5
with shorter RFS, and CRPS1 with the worst survival after recurrence.
The CMS4 cases assigned to CRPS2 had a longer OS compared with
those assigned to CRPS4 (Fig. 4d), which may reflect that the density
of fibroblasts, macrophages and dendritic cells in CRPS2 is between
those of CRPS3 and CRPS4’ (Fig. 4b). To advance the understanding
of nHM tumours, we identified prognostic features by CRPS, CMS and
iCMS subtypes. Unfavourable-prognosis nHM iCMS3 tumours’ were
primarily CRPS1and CRPS4-CRPSS5, displaying similaritiesin mutation
profiles and clinical outcomes (Extended Data Fig. 7a). Despite their
lower overall CNVload compared withiCMS2 tumours, several late CNV
deletions correlated with shorter survival (Supplementary Table 27),
while BRAF and RNF43 mutations were early events (Supplementary
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Table 9). Most of the nHM iCMS2 tumours were CRPS2-CRPS3. Ampli-
fication of 20q11 correlated with longer survival, consistent with being
the major contributing feature for CRPS2’** (Supplementary Fig. 9b
and Supplementary Table 22). Within the nHM CMS4 tumours, those
classified as CRPS4 divided between iCMS2 and iCMS3, while those
classified as CRPS2 were primarily iCMS2. This could explain the
separation of these tumours from the wider CMS4 category into the
CRPS2 and CRPS4 subtypes, with shorter survival for the CMS4 cases
inthelatter (Fig.4d). Therelatively poor prognosis of CRPS4 may stem
from the majority of tumours displaying iCMS3 characteristics’. For
external validation, we developed a ResNet50 CRPS-based classifier
(Supplementary Fig. 9a) and analysed 2,832 cases from 10 cohorts
yielding accuracy, precision, recalland F, score of >85%. The prognos-
tic ability of CRPS and the correspondence between CMS and CRPS
was recapitulated (Extended Data Fig. 7b-d), with CRPS2 having the
longest OS and CRPS4 having the shortest (P=0.013 for all CRPS).
Pathway features of CRPS subtypes were reproduced inthe validation
cohort (Extended DataFig. 7e). Together, the CRPS outperforms CMS
for prognosis, assigns a very high proportion of tumours to subtypes
and provides deeper insightsinto CRC subtypes when combined with
single-cell signatures.

Tumour hypoxia

Among 27 tumour types, CRC ranked the third most hypoxic*. To
delineate links between genomic and transcriptomic alterations
and tumour oxygenation, we analysed the transcriptomes using
the Buffa hypoxia signature®. Tumours consistently had elevated
hypoxia scores compared with unaffected control tissue (median,
1versus —20); right colon tumours had the highest, followed by left
colon and rectum tumours (median, 7 versus 1 versus —5; Extended
Data Fig. 8a). Furthermore, tumours in female individuals and those
of high grade, HM and MSI had elevated levels of hypoxia. Consider-
ing all tumours, the strongest associations were SBS1, SBS5 and ID1,
prevalent in tumours with low hypoxia** (Extended Data Fig. 8b and
Supplementary Table 28). The MMR-related signatures SBS44, SBS26,
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Fig.3|Integrative analysis of somatic alterations and gene expression
levelsin CRCsignalling pathways. The frequencies of somatic alterations,
including mutations and copy-number (CNV) loss and gain for each genein
nHM and HM tumours. Red (log,[fold change (FC)] > 0) and blue (log,[FC] < 0)
colourintensities represent the log-transformed FC between mutated and

SBS14, SBS-CRC1and DBS-CRC3 correlated with high hypoxia. By con-
trast, SBS18, related to damage by ROS, and ID18, related to colibactin
exposure, were inversely correlated. The two ID mutational signatures
associated with slippage during DNA replication were both correlated
with hypoxia, with ID1inversely correlatedand ID2 correlated*. InnHM
tumours, most driver genes, particularly SMAD4, SMAD2 and FBXW?7,
correlated with high hypoxia. In HM tumours only RGMB, SMAD2, AREG
and RFX5Smutations correlated with low hypoxia (Extended DataFig. 9a
and Supplementary Table 28). Most SV types were associated with
high hypoxia in nHM tumours**, but only deletions were associated
with high hypoxia in HM tumours (Extended Data Figs. 8c and 9b).
Increased hypoxia was associated with a higher number of clonal, but
not subclonal, mutations in nHM tumours** (Extended Data Fig. 9¢).
High TMB was associated with hypoxia when consideringall tumours.
Impaired mitochondrial activity and abnormal mtDNA-CN character-
ized hypoxic tumours*, and mtDNA-CN was negatively correlated with
hypoxia in both HM and nHM cases (Supplementary Table 28). The
CRPS1and CRPS4 tumours were the most hypoxic, whereas CRPS3
and CRPS5 were the least. No correlation between hypoxia and sur-
vival or tumour size determined by magnetic resonance imaging in
rectal cancers was observed. In summary, these findings corroborate
previous observations innHM CRC and provide insights into hypoxia
inHM CRC.

wild-type tumours by type of somatic alteration (mutation, CNV gainand CNV
loss fornHM and HM samples). Somatic alteration frequencies are indicated by
theblacklinein each column. Black dots show gene expression changes with
FDR-adjusted P< 0.05 (two-sided Wilcoxon rank-sum test). Driver genes are
marked by orange borders.

Tumour microenvironment

The tumour microenvironment was characterized by
transcriptome-based prediction of stromal and immune cell popu-
lations*”*%, The CRPS groups displayed differential infiltration of
immune cells (Supplementary Fig. 10a,b). CRPS1 was enriched for
T cells, B cells, dendritic cells and macrophages, CRPS2 for haema-
topoietic stem cells, dendritic cells and macrophages, while CRPS3
tumours had low levels ofimmune cell infiltration but higher levels of
megakaryocyte-erythroid progenitor cells (MEPs) and osteoblast-like
cells.In CRPS4, fibroblasts, chondrocytes, endothelial cells, haemat-
opoietic stem cellsand macrophages were enriched, while epithelial,
MEPs and T cells were low. The CRPS5 tumours were characterized
by CD4 central memory and effector memory T cells. When strati-
fied by HM and MSI status, nHM tumours had more fibroblasts and
haematopoietic stem and granulocyte-monocyte progenitor cells,
but less mesenchymal stem and immune cell infiltration compared
with HM cases (Supplementary Table 29). In nHM/MSS cases, M2-like
macrophages were associated with shorter OS and RFS, whereas T cells,
dendriticand eosinophil cells were associated with longer OS and RFS
(Supplementary Table 30).

Most MSI CRCs respond to immunotherapy, but 45% do not, moti-
vating a finer-grained subtyping*. We divided MSI tumours into two
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Fig. 4 |Refined prognostic subtypes derived from1,063 CRC
transcriptomes. The characteristics of the five distinct CRPSs obtained from
unsupervised classification of tumour transcriptome data. a, Comparison of
CRPStothe CMSs for the same dataset. The proportion of samples assigned to
eachsubtypeisshown asthe percentage of the total number of tumours. The
main molecular and clinical characteristics for each CRPS and CMS subgroup
areindicated. b, Transcriptomic characteristics of 1,063 samples according to
their CRPS classification. Prognostic focal CNV cytobands that are differentially

classes using unsupervised classification (Supplementary Fig. 11),
where the first was characterized by lymphocytes and stromal cells,
and the second by more abundant MEPs and T helper type 1 cells
(Supplementary Fig. 12). The two MSI classes did not differ in OS or
RFS, but MO macrophages and B cells were linked to longer OS and
shorter RFS in MSI class 1 whereas M2 macrophages, CD4" T cells and
erythrocytes were linked to shorter OS and RFS in class 2 (multivari-
able HR > 1; Extended Data Fig. 10a and Supplementary Table 30).
The MSI class 1 tumours more often had AR/D2 mutations, while class
2 had more BRAF and SMAD4 CNVs, FOXP2 amplifications and 7ql1
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alteredin CRPS areindicated by asterisks (P < 0.05, multivariable Cox regression
innHM tumours). ¢, Kaplan-Meier survival curves (log-rank test) for overall
(stagesI-1V) and recurrence-free (stages I-lI) survivalin CRPS (top) and CMS
(bottom) groups. d, Kaplan-Meier survival curves (log-rank test) for CMS4
samples allocated to CRPS2 and CMS4 samples allocated to the CRPS4 group.
Adjusted HR (HR,4) and Pvalues (P,4) or HR and Pvalues were calculated using
multivariable Cox regression with or without adjustment for tumour stage. CIN,
chromosomalinstability.

gains (Extended Data Fig. 10b-d). The MSI class 1 tumours also had
higher hypoxia (median score, 17 versus 7; Extended Data Fig. 8a).
These differences in immune cell composition and hypoxia levels
motivate future analyses of immunotherapy responses in the two
MSI classes.

Discussion

Here we carried out a large study integrating WGS and transcriptome
datafrom CRCs, while providing sufficient clinical follow-up to enable



analyses of prognostic factors. The molecular genetic basis of CRC is
comparably well characterized, but the majority of analysed tumours
stems from clinical trials, large referral hospitals or from tumours
actively treated at sampling. Tumours with genetic alterations asso-
ciated with poor prognosis are under-represented in clinical trials in
whichinclusionis based on specific criteria, as well asin hospital-based
cohorts in which only patients who may be eligible for treatment are
analysed*®", We performed integrative analyses of CRCs from the inci-
dent patient population undergoing surgical removal of the primary
tumour. We extend the CRC driver gene compendium by 33 genes,
of which two-thirds were previously undescribed as cancer drivers,
although, inthe majority of instances, belong to cancer-relevant path-
ways. Several new mutational signatures related to defective DNAMMR
and POLE mutations were identified. Timing analyses revealed that
the vast majority of chromosomal losses are early events, whereas
amplifications occur late, and indicated that TP53 mutation precedes
PIK3CA mutation and loss of 10q (PTEN)'. Several previoulsy unknown
early events were identified, and the late timing of amplifications and
mutations in 1q and CEP170, 8q and TRPS1, and 20q and GNAS moti-
vates further analyses in the contexts of clonal fitness, invasion and
metastasis.

Important findings from the integrated analyses were that (1) the
favourable CRPS2-CRPS3type tumourswere enriched for chromosome
20 amplifications that have previously been linked to good progno-
sis*’; (2) M1 macrophages were enriched in the good-prognosis CRPS1
tumours,and M2 macrophagesin the poor-prognosis CRPS4 tumours;
(3) key driver gene expression levels correlated with their mutation
status; (4) prognostic mutations in regulatory elements were linked
toaltered expression of specific genes; (5) tumour hypoxia was linked
to specific mutational signatures; and (6) MSI tumours divided into
two classes with distinct molecular characteristics. Compared with
current molecular classifiers, the prognostic CRPS signature provides
refined CRC subtyping with the ability to classify the vast majority
of tumours. The robustness of CRPS should be validated in larger
cohorts with complete follow-up. Summarizing the identified prog-
nostic genomic factors (Table 1), we confirm the previously reported
prognostic relevance of mutant APC, BRAF and RNF43, and SMAD41oss
in nHM CRCs*73*%, and report several previously unreported prog-
nostic driver genes, including positive association of the prevalent
TGFBR2 mutations in HM CRCs with survival. Notably, the prognostic
driver genes belonged to the WNT, EGFR-KRAS-BRAF or TGFf path-
ways. Furthermore, the prognostic mutations in M7-CYB, and in the
regulatory elements of /D2, HS35T1 and DAPK1warrant further studies.
Together, these findings provide fertile grounds for functional studies
of CRC genes and for the development of diagnostic and therapeu-
tic modalities. Future characterization of epigenomes, proteomes
and metabolomes of the same tumours and patients can provide
additional insights into how different prognostic features relate to
each other.
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Methods

Patient cohort

Patients diagnosed with CRC between 2004 and 2019, at Uppsala Uni-
versity Hospital or Umea University Hospital, were eligible for the study.
Patients that had (1) a fresh-frozen biopsy or surgical specimen that
was estimated by a pathologist to have atumour cell content of >20%;
and (2) apatient-matched source of control DNA from whole blood or
fresh-frozen colorectal tissue stored in the biobank, were included.
Clinical data were extracted from the national quality registry, the
Swedish Colorectal Cancer Registry (SCRCR), and completed from
medical records. The follow-up for alive patients was a minimum of
3.9 yearsand amedian of 8 years (datalock 14 June 2023), with only one
patientlost to follow-up and 994 (94%) with complete 5-year follow-up.
Patients included with a diagnosis from 2010 (861 cases; 81%) were
obtained from the Uppsala-Umed Comprehensive Cancer Consortium
(U-CAN) biobank collections (Uppsala Biobank and Biobanken Norr)*.
Unfixed tissue materials from tumour and healthy colon and rectum
were handled onice and frozen on the day of sampling or surgery®. Tis-
sue collected in Uppsalawas embedded in optimal cutting temperature
(OCT) compound (Sakura) and stored at =70 °C. Tissue collected at
Umea University Hospital was frozen in pieces and stored at -70 °C.
Haematoxylin-and-eosin-stained sections from the frozen blocks were
reviewed by a pathologist to confirm tumour histology and estimate
tumour cell content. Matching healthy DNA samples were derived
from peripheral blood (522 patients) or adjacent healthy tissue (541
patients). Control RNA was obtained from 120 patient-matched colon
or rectum tissue samples. In total, tumours from 1,126 patients were
sectioned and sequenced; however, 63 patients were excluded due
to lack of high-quality DNA- or RNA-sequencing data from tumour or
paired unaffected tissue.

Tissue retrieval and nucleic acid extraction

For tissue samples from Uppsala, five and eight cryosections of 10 pm
eachwereused for RNA and DNA extraction, respectively. The DNA was
extracted using the NucleoSpin Tissue kit (740952, Macherey-Nagel),
and RNA was extracted using the RNeasy Mini Kit (74106, Qiagen). For
tissue samples from Umed, DNA and RNA were extracted using the
AllPrep DNA/RNA/miRNA Universal kit (80224, Qiagen). Control DNA
fromblood samples was extracted using the NucleoSpin 96 Blood Core
kit (740456, Macherey-Nagel) ona Genomics STARIet robot (Hamilton).
For control samples derived from tissue, DNA and RNA were extracted
using the same procedures as described for the tumour samples. DNA
concentration was measured using the Qubit broad-range dsDNA assay
kitin the Qubit system (Invitrogen), and RNA concentration and quality
were assessed using the Bioanalyzer RNA 6000 Nano kit (Agilent) for
samples from Uppsala and the Tape Station 2200 (Agilent) for samples
from Umea. RNA samples with RIN > 7,28S:18S ratio >0.8 and concen-
tration >60 ng pl” were further analysed. We analysed bulk RNA from
tumours and a smaller set of unaffected control CRC tissue to enable
analyses across a large sample set. This approach, while common in
such analyses, requires careful consideration of the impact of tissue
heterogeneity on the results as systematic differences in cell type com-
positionbetween CRC and healthy colorectal tissues could contribute
to variations in gene expression profiles.

Whole-genome sequencing and data processing

The WGS libraries were constructed from1,063 primary CRC tumours
and their paired control samples according to the manufacturer’s
instructions for the MGIEasy FS DNA Library Prep Set (1000006987,
MGI). The libraries were sequenced on the DNBSEQ platform (MGI)
and 100-bp paired-end sequencing was performed to yield data of
>60x read coverage for all of the samples. During WGS data pre-
processing, low-quality reads and adaptor sequences were removed
by SOAPnuke (v.2.0.7)%* with the parameters ‘-1 5 -q 0.5 -n 0.1 --f

AAGTCGGAGGCCAAGCGGTCTTAGGAAGACAA -r AAGTCGGATCG
TAGCCATGTCGTTCTGTGAGCCAAGGAGTTG'. Sentieon Genomics
software (v.sentieon-genomics-202010; https:/www.sentieon.com/)
was used to map and process high-quality reads for downstream anal-
ysis®*, which included the following optimised steps: (1) BWA-MEM
(v.0.7.17-r1188) with the parameters -“M -K 100000000’ in alt-aware
mapping model was used to align each tumour and control sample to
the human genome reference hg38 (containing all alternate contigs)®;
(2) alignment reads were sorted by sort mode of Sentieon utility func-
tions; (3) duplicate reads were marked by Picard (http://broadinstitute.
github.io/picard/); (4) indel realignment and base quality score recali-
bration for aligned reads were carried out by GATKS; (5) and alignment
quality control was done by Picard.

Somaticshort-variant calling

Putative somatic SNVs, MNVs and/or indels were identified in each
tumour-control pair using multiple accelerated tools (TNhaplotyper,
corresponding to MuTect2% of GATK3; TNhaplotyper2, correspond-
ing to MuTect2¥ of GATK4; TNsnv, corresponding to MuTect*®) and
TNscope® of Sentieon Genomics software (v.sentieon-genomics-2020
10.01). Passed somatic SNVs, MNVs and indels detected by at least two
tools wereretrained as ensemble somatic short variants for each paired
control-tumour sample. Allele depths of ensemble somatic short vari-
ants were recalculated by TNhaplotyper2 (v.sentieon-genomics-20
2010.01). High-confidence ensemble somatic short variants (depth
of tumour > 14, depth of control > 8, variant allele reads count of
tumour > 2, variantallele reads count of control < 2, variant allele frac-
tion of tumour > 0.005 and variant allele fraction of control < 0.02) were
selected for downstream annotation and analysis. These variants were
annotated with VEP cache v.101 (corresponding to GENCODE v.35) by
Personal Cancer Genome Reporter (PCGR) (v.v0.9.1).

Somatic SVsand CNV

Somatic SVs were detected in each paired control-tumour sample by
BRASS (v.6.3.4; https://github.com/cancerit/BRASS) with the param-
eters -j 4 --c 4 --s human --as GRCh38 --pr WGS’, and ascatNgs® (v.4.5;
https://github.com/cancerit/ascatNgs) with the parameters‘-gL-q20
-rs ‘human’-ra GRCh38 -pr WGS -c 4 -force -nobigwig’. The genome cache
file was generated by VAGrENT® (v.3.7.0; https://github.com/cancerit/
VAGrENT) with CCDS2Sequence.20180614.txt (https://ftp.ncbi.nlm.
nih.gov/pub/CCDS/current_human/CCDS2Sequence.20180614.txt)
and ensembl release-104 (http://ftp.ensembl.org/pub/release-104,
Homo_sapiens.GRCh38.104.gff3.gz, Homo_sapiens.GRCh38.cdna.
all.fa.gz, Homo_sapiens.GRCh38.ncrna.fa.gz). Other files for the
required parameters of BRASS and ascatNgs were extracted from
CNV_SV_ref_GRCh38_hla_decoy_ebv_brassé6+.tar.gz (ftp://ftp.sanger.
ac.uk/pub/cancer/dockstore/human/GRCh38_hla_decoy_ebv/CNV_SV_
ref_ GRCh38_hla_decoy_ebv_brass6+.tar.gz). The SVs presentin control
samples were filtered from the following analyses. Somatic CNVs were
detectedin each paired control-tumour sample by facetsSuite (v.2.0.8;
https://github.com/mskcc/facets-suite). An image of facetsSuite was
pulled from docker://stevekm/facets-suite:2.0.8 and run with singular-
ity (v.3.2.0)%%. We used the aligned sequence BAM file asinput dataand
executed FACETS in a two-pass mode with the default settings®*. First,
the purity model estimated the overall segmented copy-number profile,
sample purity and ploidy. Subsequently, the dipLogR value inferred
from diploid state in the purity model enabled the high-sensitivity
model to detect more focal events. Allele-specific copy numbers for
each high-confidence ensemble somatic short variant were annotated
using the wrapper script ‘annotate-maf-wrapper.R’ with high-sensitivity
output. The gene-level copy-number result was re-annotated with GEN-
CODE v.35.Somatic copy-number states were grouped into eight classes
based on total copy number (tcn) and minor copy number (also known
as lower copy number; Icn) estimated by FACETS, including wild type
class (one copy per allele; tcn=2, Icn=1), homozygous deletions (tcn=0,
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lcn=0), LOH (tcn=1, Icn=0), copy-neutral LOH (tcn=2, Icn=0), gain-LOH
(tcn=3 or 4, Icn=0), gain (tcn=3 or 4, Icn>=1), amp-LOH (tcn=5, Icn=0)
and amp (tcn=5, Icn>1).

ecDNA detection

Amplicons were detected in each sample by PrepareAA (commit
ba747ce; https://github.com/jluebeck/PrepareAA) with the parameters
‘--ref GRCh38 -t 4 --cngain4.999999 --cnsize_min 50000 --downsample
10 --cnvkit_dir /home/programs/cnvkit.py --run_AA®>%, An image of
PrepareAA was obtained from docker://jluebeck/prepareaa:latestand
runwith singularity (v.3.2.0). The amplicons were classified by Ampli-
conClassifier (v.0.4.4; https://github.com/jluebeck/AmpliconClassifier)
with the parameters --refhg38 --plotstyle noplot --report_complexity
--verbose_classification --annotate_cycles_file’””. The samples were
classified on the basis of which amplicons were present in the sample
as previously described?.

CIN signature quantification

The activities of the 17 CIN signatures presented previously®® were
quantified using CINSignatureQuantification (v.1.0.0; https://github.
com/markowetzlab/CINSignatureQuantification) with unrounded
copy-number segments from facetsSuite. Tumours with normalized
activitieslarger than zero, inany CIN signature, were identified as CIN
samples.

MSl detection

The MSl status of CRC tumours was determined by running the MSlsen-
sor2 (v.0.1, commit e0798c7; https://github.com/niu-lab/msisensor2)
tumour-control paired module (inherited from MSIsensor) with the
parameters ‘-c 15 -b 4. MSlsensor2 automatically detects somatic
homopolymers and microsatellite changes and calculates the MSI
score as the percentage of MSI-positive sites in all valid sites. MSlsen-
sor2 software comprises of two modules: tumour-only and paired. The
tumour-only moduleis an algorithm for tumour-only sequencing data,
with arecommended cut-off score of 20. By contrast, the paired module
isderived fromthe original MSlsensorl and the recommended thresh-
oldscoreis3.5for MSI?. Correlation analyses between the two modules
showed a strong correlation between their results, so we selected the
paired module. Furthermore, some studies subdivide MSI samples
into MSI-low (scores between 3.5 and 10) and MSI-high (scores above
10) based on the paired module. However, our analysis revealed that
most of the samples with scores in the MSI-low range according to the
paired module had scores above 20 in the tumour-only module, so we
considered all samples with an MSl score of 23.5 as having MSI.

Identification of significantly mutated genes

HM tumours associated with MSI or POLE mutation are frequently
foundin CRC. To avoid signals from samples with lower mutation bur-
den from being masked during downstream WGS analyses, we first
classified the tumours asHM or nHM based on the total count of somatic
short variants according as previously described”:

Nsnv > Nedian_sny T 1.5 X interquartile range

Afterafirst round of calculations, each HM sample was split into two
separate artificial samples with an equal number of mutation counts.
This process was repeated until no HM samples were detected by the
formula. Outlier times indicate how many times a sample was called
as HM in this process. The mutational heterogeneity caused by the
increased mutation burden of HM tumours can reduce the power to
detect driver genes and affect the identification of mutational sig-
natures**”!, To identify CRC driver genes, we ran dNdScv”* (v.0.1.0,
commitdcbf8eS5; https://github.com/im3sanger/dndscv) on the whole
cohortand on HM and nHM samples separately. A list of known cancer
genestobe excluded fromtheindel background model was compiled

from the COSMIC Cancer Gene Census’ (v.95) and intOGen Compen-
dium Cancer Genes (release date 1 February 2020, https://www.intogen.
org/)”*7*8% Covariates (amatrix of covariates (columns) for each gene
(rows)) were updated to covariates_hgl9_hg38_epigenome_pcawg.
rda (commit 9a59b89; https://github.com/im3sanger/dndscv_data).
The reference database was updated to RefCDS_human_GRCh38_
GencodeV18_recommended.rda (commit 9a59b89; https://github.
com/im3sanger/dndscv_data). The dNdScv R package includes two
different dN/dS-based algorithms, dNdSloc and dNdScv. dNdSloc
is similar to a traditional dN/dS implementation, while dNdScv also
takes into account variable mutation rates across genes and adds a
negative binomial regression model using epigenomic covariates to
infer the background mutation rate. The list of significant genes was
selected by Benjamini-Hochberg-adjusted P values (qall_loc<0.1 or
qglobal_cv<0.1) and merged from both dNdSloc and dNdScv. Long
genes®, olfactory receptor genes and genes with transcript per mil-
lion (TPM) >1inless than ten tumours were excluded from the poten-
tial driver gene list. Mutually exclusive or co-occurring sets of driver
genes were detected using the modified somaticInteractions func-
tion of Maftools®? (v.2.12.0), which performs pair-wise Fisher’s exact
tests to detect significant (Benjamini-Hochberg false-discovery rate
(FDR) < 0.1) pairs of genes.

Identification of broad and focal somatic copy-number variation
To determine significantly recurrent broad and focal somatic CNVs,
GISTIC2.0% (v.2.0.23) was run on resulting segmentation profiles from
facetsSuite high-sensitivity models with the parameters‘-ta0.3-td 0.3
-qvt 0.25-rx 0 -brlen 0.7 -conf 0.99 -js 4 -maxseg 25000 -genegistic 1
-broad 1-twoside 1-armpeel 1-savegene 1-gcm extreme -smallmem 1
-v30’. A higher-amplitude threshold according to GISTIC was used for
focal copy-number-alteration classification, tumour and control log,
ratio > 0.9 for amplifications and <—0.3 for deletions®. Recurrently
amplified or deleted regions were identified by GISTIC peaks and genes
within each peak were summarized for further analyses.

Mutational signature analysis

Analyses of mutational signatures were performed by SigProfilerEx-
traction® (v.1.1.4) with the parameters ‘--reference_genome GRCh38
--opportunity_genome GRCh38 --minimum_signatures 1--maximum_
signatures 40 --nmf_replicates 500 --cpu12--gpu True --cosmic_version
3.2". SigProfilerExtraction consists of two processes: de novo signa-
ture extraction and signature assignment®35%,_ Hierarchical de novo
extraction of SBS, DBS and ID signatures from all samples was fol-
lowed by estimation of the optimal solution (number of signatures)
based on the stability and accuracy of all 40 solutions. After signa-
tures were identified, the activities of each signature were estimated
by assigning the number of mutations in each extracted mutational
signature to each sample. SigProfilerExtraction also decomposed
de novo signatures to the COSMIC* signature database® (v.3.2). The
cosine similarity®” between mutational signatures of this and the GEL
cohorts®, and this and the PCAWG cohorts?” (COSMIC v.3.3), were
calculated using R (v.4.2.0). A de novo signature was considered
novel if the cosine similarity to both GEL and PCAWG signatures was
<0.85. The mutational signature associations between decomposed
signatures were calculated by Stats::cor (method = “spearman”) and
corrplot::cor_mtest (conf.level = 0.95, “spearman”) in R (v.4.2.0), and
those with an FDR-adjusted P < 0.05 were considered to be statistically
significant®®,

Analyses of non-coding somatic drivers in regulatory elements

Regulatory elements were defined using SCREEN (Registry of cCREs
V3; https://screen.encodeproject.org/), aregistry of cCREs derived
from ENCODE data®. Active cCREs annotated in 13 tissue samples
(smallintestine, transverse, sigmoid, left colon tissues) and 7 cell lines
(CACO-2, HCTI116, HT-29, LoVo, RKO, SW480 and HCEC 1CT) derived
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from colonwere collected and downloaded from SCREEN, where cCREs
are classified into six active groups (promoter-like signatures (PLS),
proximal enhancer-like signatures (pELS), distal enhancer-like signa-
tures (dELS), DNase-H3K4me3, CTCF-only and DNase-only) based on
integrated DNase, H3K4me3, H3K27ac and CTCF data. Furthermore,
the list of genes possibly linked to a cCRE according to experimental
evidence (for example, Hi-C) was extracted from the cCRE Details page
of the website. Driver analyses were performed by ActiveDriverWGS™°
(v.1.1.2, commit 351ca77; https://github.com/reimandlab/ActiveDriv-
erWGSR) with the parameters -mc4-rghg38-fh300’ onnon-HM sam-
plesforeach cCREs groups. The missense mutations in the analyses of
regulatory regions were removed to avoid confounding signals from
known cancer drivers. Mutated elements witha Benjamini-Hochberg
FDR < 0.05 were considered to be significant and were used in the fol-
lowing analyses®. To evaluate the functional effects of driver cCREs,
we examined their prognostic value and compared the expression
levels of their linked genes. Cox proportional hazard analyses were
performed to identify prognosis-associated cCREs using the Survival
Rpackage (v.3.3-1). Furthermore, potential associations between each
cCRE and the expression levels of their linked genes were analysed by
comparing raw expression values between groups of mutated and
wild-type samples using two-sided Wilcoxon rank-sum tests. An FDR
adjustment was applied to the P values from the Wilcoxon test and
genes with FDR-adjusted P < 0.05 were considered to be differentially
expressed with statistical significance. Finally, cCREs thathad animpact
onthe expression of linked genes were analysed according to survival.

Mitochondrial genome somatic mutation and copy-number
estimation

We used multiple tools in the GATK4 (v.4.2.0.0) workflow to extract
reads mapped to the mitochondrial genome from WGS, perform the
mtDNA variant calling and filter the output VCF file based on specific
parameters, according to GATK best practices (https://gatk.broadin-
stitute.org/hc/en-us/articles/4403870837275-Mitochondrial-short-
variant-discovery-SNVs-Indels-). Furthermore, false-positive calls
potentially caused by reads of mtDNA into the nuclear genome (NuMTs)
were examined. These mutations normally have alow VAF but are highly
recurrent in multiple tumours, as well asin matched control samples.
To remove these false positives, we used stringent sample filtering,
especially onvariants with heteroplasmy <10%. We first performed two
statistical tests as previously described®: (1) the VAF of amutation in the
matched control sequences needed to be <0.0034; and (2) the ratios of:

NMutCtrl/RDCtrI/(NMutCtrI/RDCtrl + NMutTum/RDTum)

needed to be <0.0629, where N, refers to mutation allele count, RD to
average read depth, and Ctrland Tum are control and matched tumour
tissues, respectively. These cut-offs were adapted from a previous
study®® and set by the median results of all mutation candidates plus 2
times the interquartile range. As the mutation rate of tumour-specific
NuMTsis around 2.3% (ref. 91), we retained mutations with afrequency
0f<0.023. To avoid false-negative calls, mutations with VAF,,,, < 0.1and
VAF .cqian < 0.05 were examined, and the tumours in which the muta-
tion had VAF > 0.05 were retained®”. The mean sequencing depth for
the mitochondrial genome was 14,286-fold, allowing high-sensitivity
detection of somatic mutations at a very low levels of heteroplasmy;
thus, variants with 0.01 < VAF < 0.95 were used for subsequent analy-
ses. For mtDNA copy-number calculation, we used pysam (v.0.15.3)
to filter and estimate the raw copy number of each sample. We then
calculated the normalized copy number as described previously®. The
survival best cut-point of mtDNA copy number was identified with
surv_cutpoint (maxstat test: Maximally Selected Rank and Statistics)
implemented in survminer (v.0.4.9). The associations between muta-
tional signatures and mtDNA copy number were calculated by Stats::cor
(method = “spearman”) and corrplot::cor_mtest (conf.level = 0.95,

“spearman”)inR (v.4.2.0),and those with FDR P < 0.05were considered
to be statistically significant®,

Relative timing of somatic variants and copy-number events

For each nHM tumour, allele-specific copy-number-annotated high-
confidence ensemble somatic short variants and high-sensitivity
copy-number events of autosomes (except the acrocentric chromo-
some arms 13p, 14p, 15p, 21p and 22p) were timed and related to one
another with different probabilities using PhylogicNDT>* (v.1.0,
commit 84d3dd2; https://github.com/broadinstitute/PhylogicNDT).
Single-patient timing and event timing in the cohort were inferred using
PhylogicNDT LeagueModel as previously described®. The driver gene
listidentified in this cohort was specified to run PhylogicNDT.

RNA sequencing and determination of gene expression levels

The rRNAwas removed from total RNA using the MGIEasy rRNA Deple-
tion Kit (1000005953, MGI) and sequencing libraries were prepared
for the 1,063 primary CRC tumours and 120 adjacent control tissue
samples using the MGIEasy RNA Library Prep Kit V3.0 (1000006384,
MGI) according to the manufacturer’s instructions. Sequencing of
2 x100 bp paired-end reads was performed using the DNBSEQ platform
(MGI) with a target depth of 30 million paired-end reads per sample.
Pre-processing of RNA-seq data, including removal of low-quality reads
and rRNA reads, was performed using Bowtie2 (v.2.3.4.1)°* and SOAP-
nuke. Clean sequencing datawere mapped to human reference GRCh38
using STAR (v.2.7.1a)%. Expression levels of genes and transcripts were
quantified using RNA-SeQC (v.2.3.6). Transcripts with expression level
0in all samples were excluded from further analyses and the mRNA
expression matrix (19,765 x 1,183) was converted to log,(TPM +1).

Detection of oncogenic RNA fusions

Gene fusions were detected by STAR-Fusion®” (v.1.10.0; https://github.
com/STAR-Fusion/STAR-Fusion) using clean FASTQ files with the param-
eters ‘--Fusionlnspector validate --examine_coding_effect --denovo_
reconstruct--CPU 8--STAR SortedByCoordinate’ and Arriba®® (v.2.1.0;
https://github.com/suhrig/arriba) starting with BAM files aligned by
STAR® (v.2.7.8a; https://github.com/alexdobin/STAR). An image of
STAR-Fusion was pulled from docker://trinityctat/starfusion:1.10.0
and run with singularity (v.3.2.0). Genome lib used in STAR-Fusion was
downloaded from CTAT genome lib (https://data.broadinstitute.org/
Trinity/CTAT_RESOURCE_LIB/_genome_libs_StarFv1.10/GRCh38 _gen-
code_v37_CTAT _lib_Mar012021.plug-n-play.tar.gz). Aligned BAMfiles for
Arribawere generated as described in the user manual (https://arriba.
readthedocs.io/en/latest/). Gene fusions from Arriba were then anno-
tated by FusionAnnotator (v.0.2.0; https://github.com/FusionAnnota-
tor/FusionAnnotator) and merged with results of STAR-Fusion. Merged
results werethenfiltered and prioritized with putative oncogenic fusions
by annoFuse® (v.0.91.0; https://github.com/d3b-center/annoFuse).

Unsupervised expression classification for generation of CRPS
We used Seurat (v.4.1.0) to identify stable clusters of all CRC samples
and among MSI tumours'. Potential batch effects or source differ-
ences between samples were corrected by Celligner'® (v.1.0.1; https://
github.com/broadinstitute/Celligner_ms), and the resulting matrix was
imported into Seurat as scale data. Three different parameters were
evaluated by repeating clustering with different k.paramin FindNeigh-
bors (10 to 30, step=5), number of principle components (10 to 100,
step=5) and resolutionin FindClusters (0.5 to1.4, step=0.1). The stability
of clusters was assessed by Jaccard similarity index and the preferred
clustering result (resolution=0.9, PC =20, K = 20) was determined by
scclusteval'® (v.0.0.0.9000).

CMS and iCMS classification
For the CMS classification, three CMS classifier algorithms (CMSclas-
sifier (v.1.0.0) with random-forest prediction*, CMSclassifier-single
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sample prediction* and CMScaller'® (v.0.9.2)) were evaluated and
the results from the CMSclassifier-random forest was used. Expres-
sion data were processed using these three R packages separately or
combined, generating four sets of results. In the combined mode, the
CMS subtype of each tumour was determined when two algorithms
made the same prediction, otherwise it was assigned as NA. Among all
four sets of results, CMSclassifier-random forest predicted the most
control samples as NA and assigned more MSI samples to CMS], indi-
cating a lower false-positive rate and a higher accuracy. The Intrinsic
CMS (iCMS) classification was performed based on 715 marker genes of
intrinsic epithelial cancer signature as described previously’. The iCMS2
marker genes were obtained fromthe iCMS2_up andiCMS3_down lists,
and theiCMS3_up andiCMS2_down lists were used as iCMS3 markers.
Subsequently, theiCMS2 and iCMS3 scores for each tumour were cal-
culated using the ‘ntp’ function of the CMScaller R package. Tumours
were defined as indeterminate if permutation-based FDR was > 0.05.

Model building and validation of CRPS classification

To validate the CRPS de novo classification, we built a classification
model based onadeep residual learning framework, involving the fol-
lowing steps: (1) gene expression data were first converted into pathway
profiles by single-sample gene set enrichment analysis (ssGSEA'**)
implemented in Gene Set Variation Analysis (GSVA'® (v.1.42.0), param-
eters ‘min.sz=5, max.sz=300’) using MSigDB'*¢ ¢ (v.7.4). We eventually
obtained 30,049 pathways for 1,183 samples, including 1,063 tumours
and 120 adjacent unaffected control samples. (2) RelieF implemented
in scikit-rebate'® (v.0.62) was used to refine the obtained pathway
features. The RelieF algorithm used nearest-neighbour instances to
calculate feature weights and assigned a score for the contribution of
eachfeatureto the CRPS classification. The features were then ranked
byscoresandthetop 2,000 were selected for the model training. (3) We
used TensorFlow™ (v.2.3.1) to construct the supervised machine learn-
ing model with a50-layer residual network architecture (ResNet50-1D),
of which the 4 stacked blocks were composed of 48 convolutional
layers,1max pool and 1average poollayer. Thefilters and strides were
setas previously described™ and the kernel size was set to height. The
activation function was set to SeLU, except for the last layer, which used
Softmax for full connection. During model compilation, we used the
Nadam algorithm as the optimizer in terms of speed of model training
and chose Categorical Crossentropy as loss of functionin the classifica-
tion task. To train the model sufficiently, epochs were set to 500 and
LearningRateSchedulerin TensorFlow was used to control the learning
rate precisely in the beginning of each epoch; finally, ModelCheckpoint
in TensorFlow was used to save the model with the maximum F1lscore.
(4) All1,183 samples were divided into a training set (80%), a test set
(10%) and avalidation set (10%). Before the model training, a1D vector,
which represents each gene sets row of samples (gs,, gs,, ..., gS,), was
converted toa2D matrix (1, Nge,qres) With the np.reshape function, and
used as the input data for Tensor (input shape structures were set to
(none, -1,2000)). ResNet50 learned the representations of the input
data and was fitted to the training set. The number of output classes
in TensorFlow was set to 6, corresponding to 5 clusters of CRPS and a
normal sample cluster. To avoid bias caused by classimbalance during
thelearning process, the Random OverSampling Examples algorithm
inImbalanced-learn?(v.0.9.0) was applied to ensure that at least one
sample from each CRPS class could be randomly selected for model
training. Samples with class probabilities of less than 0.5 were catego-
rized as NA. Moreover, Shapley Additive exPlanations (SHAP)'™ was
applied to explain the model predictions on CRPS classifications, the
molecular features of which could therefore be interpreted. To test
the CRPS classification model, a total of ten external CRC datasets
(n=2,832) from NCBIGEO™ (GSE2109, GSE13067, GSE13294, GSE14333,
GSE20916, GSE33113, GSE35896 and GSE39582), NCI Genomic Data
Commons'® (TCGA-COAD*, TCGA-READ*) and AC-ICAM> were uni-
formly processed and transformed to pathway profiles with ssGSEA.

After class prediction of these CRC samples by our CRPS classification
model, survival and pathway analyses were performed. Among these
external datasets, only the GSE39582, TCGA and AC-ICAM cohorts
have sufficient sample sizes and completeness of clinical data to allow
survival analyses. Thus, the comparisons of prognostic prediction
between CMS, iCMS and CRPS were performed using these three
datasets individually and combined. Pathway analyses of CRPS from
our dataset and from TCGA were performed using CMScaller'®®. The
CRPS classification model is available at GitHub (https://github.com/
SkymayBlue/U-CAN_CRPS_Model).

Pathway analyses

GSEA™® (v.4.2.3 desktop) and MSigDB!"1% (v.7.4) were used in pathway
analyses, with the following settings: filter ‘geneset min=15 max=200".
We also used PROGENyY™ (v.1.16.0) to investigate 14 oncogenic path-
ways in CRPS, as previously described. The integrated presentation
of pathways regulated by CRC somatic alterations were processed
using PathwayMapper (v.2.3.0; http://pathwaymapper.org/)'”. Path-
way templates were merged, including cross-pathway interactions™®,
using the Newt tool (v.3.0.5; https://newteditor.org/)"®, which allows
experimental data to be visually overlaid on the pathway templates.

Hypoxia scoring and associations with mutational features
Hypoxia scores were calculated for 1,063 CRC tumours and 120 unaf-
fected control samples using the Buffa hypoxia signature® as previ-
ously described**. Inbrief, samples withanmRNA abundance above the
median tumour value of each gene in the signature were given a Buffa
hypoxiascore of +1, otherwise they were given a Buffa hypoxia score of
-1.The sum of the score for every gene in the signature is the hypoxia
score of the sample. We used a linear model to analyse the associa-
tions between hypoxia scores and mutational features of interestin all
tumours, nHM tumours and HM tumours using R stats package (v.4.1.0).
For each mutational feature tested in the cohort, afullmodeland anull
model were created and both were adjusted for tumour purity, age at
diagnosis and sex'?°. The equations for the two models were adapted
from a previous study**:

Full = hypoxia -~ feature + age + sex + purity
Null = hypoxia ~ age + sex + purity

Comparisons between the two models were made using ANOVA,
and hypoxiawas considered to be statistically significantly associated
with a mutational feature when FDR- or Bonferroni-adjusted P values
were <0.1. Bonferroni adjustment was applied only to P values when
<20 tests were conducted. The scaled residuals for all full models were
calculated using the simulateResiduals functionin the DHARMa pack-
age'” (v.0.4.5), and their uniform distributions were verified using
the Kolmogorov-Smirnov test. Tested mutational features included
mutational signatures, SNV, CNV and SV densities, driver mutations
and subclonality. In the mutational signature analysis, the proportion
of each signature in each tumour was used in the full model. To test
the association between hypoxia and specific genetic alterations, we
considered 22 metrics of mutational density, including 10 SNV mutation
counts encompassing all regions, coding region, non-coding region,
nonsynonymous, SNV, DNV, TNV, DEL, INS and INDEL; 8 metrics of CNV
mutational density which were adapted from PCAWG*, including the
fraction of genome with total copy-number aberrations (PGA, total),
PGA gain, PGA loss, PGA gain:loss, average CNV length, average CNV
length gain, average CNV length loss and average CNV length gain:loss;
and 4 SV types, including deletion, inversion, tandem-duplication
and translocation. Mutational density by deciles of all 22 metrics were
calculated using the R package dplyr'*% Finally, in the subclonality
analysis, clonal and subclonal mutations and numbers of subclones
for each tumour were derived from PhylogicNDT as described above.
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Prediction of cell types in the tumour microenvironment

The CIBERSORT*® (v.1.04) and xCell*’ (v.1.1.0) computational methods
were applied with the default settings on TPM gene expression data for
microenvironment estimation.

Survival analyses

The OS was defined as time from diagnosis of primary tumour to
death or censored if alive at last follow-up, RFS was defined as time
from surgery to earliest local or distant recurrence date or death, or
censored if no recurrence or death at last follow-up, while survival
after recurrence was defined as the time from recurrence to death.
The OS analysesincluded all patients with stage I-1V, whereas patients
with stage IV at diagnosis were excluded in the RFS analyses. Separate
OS analyses were also performed for stage I-1ll for some variables.
Cox’s proportional hazards models were built to determine the prog-
nostic impact of clinical and genomic features using the R packages
finalfit and survival (v.1.0.4/v3.3-1). Univariable Cox regression was
performed on allidentified coding or non-coding drivers and clinical
variables, while multivariable Cox regression was applied to drivers
that were statistically significantin the univariable analyses (P < 0.05)
with co-variates including tumour site, pretreatment status, tumour
stage, age groups, tumour grade and hypermutation status. The OS
and RFS curves were constructed using the Kaplan-Meier method
and the differences between groups were assessed using the log-rank
test, using the R package survminer (v.0.4.9). In the Supplementary
Tables18,19,21,23 and 30 showing associations with either OS or RFS,
analyses showing P < 0.05 were marked in bold. No compensation for
multiple testing was done in these analyses.

Ethics declarations
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cal Review Authority 2019-566. All of the participants provided writ-
ten informed consent at enrolment. All of the samples were stored in
the respective central biobank service facilities in Uppsala (Uppsala
Biobank) and Umea (Biobanken Norr) and obtained for use in analyses
here after approved applications. Sequencing and sequence data analy-
ses of pseudonymized samples were performed at BGI Research, which
had access to patient age range, sex and tumour-level data. Samples
and data were transferred from UU to BGI Research under Biobank
Sweden MTA and applicable GDPR standard terms for transfer to third
countries. The analysis of patient-level datawas performed at UU. The
study conformed to the ethical principles for medical researchinvolv-
ing human participants outlined in the Declaration of Helsinki.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Short somatic variant call, CNV and SV data are available at the European
Variation Archive'® under accession number PRJEB61514, expression
profiles at the ArrayExpress?* under accession number E-MTAB-12862
or all data at the CNGB Sequence Archive (CNSA)'® of the China
National GeneBank DataBase (CNGBdb)™® under accession number
CNP0004160. The raw transcriptome data generated in this Article
are available under controlled access through EGA under accession
number EGAD50000000169. WGS raw data and more detailed clinical
information have been deposited at Uppsala University and inquir-
ies to access them should be directed to the corresponding author
and U-CAN, a cancer biobank at Uppsala University (https://www.
uu.se/forskning/u-can/). Access to raw data and clinical information

is subject to Swedish legal regulations, GDPR, permission from the
Swedish Ethical Review Authority and U-CAN terms. All patients in
U-CAN have explicitly consented to genomic data depositionin public
repositories. However, to protect their integrity and fulfil requirements
inan evolving legal landscape, we have opted for restricted access to
genome and transcriptome sequence datasets. Access requests can
be addressed to the corresponding author and will be responded to
within2 weeks. The remaining data are available within the Article and
Supplementary Information. The human genome reference hg38 (con-
tainingall alternate contigs) files were downloaded from GATK resource
bundle (ftp.broadinstitute.org/gsapubftp-anonymous/bundle/hg38).
The basic gene annotation file (gencode.v35.basic.annotation.gtf.gz)
was downloaded from GENCODE (ftp.ebi.ac.uk/pub/databases/gen-
code/Gencode_human/release_35). A high-confidence list of genes
with substantial published evidence in oncology (Cancer Gene Census
v95) was downloaded from COSMIC (https://cancer.sanger.ac.uk/cos-
mic). A compendium of mutational cancer driver genes (release date
1February 2020) was downloaded from intOGen (https://www.into-
gen.org/). COSMIC mutational signatures (v.3.3) were downloaded
from COSMIC (https://cancer.sanger.ac.uk/signatures/downloads/).
Genomics England (GEL) 100,000 Genomes Project (100kGP) muta-
tional signatures (science.abl9283 _tables_s1_to_s33.xIsx) were down-
loaded from the Science website (https://www.science.org/doi/10.1126/
science.abl9283#supplementary-materials). The Registry of candi-
date cis-Regulatory Elements (cCREs V3) derived from ENCODE data
was downloaded from SCREEN (https://screen.encodeproject.org/).
Genomelib (GRCh38_gencode_v37_CTAT lib_Mar012021.plug-n-play)
used in STAR-Fusion was downloaded from CTAT genome lib (https://
data.broadinstitute.org/Trinity/CTAT_RESOURCE_LIB/_genome_libs_
StarFv1.10/). The Molecular Signatures Database (v.7.4) was downloaded
from MSigDB (https://www.gsea-msigdb.org/gsea/downloads.jsp).

Code availability

The source code for the CRPS classification model is available to
use on GitHub under the GPL-2.0 License (https://github.com/
SkymayBlue/U-CAN_CRPS_Model).
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Extended DataFig.1|Mutually exclusive and co-occurring gene mutations

inthe 96 colorectal cancer driver genes displayed by hypermutation status.

Significant pairs of genes with mutually exclusive or co-occurring mutations
weredetectedina, non-hypermutated (n=821) and b, hypermutated (n =242)
tumours with Fisher’s Exact test adjusted by Benjamini-Hochberg False
Discovery Rate (*FDR <0.05andmFDR <0.1). The number of patients with the
mutationisshowninside brackets next to the gene name. Association of genes
with clinical features withiindication of the proportion of tumours affected
isshownto theleft (*FDR P < 0.05). Oncoplots display mutually exclusive and
co-occurring driver gene mutations grouped by pathway with gene mutation

prevalence shownto theright. The expression levels (Iogl0(TPM)) of each pair

of genes with co-occurring mutations were compared between wild-type
samples (control group, +/+), samples carrying mutations of one gene (+/- or —/+)
and samples carrying mutations of both genes (-/-) in the pair. Names of paired
genesareindicated onthe top of boxes and their colours correspond to colours
of “+” or “=”. The number of samples for each group is shown at the bottom of
eachbox. Theboxesrepresent theinterquartile ranges (IQRs) between the first
and third quartiles, the centre line represents the median, and the whiskers
extend1.5timesthelQRfromthetop and bottom ofthe box (*P < 0.05,**P<0.01,
***P<0.001,****P<0.0001, Two-sided Wilcoxon Rank Sum Test).
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Extended DataFig. 4 |Somatic mutational landscape of mitochondrial
genomesin colorectal cancer. a, Oncoplot of somatic mitochondrial DNA gene
(rows) mutationsin1,027 (97%) of the 1,063 sequenced tumours (columns). The
TMB for eachsampleis presented at the top and the number of tumours with
the mutationis shown ontheright, coloured by mutation type.b, Variantaallele
frequency (VAF) accumulation curves for missense, silent and truncating
mitochondriamutations (one-tailed F-test). ¢, dN/dSratio for mtDNA somatic
missense mutations by different VAF cut-offs. The numbers of missense and
silent mutations for different VAF cut-offs were indicated. The error bars
represent the 95% confidence intervals of the dN/dS ratio (likelihood).

d, Totalamount of mitochondrial mutations displayed per age group with one-
way ANOVA comparison. The boxes represent the interquartile ranges (IQRs)
betweenthe firstand third quartiles, the centre line represents the median, and
the whiskers extend 1.5 times the IQR from the top and bottom of the box. The
numbers of tumoursineachage group are shown at the bottom of the box plots
and meanvalues are shown as black dots. e, Mutually exclusive or co-occurring
mitochondrialgene mutationsinall tumours with Fisher’s Exact test adjusted
by Benjamini-Hochberg False Discovery Rate (*FDR < 0.05andsFDR < 0.1).
The number of patients with the mutationis showninside brackets nextto the
genename.
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Extended DataFig. 5| Gene expression profiles of the 96 driver genes.
Mean expression of driver genes in normal colorectal tissues (n =120) versus
tumours (n=1,063) (left panel) and in wild-type (WT) versus mutant tumours
(right panel). Genes were sorted by pathways/functions. Significance for

12 6 1 6 12

differential gene expression was tested with Two-sided Wilcoxon Rank Sum
Test FDR (*FDR < 0.05,**FDR < 0.01, ***FDR < 0.001, ****FDR < 0.0001).
Barsrepresentedaslog2(mean TPM +1).
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Extended DataFig. 7| Validation of CRPS for colorectal tumour
classification.a, Comparison of CRPS toiCMS in this cohort. b-c, In total,
eleven external CRC datasets (n = 2,832 samples) from NCBIGEO and NCI
Genomic Data Commons were uniformly processed and transformed to pathway
profiles with ssGSEA. Comparison of CRPS, CMS and iCMS classification for all
external datasets (b) and the TCGA COAD/READ dataset only (c). Thesamples
were coloured after their CMS subtype. d, Overall survival shown by CRPS, CMS
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Extended DataFig. 8 | Hypoxiain colorectal canceris associated with
mismatchrepair deficiency and genomic structural variation. a, Hypoxia
scores based on the BuffamRNA abundance signature for 1,063 tumour and
120 normal CRC tissues, displayed by clinical, genomic and transcriptomic
features. For each group, the median hypoxiascore is marked (horizontal red
line) and variability is coloured according to the interquartile range (IQR).

b, Association of hypoxiascore (top) with mutational signatures (bottom)
coloured by normalized COSMIC signature activity attributed to each sample.
Adjusted FDR P-values shown to the right and significance threshold indicated
by dotted line (F-test fulland nullmodels’ comparison, FDR < 0.05). Signatures

thatshowed positive correlation with the hypoxia score are showninbold,
the remainder showed negative correlation with the score. ¢, Association of
hypoxia scores with somatic structural variants, displayed by hypermutation
status. Size and colour of the dots represent regression coefficients of the full
model* FDR < 0.05,** FDR < 0.01, *** FDR < 0.001 (F-test full and null models’
comparison).IQR, interquartile range; PGA, percentage of genome with copy
number alterations; CNA, copy number alterations; SNV, single nucleotide
variation; DNV, double nucleotide variation; TNV, triple nucleotide variation;
DEL, deletion; INS, insertion; INDEL, insertion and deletion.
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abundance signature were calculated for all tumours (top) and correlated with alterations; SNV, single nucleotide variation; DNV, double nucleotide variation;
(a) mutationsinthe 96 driver genes, (b) mutationburdenand somaticstructural TNV, triple nucleotide variation; DEL, deletion; INS, insertion; INDEL, insertion
variants, and (c) numbers of mutations attributed as clonal and subclonal. and deletion.

Adjusted FDR P-values shown to the right and significance threshold indicated
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Extended DataFig.10|Survival, somatic mutations and copy number
variationin two classes of MSI tumours. a, Overalland recurrence free
survival displayed by mismatch repair status and MSlI class for cells predicted
by CIBERSORT (left) and xCell (right) algorithms. Univariable Cox regression
was performed on cell types that showed expressionin atleast 5 patients with
survival data, and statistically significant differences (*P < 0.05,**P <0.01, and
***P <0.001) were further tested by multivariable Cox regression with co-variates
including tumour site, treatment status, tumour stage, age groups, and tumour

grade. The hazard ratio values are indicated by colour intensity. b, Percentage
of tumours with somatic mutations in 96 driver genes for MSl class 1 (top) and
class2 (bottom) cases. ¢, Percentage of tumours with somatic copy number
variation of 96 driver genes for MSl class 1 (top) and class 2 (bottom) cases.
d, Percentage of tumours with focal copy number regions (Q < 0.1) gained or
lost, determined by GISTIC in the MSI class 1 (top) and class 2 (bottom) cases.
LOH, loss of heterozygosity; cn, copy number neutral; AMP, amplification;
HOMDEL, homozygous deletion; HETLOSS, heterozygous deletion.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Data and metadata was extracted from the national quality registry, the Swedish Colorectal Cancer Registry (SCRCR), and completed from
medical records, and no specific software was used.

Data analysis Individual software components used in this study are as follows: SOAPnuke v2.0.7; Sentieon Genomics software v202010; Personal Cancer
Genome Reporter (PCGR) v0.9.1; BRASS v6.3.4; ascatNgs v4.5; VAGrENT v3.7.0; facetsSuite v2.0.8; singularity v3.2.0; PrepareAA (git commit ID
ba747ce); AmpliconClassifier v0.4.4; CINSignatureQuantification v1.0.0; MSisensor2 v0.1 (git commit ID e0798c7); dNdScv v0.1.0 (git commit
ID dcbf8e5); Maftools v2.12.0; GISTIC2.0 v2.0.23; SigProfilerExtraction v1.1.4; R v4.1.0 and v4.2.0; ActiveDriverWGS v1.1.2 (git commit ID
351ca77); GATK4 v4.2.0.0; pysam v0.15.3; PhylogicNDT v1.0 (git commit ID 84d3dd2); Bowtie2 v2.3.4.1; RNASeQC v2.3.6; STAR-Fusion
v1.10.0; Arriba v2.1.0; STAR v2.7.1a and v2.7.8a; FusionAnnotator v0.2.0; annoFuse v0.91.0; Seurat v4.1.0; Celligner v1.0.1; scclusteval
v0.0.09000; CMSclassifier v1.0.0; CMScaller v0.9.2; GSVA v1.42.0; scikit-rebate v0.62; Tensorflow v2.3.1; Imbalanced-learn v0.9.0; GSEA
v4.2.3; PROGENy v1.16.0; PathwayMapper v2.3.0; Newt v3.0.5; DHARMa v0.4.5; CIBERSORT v1.04; xCell v1.1.0; R packages: stats v4.1.0,
survival v3.3-1, survminer v0.4.9, finalfit v1.0.4. The CRPS clustering model (U-CAN_CRPS_Model v1.0.1) is available to use on https://
github.com/SkymayBlue/U-CAN_CRPS_Model.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Short somatic variant calls, copy number variation and structural variants data can be accessed at the European Variation Archive123 with accession number
PRJEB61514, expression profiles at the ArrayExpress124 with accession number E-MTAB-12862, or all data at CNGB Sequence Archive (CNSA)125 of China National
GeneBank DataBase (CNGBdb)126 with accession number CNPO004160. The raw transcriptome data generated in this paper is available under controlled access via
EGA with accession number EGAD50000000169. WGS raw data and more detailed clinical information are deposited at Uppsala University and inquires to access
them should be directed to the corresponding author and U-CAN, a cancer biobank at Uppsala University (https://www.uu.se/forskning/u-can/). Access to raw data
and clinical information is subject to Swedish legal regulations, GDPR, permission from the Swedish Ethical Review Authority, and U-CAN terms. All patients in U-
CAN have explicitly consented to genomic data deposition in public repositories. However, to protect their integrity and fulfil requirements in an evolving legal
landscape, we have opted for restricted access to genome and transcriptome sequence datasets. Access requests can be addressed to the corresponding author
and will be responded within 2 weeks. The remaining data are available within the Article and Supplementary Information.

The human genome reference hg38 (containing all alternate contigs) files were downloaded from GATK resource bundle (ftp.broadinstitute.org/gsapubftp-
anonymous/bundle/hg38). The basic gene annotation file (gencode.v35.basic.annotation.gtf.gz) was downloaded from GENCODE (ftp.ebi.ac.uk/pub/databases/
gencode/Gencode_human/release_35). A high-confidence list of genes with substantial published evidence in oncology (Cancer Gene Census v95) was downloaded
from COSMIC (https://cancer.sanger.ac.uk/cosmic). A compendium of mutational cancer driver genes (release date 2020.02.01) was downloaded from intOGen
(https://www.intogen.org/). COSMIC mutational signatures (version: v3.3) were downloaded from COSMIC (https://cancer.sanger.ac.uk/signatures/downloads/).
Genomics England (GEL) 100,000 Genomes Project (100kGP) mutational signatures (science.abl9283_tables_s1_to_s33.xIsx) were downloaded from Science
website (https://www.science.org/doi/10.1126/science.abl9283#supplementary-materials). The Registry of candidate cis-Regulatory Elements (cCREs V3) derived
from ENCODE data were downloaded from SCREEN (https://screen.encodeproject.org/). Genome lib (GRCh38_gencode_v37_CTAT_lib_Mar012021.plug-n-play)
used in STAR-Fusion was downloaded from CTAT genome lib (https://data.broadinstitute.org/Trinity/CTAT_RESOURCE_LIB/__genome_libs_StarFv1.10/). The
Molecular Signatures Database (version: v7.4) was downloaded from MSigDB (https://www.gsea-msigdb.org/gsea/downloads.jsp).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender This study used the sex variable for the purpose of identifying and describing the study cohort and its results landscape.
Additionally, the study findings were not specific to one sex, indicating that the results were applicable to both males and
females. The sex variable was collected from the national quality registry based on patients’ medical records. The cohort
included 514 female sex (48%) and 549 male sex (52%) individuals. Patient consent and ethical permits were obtained for the
use of this data.

Population characteristics Detailed clinical data is provided in Supplementary Table 1, in line with other colorectal cancer population-based cohorts.
Population ancestry is not registered in the clinical records and we didn't perform any ancestry-related analyses, however
considering the geographical and demographical characteristics of this cohort, potentially most patients will be of European
descent (more specifically Northern European).

Recruitment Patients diagnosed with colorectal cancer between 2004 and 2019, at the Uppsala University Hospital or the Umeda University
Hospital, were eligible for the study. Samples obtained had to meet criteria on sample availability and tumour cell content,
meaning that the cohort represents patients that underwent surgery, leading to a small under-representation of stage | and
IV cancers. There was no other major recruitment biases.

Ethics oversight Patient inclusion, sampling and analyses were performed under the ethical permits 2004-M281, 2010-198, 2007-116,
2012-224, 2015-419, 2018-490 (Uppsala EPN), 2016-219 (Umea EPN) and the Swedish Ethical Review Authority 2019-566. All
participants provided written informed consent at enrolment. All samples were stored in the respective central biobank
service facilities in Uppsala (Uppsala Biobank) and Umea (Biobanken Norr) and obtained for use in analyses here after
approved applications. Sequencing and sequence data analyses of pseudonymized samples were performed at BGI Research,
which had access to patient age range, sex and tumour level data. Samples and data were transferred from UU to BGlI
Research under Biobank Sweden MTA and applicable GDPR standard terms for transfer to third countries. The analysis of
patient-level data was performed at UU. The study conformed to the ethical principles for medical research involving human
participants outlined in the Declaration of Helsinki.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Patients diagnosed with colorectal cancer between 2004 and 2019, at the Uppsala University Hospital or the Umea University Hospital, were
eligible for this study. Patients were included if they had i) a fresh frozen biopsy or surgical specimen that was estimated by a pathologist to
have a tumour cell content of 220% and ii) a patient-matched source of normal DNA from whole blood or fresh frozen colorectal tissue stored
in the biobank. Most samples were surgical specimens and treatment-naive cases since these generally have enough tissue to be frozen
besides the routine formalin-fixed paraffin-embedded storage. No statistical methods were used to predetermine sample size.

Data exclusions  Patients that had samples that fulfilled above criteria were excluded if at least one of the sample types (DNA tumour, DNA normal and RNA
tumour) were not extracted with enough yield or quality, or if the respective sequencing were of inadequate coverage or evidence for cross-
contamination between samples.

Replication To validate the novel Colorectal Caner Progonstic Subtypes (CRPS) classification, we built a classification model based on the deep residual
learning framework. To test our CRPS clustering model reproducibility, a total of 10 colorectal cancer data sets with 2,832 patients from both
NCBI GEO and NCI Genomic Data Commons were uniformly processed. The accuracy, precision, recall and F1 score were >85% in the
validation cases and the prognostic ability of CRPS was recapitulated in this external validation. Replication may not be applicable to the other
landscape findings that are descriptive for this cohort. All attempts at replication were successful.
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Randomization  No randomisation was performed - this was a descriptive study, not an experimental study.

Blinding No blinding was undertaken - this was a descriptive study, not an experimental study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChiIP-seq
[] Eukaryotic cell lines XI|[] Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms

Clinical data

|:| Dual use research of concern
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Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Not Applicable

Study protocol Patients diagnosed with CRC between 2004 and 2019, at Uppsala University Hospital or Umea University Hospital, were eligible for
the study. Patients that had i) a fresh frozen biopsy or surgical specimen that was estimated by a pathologist to have a tumour cell
content of 220% and ii) a patient-matched source of normal DNA from whole blood or fresh frozen colorectal tissue stored in the
biobank, were included. Patients included with a diagnosis from 2010 (861 cases; 81%) were obtained from the Uppsala-Umea
Comprehensive Cancer Consortium (U-CAN) biobank collections (Uppsala Biobank and Biobanken Norr). A description of procedures
for patient inclusion, sample biobanking, and access to samples can be found at https://www.uu.se/forskning/u-can/.

Data collection Clinical data was extracted from the national quality registry, the Swedish Colorectal Cancer Registry (SCRCR), and completed from
medical records.

Outcomes Follow-up for alive patients was minimum 3.9 years and median 8 years (data lock 14th June 2023), with only one patient lost to
follow-up and 994 (94%) with complete 5-year follow up.
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