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Prognostic genome and transcriptome 
signatures in colorectal cancers

Luís Nunes1,10,11, Fuqiang Li2,3,4,11, Meizhen Wu2,3,4,11, Tian Luo2,3,4,11, Klara Hammarström1, 
Emma Torell1, Ingrid Ljuslinder5, Artur Mezheyeuski1, Per-Henrik Edqvist1, 
Anna Löfgren-Burström6, Carl Zingmark6, Sofia Edin6, Chatarina Larsson1, Lucy Mathot1, 
Erik Osterman1, Emerik Osterlund1, Viktor Ljungström1, Inês Neves1, Nicole Yacoub1, 
Unnur Guðnadóttir1, Helgi Birgisson7, Malin Enblad7, Fredrik Ponten1, Richard Palmqvist6, 
Xun Xu2, Mathias Uhlén8,9, Kui Wu2,3,4,12 ✉, Bengt Glimelius1,12 ✉, Cong Lin2,3,4,12 ✉ & 
Tobias Sjöblom1,12 ✉

Colorectal cancer is caused by a sequence of somatic genomic alterations affecting 
driver genes in core cancer pathways1. Here, to understand the functional and 
prognostic impact of cancer-causing somatic mutations, we analysed the whole 
genomes and transcriptomes of 1,063 primary colorectal cancers in a population- 
based cohort with long-term follow-up. From the 96 mutated driver genes, 9 were not 
previously implicated in colorectal cancer and 24 had not been linked to any cancer. 
Two distinct patterns of pathway co-mutations were observed, timing analyses 
identified nine early and three late driver gene mutations, and several signatures  
of colorectal-cancer-specific mutational processes were identified. Mutations in 
WNT, EGFR and TGFβ pathway genes, the mitochondrial CYB gene and 3 regulatory 
elements along with 21 copy-number variations and the COSMIC SBS44 signature 
correlated with survival. Gene expression classification yielded five prognostic 
subtypes with distinct molecular features, in part explained by underlying genomic 
alterations. Microsatellite-instable tumours divided into two classes with different 
levels of hypoxia and infiltration of immune and stromal cells. To our knowledge,  
this study constitutes the largest integrated genome and transcriptome analysis of 
colorectal cancer, and interlinks mutations, gene expression and patient outcomes. 
The identification of prognostic mutations and expression subtypes can guide future 
efforts to individualize colorectal cancer therapy.

Colorectal cancer (CRC) is the third most common and the second 
deadliest tumour type in both sexes, with 1,900,000 new cases and 
900,000 deaths annually. About 20% of patients have metastatic dis-
ease already at diagnosis, and another 20% will develop metastases 
later2. From exome3–7 and whole-genome8–10 sequencing, the mutational 
landscape of CRC is best characterized in coding regions, whereas 
non-coding regions remain understudied. Approximately 80–85% of 
CRCs are classified as copy-number altered microsatellite stable (MSS), 
10–16% as highly mutated with microsatellite instability (MSI) and 1–2% 
as ultramutated resulting from somatic POLE mutations4,11. The MSI 
status predicts response to checkpoint inhibitors12, whereas KRAS, 
NRAS and BRAF mutations predict poor response to EGFR-targeted 
therapies13. The WNT, EGFR–KRAS–BRAF, PIK3CA, TGFβ and p53 path-
ways are regulated by mutations in CRC1, and several driver gene muta-
tions in these pathways have been linked to prognosis. To advance the 

understanding of CRC pathogenesis, identify driver events and find 
prognostic features, we analysed whole genomes along with tumour 
transcriptomes in a large, population-based CRC cohort with clinical 
outcomes.

Mutational landscape
We obtained high-quality whole-genome sequences (average 53-fold 
coverage) from patient-matched tumour and unaffected control sam-
ples along with tumour transcriptome sequence (average 30 million 
paired reads; Supplementary Table 1) from 1,063 out of 1,126 CRC 
cases. Of the 1,063 CRCs, 943 were primary tumour surgical specimens 
and 120 were primary tumour biopsies. Control samples were taken 
from peripheral blood for 522 cases and from adjacent tissue for 541 
cases, which did not introduce batch effects (Supplementary Table 2).  
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Of all of the patients, 126 (12%) had been pretreated before the tumour 
specimens were obtained at surgery, and 92 of these samples were 
rectal cancers treated with either chemoradiotherapy or radiotherapy 
before surgery.

In total, 96 mutated driver genes were identified, and 1,056 (99%) 
of the tumours had a somatic mutation in at least one of these (Fig. 1a 
and Supplementary Table 3). On the basis of the total mutation count, 

242 (23%) tumours were hypermutated (HM) with >23.16 mutations 
per megabase (Fig. 1b and Supplementary Table 4). Compared with 
non-hypermutated (nHM) cases, the HM cases were older (median age, 
76 versus 71 years), female and had right-sided, mucinous, high-grade 
(poorly differentiated or undifferentiated) and stage II tumours 
more often14 (Supplementary Table 5). The MSI criteria (MSIsensor 
score ≥ 3.5; Methods) were fulfilled in 223 (21%) patients, of which only 
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Fig. 1 | Somatic mutation analysis of 1,063 CRC genomes identifies 96 driver 
genes. Somatic mutations were called (Methods) and significantly mutated 
genes were identified using dNdScv. a, The 96 genes mutated at a significant 
level in this cohort. The association of driver genes with survival (HR) is shown 
for HM and nHM tumours (multivariable Cox regression). The association of 
driver genes with clinical and genomic features is shown by the proportion of 
tumours affected (Fisher’s exact test). *FDR-adjusted P < 0.05. The mutation 
type and prevalence is indicated on the right, including a description of the 
affected pathway. Colour keys for HR for OS and RFS, and for genomic feature 
proportions are shown on the far right. Genes that were not previously 
designated as drivers in CRC (orange) or in any cancer type (blue) are indicated. 

b, The prevalence of total (blue) and non-synonymous (red) mutations in each 
tumour. Cut-offs for HM and nHM are indicated (grey line). The clinical features 
and mutation status for selected genes are shown at the bottom. Mutations 
that are considered to be drivers are either probably oncogenic mutations 
annotated by OncoKB or hotspots catalogued by Cancer Hotspots. c, DNA 
damage response (DDR) gene mutations in the 15 out of 21 HM tumour cases 
that were MSS. Not all DNA damage response genes included here can be 
interpreted as the direct cause of the high TMB in these MSS samples. Top, the 
total non-synonymous mutation counts for each sample are coloured by the 
affected oncogenic pathways. ADENOCA, adenocarcinoma; BER, base excision 
repair; HRR, homologous recombination repair; MMR, mismatch repair.
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2 were nHM. This population-based cohort, representative of Swedish 
patients with CRC (Supplementary Table 6), contrasts with cohorts with 
younger, fitter patients in whom MSI prevalence is lower15. In total, 15 
HM tumours were MSS with POLE or other DNA-damage-repair gene 
mutations (Fig. 1c) and 6 were MSS with high non-coding tumour muta-
tion burden (TMB) but no repair gene mutations. Not all repair gene 
mutations in the HM MSS tumours were drivers; thus, it may not fully 
explain their high TMB. Analyses in three groups (HM, nHM and the 
entire cohort of tumours) identified 96 unique driver genes, along with 
13 additional subtype-specific drivers (Supplementary Table 3). In the 
HM tumours, genes mutated in more than 20% of the cases belonged 
to the TGFβ–BMP, WNT, RTK–RAS, ribosomal proteins, epigenetic 
regulation, PI3K, SCF complex, p53 and immune system pathways, and 
the most frequently recurring mutations were in ACVR2A (p.K437Rfs*5; 
78%), BRAF (p.V600E; 65%) and RNF43 (p.G659Vfs*41; 57%). Correspond-
ingly, the WNT, p53, RTK–RAS, PI3K, SCF complex and TGFβ pathways 
had genes mutated in more than 10% of nHM tumours (Fig. 1a and Sup-
plementary Table 3). The most common hotspot mutations in nHM 
tumours were KRAS p.G12D (15%) and p.G12V (11%).

Of the 96 driver genes, the 24 that had not previously been desig-
nated as drivers in any cancer16,17 were linked to BMP (RGMB) and EGFR 
(AREG) signalling, cell cycle (CEP170 and SKA3), immune system (PIGR 
and CSF3), ion transport (SLC12A2 and CYB561A3), metabolism (PIGW, 
CYP2A6 and CYP7B1), mRNA splicing (SREK1IP1), protein transport 
(WASHC2C and SLC46A3), transcriptional regulation (FOXP2, NANOGP8, 
TBP and ZNF554), ribosomal proteins (RPS15, RPS16 and RPS6) and 
other pathways (CBWD1, PRAC2 and ANKRD40). Nine drivers that 
had not previously been observed in CRC3–5,8,10,11,18–21 were linked to 
the immune system (CDH1), histone modification (SETD5), transcrip-
tion regulators (MIDEAS and NONO), PI3K signalling (TYRO3), cellular 
response (FLCN), ribosomal proteins (RPL10 and RPL22) and UCH pro-
teinase (MBD6).

Two distinct patterns of RTK–WNT pathway co-mutations—(1) KRAS, 
APC and AMER1, and (2) BRAF and RNF43—were identified (Extended 
Data Fig. 1a and Supplementary Table 7). For the KRAS, APC and AMER1 
group, the nHM tumours had co-occurring PIK3CA (FDR-adjusted 
P = 1.98 × 10−5) and TCF7L2 (FDR-adjusted P = 4.57 × 10−4) and mutually 
exclusive TP53 (FDR-adjusted P = 1.06 × 10−7) and NRAS (FDR-adjusted 
P = 1.76 × 10−6) mutations. In the BRAF and RNF43 tumours, co-occurring 
mutations were observed in ACVR2A (FDR-adjusted P = 0.06) in HM 
tumours, and AKT1 (FDR-adjusted P = 0.03) and TYRO3 (FDR-adjusted 
P = 0.08) in the nHM tumours (Extended Data Fig. 1b). In the TGFβ 
pathway, co-occurring mutations were found in SMAD2 and SMAD3 
(FDR-adjusted P = 1.03 × 10−10) in nHM tumours, whereas TGIF1 
co-occurred with PIK3CA (FDR-adjusted P = 0.09) in the HM cases. 
The HM tumours had mutually exclusive mutations in B2M and HLA-A 
(FDR-adjusted P = 0.07)22, and co-occurring mutations in KMT2B and 
CD58 (FDR-adjusted P = 0.01) and ERBB3 (FDR-adjusted P = 0.09). In all, 
we identified 33 additional CRC drivers along with previously unidenti-
fied co-mutation patterns within and across CRC pathways.

SVs and timing analyses
To encompass all types of genomic events in the progression of CRC, 
we compiled copy-number variants (CNVs) and structural variants 
(SVs)23. The most common chromosome arm aberrations were gains 
of 7p and 20q in around 50% of tumours, and loss of heterozygosity 
(LOH) of 17p, 18p and 18q in more than 40% (Fig. 2a). Novel focal CNVs 
identified in nHM tumours included deletions of 15q24.3 (25%) contain-
ing MIR3713, 22q12.3 (24%) and 8p11.22 (19%) containing ADAM-family 
protease genes. The frequency of gene CNVs was higher in nHM com-
pared with in HM tumours, affecting an average of 55% versus 11% of 
the driver genes. The drivers most frequently affected by CNVs were 
GNAS and ASXL1, for which 82% and 81% of nHM tumours had gains and/
or amplifications, whereas SMAD4 (79%), SMAD2 (77%) and TP53 (76%) 

had more deletions and LOH. In HM tumours, the antigen-presenting 
genes HLA-B (26%), HLA-A (25%) and TAP2 (24%) had the highest LOH 
frequency, whereas TRPS1 (26%), ACVR1B (22%), CYP7B1 (22%), MBD6 
(22%) and ERBB3 (22%) had the highest frequency of gains (Extended 
Data Fig. 2a and Supplementary Table 8). Deletions were the most 
common SV, primarily in high-grade (FDR = 0.011) and less in stage I 
(FDR = 0.021) tumours. Translocations were more common in older 
patients (FDR-adjusted P = 0.004), and in HM (FDR-adjusted P = 0.014), 
MSI (FDR-adjusted P = 0.003) and high-grade (FDR-adjusted P = 0.003) 
tumours. By contrast, inversions and tandem duplications were 
less common in HM (FDR-adjusted P = 4.69 × 10−17 and 0.0091), MSI 
(FDR-adjusted P = 2.75 × 10−16 and 0.029) and right-sided (FDR-adjusted 
P = 6.45 × 10−8 and 0.005; Fig. 2b) tumours. Half of driver gene SVs 
were deletions, most frequently affecting tumour suppressor genes 
including RUNX1 (n = 38), PTEN (n = 33) and SMAD3 (n = 30). The most 
frequently affected DNA repair gene was RAD51B (n = 33; Extended 
Data Fig. 2b). Extrachromosomal DNA (ecDNA) was observed in 250 
tumours (24%), of which 91% were nHM (P = 2.9 × 10−9). Circular ampli-
cons were found in 87 (35%) of ecDNA+ cases, and the oncogenes most 
frequently contained were ERBB2 (n = 9; 10%), FLT3 (n = 7; 8%), CDX2 
(n = 7; 8%), CDK12 (n = 5; 6%) and MYC (n = 5; 6%; Supplementary Fig. 1a). 
Tumour ecDNA correlated with shorter survival in a pan-cancer study24, 
but no ecDNA-type-dependent differences in overall survival (OS) or 
recurrence-free survival (RFS) were observed here (Supplementary 
Fig. 1b).

The sequence of genomic events during CRC evolution has not previ-
ously been determined in a large set of nHM tumours25. Here the earliest 
events were somatic mutations in APC, TP53, KRAS, BRAF and ZFP36L2, 
followed by TCF7L2, FBXW7, BCL9L and SOX9 and loss of chromosomes 
17p and 18. Among them, (1) TP53 and 17p loss are known early muta-
tions that are frequently found in multiple cancers; (2) APC, KRAS, BRAF 
and TP53 mutations drive CRC development; and (3) ZFP36L2, TCF7L2, 
BCL9L and SOX9 are previously unknown early events in cancer26. Late 
or subclonal events included whole-genome duplication, gains of 1q, 
6p, 9p, 12, 16p, 17q and 19q, and mutations in TRPS1, GNAS and CEP170 
(Fig. 2c and Supplementary Table 9). These findings inform strategies 
for early detection and events of potential relevance for CRC invasion 
and metastasis.

Mutational signatures
Mutational signatures in CRC have been linked to ageing, mismatch 
repair (MMR) deficiency, polymerase proofreading, colibactin expo-
sure and unknown aetiologies27. Here a de novo analysis identified 27 
single-base substitution (SBS; Supplementary Fig. 2), 8 doublet-base 
substitution (DBS; Supplementary Fig. 3) and 11 small insertion 
and deletion (ID; Supplementary Fig. 4) signatures (Extended Data 
Fig. 3a–c and Supplementary Tables 10 and 11). Of the 27 SBS sig-
natures, 25 decomposed to 32 COSMIC SBS signatures27 (Extended 
Data Fig. 3a and Supplementary Tables 12 and 13). A new signature, 
termed SBS-CRC1, was found in 17 tumours, all MSI or POLE mutant, 
and correlated with the defective DNA MMR SBS15 signature (r = 0.40, 
FDR-adjusted P = 7.82 × 10−40; Supplementary Table 14). Another new 
signature, SBS-CRC2, was observed in 17 cases with low-grade and MSS 
tumours, and correlated with the signature of unknown aetiology 
SBS12828 (cosine similarity = 0.94; Supplementary Table 15). Notably, 
HM tumours with the DNA MMR SBS44 signature were primarily right 
colon (85% versus 70%, P = 0.0064), BRAF V600E mutated (70% versus 
45%, P = 0.0015), less frequently stage IV (4% versus 15%, P = 0.0386) 
and had longer OS (multivariable hazard ratio (HR) = 0.558, 95% con-
fidence interval (CI) = 0.319–0.974; Extended Data Fig. 3d). Of the  
8 DBS signatures, 3 could be decomposed to 6 COSMIC DBS signatures 
(Extended Data Fig. 3b and Supplementary Tables 12 and 13). The new 
DBS-CRC3 signature had the highest somatic mutation density and 
occurred in 98% of MSI cases. The defective DNA MMR signatures SBS15 
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and SBS44 strongly correlated with DBS-CRC3 (r = 0.61 and r = 0.84, 
FDR-adjusted P = 3.88 × 10−108 and P = 8.11 × 10−28), which was similar to 
the MMR deficiency signature DBS19 described previously28 (cosine 
similarity = 0.87; Supplementary Table 15). The signatures SBS10a and 
SBS10b, associated with MSS POLE mutated tumours, co-occurred with 
SBS2829 (r = 0.48 and 0.61, FDR-adjusted P = 5.13 × 10−62 and 5.04 × 10−107) 
and the new DBS-CRC5 signature (r = 0.43, FDR-adjusted P = 8.21 × 10−47; 
Supplementary Table 14). Lastly, from the 11 ID signatures, 9 decom-
posed to 9 COSMIC ID signatures, of which the most frequent, ID1 (in 
87%) and ID2 (in 98%), are related to DNA slippage during replication27 
(Extended Data Fig. 3c and Supplementary Tables 12 and 13). Notably, 
the new ID-CRC1 signature had the highest somatic mutation den-
sity (>10 mutations per Mb), and 89% of cases with ID-CRC1 also had 
the defective DNA MMR signature SBS44. Together, 47 known and  

9 previously unknown (Extended Data Fig. 3e) mutational signatures 
were identified, of which SBS28 and DBS-CRC5 were associated with 
POLE mutant MSS CRC, the SBS-CRC1, DBS-CRC3 and ID-CRC1 signa-
tures with MMR, and the DNA MMR SBS44 signature in HM tumours 
with longer OS.

Mitochondrial genomes
High median copy numbers and enrichment of truncating mutations 
characterize CRC mitochondrial DNA (mtDNA)30. We identified 3,982 
single-nucleotide variants (SNVs) and 949 indel mutations in mtDNA 
in 1,027 (97%) tumours (Supplementary Table 16). The mtDNA muta-
tions were most frequent in the non-coding promoter D-loop (48%) 
and in the complex I genes ND5 (41%) and ND4 (30%; Extended Data 
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Fig. 2 | Structural variation and relative timing of somatic events in CRC.  
a, Gene CNVs in driver genes displayed by type: LOH (green), deletion (yellow) 
and amplification (red). The bar height is proportional to the fraction of 
tumours with respective alteration. The 91 autosomal driver genes are 
indicated as oncogenes (O; purple), tumour suppressor genes (S; orange), both 
(S, O; red) or genes with an unknown role (black), and are displayed by genomic 
location. b, The SV landscape for deletions, inversions, tandem duplications 
and translocations displayed by clinical, genomic and transcriptomic features. 
The boxes represent the interquartile ranges (IQRs) between the first and third 

quartiles, the centre line represents the median, and the whiskers extend  
to 1.5× the IQR from the top and bottom of the box. Statistical analysis was 
performed using two-sided Wilcoxon rank-sum tests; *FDR-adjusted P < 0.05, 
**FDR-adjusted P < 0.01, ***FDR-adjusted P < 0.001, ****FDR-adjusted P < 0.0001. 
c, The prevalence and relative timing of driver gene mutations and SVs in 801 
nHM CRC tumours by PhylogicNDT. Early/clonal (green), intermediate (black) 
and late/subclonal (purple) alterations are indicated. WGD, whole-genome 
duplication.
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Fig. 4a). Truncating mutations were enriched in ND5 and ND4, repre-
senting 35% and 29% of mutations. Like in other cancer types, missense 
mtDNA mutations were more frequently near-homoplasmic (variant 
allele frequency (VAF) > 60%) compared with silent and truncating 
mutations, and their overall dN/dS ratio was close to 1 at different 
VAFs (Extended Data Fig. 4b,c). Truncating mutations with VAF > 60% 
occurred in 6.6% of tumours, compared with <3% in other cancers30, 
suggesting that mitochondrial dysregulation is important for CRC 
tumorigenesis. While HM status did not correlate with mtDNA mutation 
counts, age at diagnosis did (Extended Data Fig. 4d). Co-occurrence 
but not mutual exclusivity was observed between mtDNA muta-
tions (Extended Data Fig. 4e). Mitochondrial genome copy number 
(mtDNA-CN) was lower in right colon, high-grade and HM tumours (Sup-
plementary Fig. 5a). When divided into low (n = 127) and high (n = 912) 
tumour mtDNA-CN groups, there was a trend toward longer OS in 
high-mtDNA-CN cases (Supplementary Fig. 5b–d). The mtDNA-CN cor-
related positively with clock-like (SBS1 and SBS5) and ROS (SBS18) SBS 
signatures but negatively with most MMR signatures (Supplementary  
Fig. 5e–g).

Prognostic alterations
Compared with cohorts from clinical trials, referral hospitals or actively 
treated patients, patient age was higher (median age, 72 versus 54–68 
years), right-sided tumours were more common (47% versus 30–39%) 
and the fraction of MSI cases was higher (21% versus 8–12%) in this 
cohort, leading to different prognostic cohort features4,8,11. When 
compared with all surgically resected CRCs in Sweden, rectal, stage I  
and stage IV tumours were slightly under-represented, but OS was 
similar (Supplementary Table 6). In all, the cohort is representative of 
the resected Swedish CRC patient population and, as such, of Western 
real-life populations21,31. The MSS cases had shorter RFS (P = 0.048) 
compared with MSI cases, while non-pretreated stage IV MSI cases 
had shorter OS (P = 0.004) compared with their MSS counterparts. 
The worst OS and RFS were observed in patients aged >80 years, and 
for high-grade and more-advanced-stage tumours. For non-pretreated 
stage I–III cases, tumour location in the rectum or left colon was cor-
related with longer OS (P = 0.032) but not RFS (P = 0.365). Right-sided 
colon tumours correlated with shorter OS only for stage IV cases receiv-
ing first-line chemotherapy without metastasectomy (P = 0.0003; 
Supplementary Table 17).

Based on 994 (94%) patients that had 5-year survival data, of which 
219 (22%) had HM CRC, we identified mutated driver genes associ-
ated with OS or RFS (Supplementary Table 18). In the nHM group, APC 
mutations correlated with longer OS (HR = 0.61, 95% CI = 0.46–0.82) 
and RFS (HR = 0.68, 95% CI = 0.49–0.94)32, MT-CYB mutations with 
longer OS (HR = 0.59, 95% CI = 0.43–0.82) and RFS (HR = 0.67, 95% 
CI = 0.47–0.94; Supplementary Table 19), and SIN3A mutations with 
longer OS (HR = 0.11, 95% CI = 0.02–0.79). Mutations in ARHGAP5, 
BRAF33 and RNF4334 correlated with shorter OS (HR = 4.09, 1.58 and 
2.30; 95% CI = 1.79–9.33, 1.10–2.27 and 1.37–3.84) and RFS (HR = 2.68, 
1.65 and 2.03; 95% CI = 1.09–6.59, 1.08–2.53 and 1.07–3.85), and ARID2 
mutations with shorter OS (HR = 2.07, 95% CI = 1.17–3.65). By contrast, 
HM cases with ARHGAP5, RNF43 and TGFBR2 mutations had longer RFS 
(HR = 0.40, 0.43 and 0.34; 95% CI = 0.19–0.85, 0.23–0.78 and 0.19–0.62), 
whereas BCL9 and TRPS1 correlated with shorter OS (HR = 1.89 and 
1.77; 95% CI = 1.11–3.20 and 1.03–3.03), and PCBP1 with shorter RFS 
(HR = 4.22, 95% CI = 1.40–12.74).

We analysed candidate cis-regulatory elements (cCREs) in nHM 
tumours and identified 7 proximal enhancer-like, 1 promoter-like, 7 
DNase-only and 11 CTCF-only elements along with 34 differentially 
expressed linked genes (Supplementary Table 20). Of the genes with 
deregulated expression, ID2 and HS3ST1 had regulatory element 
mutations linked to shorter OS (HR = 3.49 and 2.94, 95% CI = 1.62–7.53 
and 1.29–6.70; Supplementary Table 21) and DAPK1 with shorter RFS 

(HR = 2.68, 95% CI = 1.25–5.74). Targeting ID2 reduced CRC growth 
in vivo and its expression was increased by WNT signalling under 
hypoxia35,36, and DAPK1 loss was linked to invasiveness of CRC cells37, 
supporting their roles in CRC pathogenesis.

Prognostic CNVs in nHM tumours included known events such as 
amplification of 20q11.1, 20q11.21 and 20q13.33, and loss of 16p13.3, 
along with unknown events in which amplifications correlated with 
longer survival, and losses with shorter survival. For the HM tumours, 
we identified five prognostic CNVs linked to shorter survival includ-
ing the known −4q22.1 event (Supplementary Table 22). Patients with 
nHM tumours with SMAD4 deletion had shorter RFS (HR = 2.13, 95% 
CI = 1.04–4.34), and those with TCF7L2 translocation had shorter OS 
(HR = 4.82, 95% CI = 2.10–11.03) and RFS (HR = 7.50, 95% CI = 2.72–20.69; 
Supplementary Table 23). Together, we observed associations with 
prognosis for mutations in 12 known cancer genes, 21 CNVs, 1 mito-
chondrial gene and 3 regulatory elements (Table 1).

Expression of drivers and fusion genes
High-quality genome and transcriptome sequences from the same large 
set of tumours enable integrated analyses of gene mutations and gene 
expression levels. Tumour mutations in RTK–RAS, PI3K, p53 and TGFβ 
pathway genes EGFR, KRAS, PIK3CA, CDKN2A, TGFBR1 and ACVR2A were 
associated with increased gene expression, while mutations in APC, 
PTEN and TP53 all had decreased expression in nHM and HM tumours 
(Fig. 3 and Supplementary Table 24). Although nonsense-mediated 
decay can complicate interpretation of differential gene expression lev-
els38, among the WNT pathway driver genes, RNF43, AXIN2, SOX9, ZNRF3, 
CTNNB1 and AMER1 had 55–334% higher expression in tumours while 
TCF7L2, APC and CTNND1 had 15–24% higher expression in unaffected 
control colorectal tissue (Supplementary Table 25). Tumours with 
SOX9 or TCF7L2 mutations had increased expression of the respective 
genes, while other mutant WNT pathway drivers had reduced tumour 
expression (Extended Data Fig. 5). Notably, tumours with RTK/WNT 
pathway BRAF and RNF43 co-mutations had higher expression of BRAF 
and lower expression of RNF43 compared with wild-type tumours and 
tumours carrying mutations of only one gene (Extended Data Fig. 1a). 
Decreased expression coupled to mutation characterized several genes 
related to antigen presentation (HLA-A, B2M and CDH1), transcription 
regulation (ASXL1 and NONO), apoptosis (BAX), histone modification 
(KMT2B) and ribosomal functions (PPL22) (Extended Data Fig. 5 and 
Supplementary Table 25).

A total of 621 fusion transcripts were expressed in 338 nHM (41%) 
and 78 HM (32%) tumours, 17 of which were recurrent (Supplementary 
Fig. 6a). The most frequently fused genes were PTPRK (n = 27 tumours), 
RSPO3 (n = 25), SEPTIN14 (n = 24), FBXO25 (n = 24) and FBRSL1 (n = 19; 
Supplementary Fig. 6b). Of the fusions, 15 were known CRC drivers, 
including NTRK, BRAF and ERBB2 fusions, the PTPRK–RSPO3 fusion 
shown to promote differentiation and loss of stemness39,40, and the 
uncharacterized FBXO25–SEPTIN14 fusion (Supplementary Fig. 6c,d).

Prognostic gene expression signature
Mutational and transcriptional data can be used to develop subtyping 
classifiers in which the contributions of underlying genomic events 
are defined. The Consensus Molecular Subtypes (CMS) classification 
system is the state-of-the-art gene expression-based classification of 
CRC41 but, as most CRCs are composed of several CMS subtypes when 
deconvoluted42, a refined classification at the single-cell resolution 
(iCMS) has been proposed7. As CMS is based on 18 datasets generated 
using different technologies, we examined whether unsupervised 
de novo classification of the cases here would recapitulate CMS or 
iCMS. In this new classification, termed CRC prognostic subtypes 
(CRPSs), 97% of CMS1 tumours were classified as CRPS1, CMS2 tumours 
were distributed between CRPS2 (39%) and CRPS3 (59%), 68% of CMS3 
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tumours were classified as CRPS5, and CMS4 tumours were distributed 
between CRPS2 (38%) and CRPS4 (45%; Fig. 4a and Supplementary 
Fig. 7). Importantly, CRPS assigned all but 3 tumours, while 192 (18%) 
remained unclassified by CMS, most of which were assigned to CRPS1 
and CRPS2. The CRPS1 group contained 88% of the HM cases, whereas 
only 56% were classified as CMS1. Accordingly, CRPS1 tumours most 
often occurred in right colon (79%), in older (median age, 76 years) and 
female (61%) patients and had the highest prevalence of somatic SNVs 
and the lowest of CNVs (Supplementary Table 1 and Extended Data 
Fig. 6a–c). The CRPS2 and CRPS3 subtypes were distributed equally 
between anatomical locations and had low frequencies of BRAF muta-
tions (Extended Data Fig. 6a). The CRPS4 tumours were often rectal 
(47%), and exhibited stromal, TGFβ and WNT pathway activation, 
consistent with CMS4 (Fig. 4b and Supplementary Table 26). Finally, 
CRPS5 tumours were often from the right colon (46%), displayed WNT 
signalling repression (Supplementary Table 26) and had the highest 
prevalence of KRAS, PIK3CA and FBXW7 mutations, but fewer TP53 muta-
tions and CNVs compared with CRPS2–CRPS4 (Fig. 4b and Extended 
Data Fig. 6a,b). The distribution of reclustered CRPS cases was robust 
to removal of stage IV and pretreated cases (Supplementary Fig. 8a–d). 
The CRPS subtypes were prognostic for OS in stages I–IV (P = 0.01), 
RFS in stages I–III (P = 0.025; Fig. 4c) and for survival after recurrence 
(P = 0.034; Supplementary Fig. 8e), with CRPS2 and CRPS3 associated 
with the longest OS and RFS, CRPS4 with shortest OS and RFS, CRPS5 
with shorter RFS, and CRPS1 with the worst survival after recurrence. 
The CMS4 cases assigned to CRPS2 had a longer OS compared with 
those assigned to CRPS4 (Fig. 4d), which may reflect that the density 
of fibroblasts, macrophages and dendritic cells in CRPS2 is between 
those of CRPS3 and CRPS47 (Fig. 4b). To advance the understanding 
of nHM tumours, we identified prognostic features by CRPS, CMS and 
iCMS subtypes. Unfavourable-prognosis nHM iCMS3 tumours7 were 
primarily CRPS1 and CRPS4–CRPS5, displaying similarities in mutation 
profiles and clinical outcomes (Extended Data Fig. 7a). Despite their 
lower overall CNV load compared with iCMS2 tumours, several late CNV 
deletions correlated with shorter survival (Supplementary Table 27), 
while BRAF and RNF43 mutations were early events (Supplementary 

Table 9). Most of the nHM iCMS2 tumours were CRPS2–CRPS3. Ampli-
fication of 20q11 correlated with longer survival, consistent with being 
the major contributing feature for CRPS27,43 (Supplementary Fig. 9b 
and Supplementary Table 22). Within the nHM CMS4 tumours, those 
classified as CRPS4 divided between iCMS2 and iCMS3, while those 
classified as CRPS2 were primarily iCMS2. This could explain the 
separation of these tumours from the wider CMS4 category into the 
CRPS2 and CRPS4 subtypes, with shorter survival for the CMS4 cases 
in the latter (Fig. 4d). The relatively poor prognosis of CRPS4 may stem 
from the majority of tumours displaying iCMS3 characteristics7. For 
external validation, we developed a ResNet50 CRPS-based classifier 
(Supplementary Fig. 9a) and analysed 2,832 cases from 10 cohorts 
yielding accuracy, precision, recall and F1 score of >85%. The prognos-
tic ability of CRPS and the correspondence between CMS and CRPS 
was recapitulated (Extended Data Fig. 7b–d), with CRPS2 having the 
longest OS and CRPS4 having the shortest (P = 0.013 for all CRPS). 
Pathway features of CRPS subtypes were reproduced in the validation 
cohort (Extended Data Fig. 7e). Together, the CRPS outperforms CMS 
for prognosis, assigns a very high proportion of tumours to subtypes 
and provides deeper insights into CRC subtypes when combined with  
single-cell signatures.

Tumour hypoxia
Among 27 tumour types, CRC ranked the third most hypoxic44. To 
delineate links between genomic and transcriptomic alterations 
and tumour oxygenation, we analysed the transcriptomes using 
the Buffa hypoxia signature45. Tumours consistently had elevated 
hypoxia scores compared with unaffected control tissue (median, 
1 versus −20); right colon tumours had the highest, followed by left 
colon and rectum tumours (median, 7 versus 1 versus −5; Extended 
Data Fig. 8a). Furthermore, tumours in female individuals and those 
of high grade, HM and MSI had elevated levels of hypoxia. Consider-
ing all tumours, the strongest associations were SBS1, SBS5 and ID1, 
prevalent in tumours with low hypoxia44 (Extended Data Fig. 8b and 
Supplementary Table 28). The MMR-related signatures SBS44, SBS26, 

Table 1 | Prognostic genomic features by hypermutation status

Feature nHM HM

Longer survival Shorter survival Longer survival Shorter survival

Coding driver gene mutation APCOS,RFS

SIN3AOS
ARHGAP5OS,RFS

ARID2OS

BRAF OS,RFS

RNF43OS,RFS

ARHGAP5RFS

RNF43RFS

TGFBR2RFS

BCL9OS

PCBP1RFS

TRPS1OS

Mitochondrial gene mutation MT-CYBOS,RFS − − −

Non-coding driver gene mutation − ID2OS

HS3ST1OS

DAPK1RFS

− −

CNV +8p11.1OS

+20q11.1OS,RFS

+20q11.21OS

+20q13.12OS

+20q13.33OS

−4q34.1OS

−8p23.1OS

−11p15.5RFS

−12q24.33RFS

−16p13.3RFS

−17p12RFS

−17p13.3RFS

−17q12OS

−17q21.2OS

−17q21.31OS

−17q25.3OS,RFS

−21p12OS

− −3p21.31RFS

−4q22.1RFS

−11p15.5OS,RFS

−15q26.3RFS

+19q11OS

SV − SMAD4RFS

TCF7L2OS,RFS
− −

Mutational signature − − SBS44OS −

Prognostic features identified by multivariable Cox with adjustment for tumour site, pretreatment status, tumour stage, age group and tumour grade. OS, overall survival for stages I–IV.  
RFS, recurrence-free survival for stages I–III.
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SBS14, SBS-CRC1 and DBS-CRC3 correlated with high hypoxia. By con-
trast, SBS18, related to damage by ROS, and ID18, related to colibactin 
exposure, were inversely correlated. The two ID mutational signatures 
associated with slippage during DNA replication were both correlated 
with hypoxia, with ID1 inversely correlated and ID2 correlated44. In nHM 
tumours, most driver genes, particularly SMAD4, SMAD2 and FBXW7, 
correlated with high hypoxia. In HM tumours only RGMB, SMAD2, AREG 
and RFX5 mutations correlated with low hypoxia (Extended Data Fig. 9a 
and Supplementary Table 28). Most SV types were associated with 
high hypoxia in nHM tumours44, but only deletions were associated 
with high hypoxia in HM tumours (Extended Data Figs. 8c and 9b). 
Increased hypoxia was associated with a higher number of clonal, but 
not subclonal, mutations in nHM tumours44 (Extended Data Fig. 9c). 
High TMB was associated with hypoxia when considering all tumours. 
Impaired mitochondrial activity and abnormal mtDNA-CN character-
ized hypoxic tumours46, and mtDNA-CN was negatively correlated with 
hypoxia in both HM and nHM cases (Supplementary Table 28). The 
CRPS1 and CRPS4 tumours were the most hypoxic, whereas CRPS3 
and CRPS5 were the least. No correlation between hypoxia and sur-
vival or tumour size determined by magnetic resonance imaging in 
rectal cancers was observed. In summary, these findings corroborate 
previous observations in nHM CRC and provide insights into hypoxia  
in HM CRC.

Tumour microenvironment
The tumour microenvironment was charac terized by 
transcriptome-based prediction of stromal and immune cell popu-
lations47,48. The CRPS groups displayed differential infiltration of 
immune cells (Supplementary Fig. 10a,b). CRPS1 was enriched for 
T cells, B cells, dendritic cells and macrophages, CRPS2 for haema-
topoietic stem cells, dendritic cells and macrophages, while CRPS3 
tumours had low levels of immune cell infiltration but higher levels of 
megakaryocyte–erythroid progenitor cells (MEPs) and osteoblast-like 
cells. In CRPS4, fibroblasts, chondrocytes, endothelial cells, haemat-
opoietic stem cells and macrophages were enriched, while epithelial, 
MEPs and T cells were low. The CRPS5 tumours were characterized 
by CD4 central memory and effector memory T cells. When strati-
fied by HM and MSI status, nHM tumours had more fibroblasts and 
haematopoietic stem and granulocyte-monocyte progenitor cells, 
but less mesenchymal stem and immune cell infiltration compared 
with HM cases (Supplementary Table 29). In nHM/MSS cases, M2-like 
macrophages were associated with shorter OS and RFS, whereas T cells, 
dendritic and eosinophil cells were associated with longer OS and RFS 
(Supplementary Table 30).

Most MSI CRCs respond to immunotherapy, but 45% do not, moti-
vating a finer-grained subtyping49. We divided MSI tumours into two 
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classes using unsupervised classification (Supplementary Fig. 11), 
where the first was characterized by lymphocytes and stromal cells, 
and the second by more abundant MEPs and T helper type 1 cells 
(Supplementary Fig. 12). The two MSI classes did not differ in OS or 
RFS, but M0 macrophages and B cells were linked to longer OS and 
shorter RFS in MSI class 1 whereas M2 macrophages, CD4+ T cells and 
erythrocytes were linked to shorter OS and RFS in class 2 (multivari-
able HR > 1; Extended Data Fig. 10a and Supplementary Table 30). 
The MSI class 1 tumours more often had ARID2 mutations, while class 
2 had more BRAF and SMAD4 CNVs, FOXP2 amplifications and 7q11 

gains (Extended Data Fig. 10b–d). The MSI class 1 tumours also had 
higher hypoxia (median score, 17 versus 7; Extended Data Fig. 8a). 
These differences in immune cell composition and hypoxia levels 
motivate future analyses of immunotherapy responses in the two  
MSI classes.

Discussion
Here we carried out a large study integrating WGS and transcriptome 
data from CRCs, while providing sufficient clinical follow-up to enable 
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analyses of prognostic factors. The molecular genetic basis of CRC is 
comparably well characterized, but the majority of analysed tumours 
stems from clinical trials, large referral hospitals or from tumours 
actively treated at sampling. Tumours with genetic alterations asso-
ciated with poor prognosis are under-represented in clinical trials in 
which inclusion is based on specific criteria, as well as in hospital-based 
cohorts in which only patients who may be eligible for treatment are 
analysed4,8,11. We performed integrative analyses of CRCs from the inci-
dent patient population undergoing surgical removal of the primary 
tumour. We extend the CRC driver gene compendium by 33 genes, 
of which two-thirds were previously undescribed as cancer drivers, 
although, in the majority of instances, belong to cancer-relevant path-
ways. Several new mutational signatures related to defective DNA MMR 
and POLE mutations were identified. Timing analyses revealed that 
the vast majority of chromosomal losses are early events, whereas 
amplifications occur late, and indicated that TP53 mutation precedes 
PIK3CA mutation and loss of 10q (PTEN)1. Several previoulsy unknown 
early events were identified, and the late timing of amplifications and 
mutations in 1q and CEP170, 8q and TRPS1, and 20q and GNAS moti-
vates further analyses in the contexts of clonal fitness, invasion and 
metastasis.

Important findings from the integrated analyses were that (1) the 
favourable CRPS2–CRPS3 type tumours were enriched for chromosome 
20 amplifications that have previously been linked to good progno-
sis43; (2) M1 macrophages were enriched in the good-prognosis CRPS1 
tumours, and M2 macrophages in the poor-prognosis CRPS4 tumours; 
(3) key driver gene expression levels correlated with their mutation 
status; (4) prognostic mutations in regulatory elements were linked 
to altered expression of specific genes; (5) tumour hypoxia was linked 
to specific mutational signatures; and (6) MSI tumours divided into 
two classes with distinct molecular characteristics. Compared with 
current molecular classifiers, the prognostic CRPS signature provides 
refined CRC subtyping with the ability to classify the vast majority 
of tumours. The robustness of CRPS should be validated in larger 
cohorts with complete follow-up. Summarizing the identified prog-
nostic genomic factors (Table 1), we confirm the previously reported 
prognostic relevance of mutant APC, BRAF and RNF43, and SMAD4 loss 
in nHM CRCs32–34,50, and report several previously unreported prog-
nostic driver genes, including positive association of the prevalent 
TGFBR2 mutations in HM CRCs with survival. Notably, the prognostic 
driver genes belonged to the WNT, EGFR–KRAS–BRAF or TGFβ path-
ways. Furthermore, the prognostic mutations in MT-CYB, and in the 
regulatory elements of ID2, HS3ST1 and DAPK1 warrant further studies. 
Together, these findings provide fertile grounds for functional studies 
of CRC genes and for the development of diagnostic and therapeu-
tic modalities. Future characterization of epigenomes, proteomes 
and metabolomes of the same tumours and patients can provide 
additional insights into how different prognostic features relate to  
each other.
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Methods

Patient cohort
Patients diagnosed with CRC between 2004 and 2019, at Uppsala Uni-
versity Hospital or Umeå University Hospital, were eligible for the study. 
Patients that had (1) a fresh-frozen biopsy or surgical specimen that 
was estimated by a pathologist to have a tumour cell content of ≥20%; 
and (2) a patient-matched source of control DNA from whole blood or 
fresh-frozen colorectal tissue stored in the biobank, were included. 
Clinical data were extracted from the national quality registry, the 
Swedish Colorectal Cancer Registry (SCRCR), and completed from 
medical records. The follow-up for alive patients was a minimum of 
3.9 years and a median of 8 years (data lock 14 June 2023), with only one 
patient lost to follow-up and 994 (94%) with complete 5-year follow-up. 
Patients included with a diagnosis from 2010 (861 cases; 81%) were 
obtained from the Uppsala-Umeå Comprehensive Cancer Consortium 
(U-CAN) biobank collections (Uppsala Biobank and Biobanken Norr)51. 
Unfixed tissue materials from tumour and healthy colon and rectum 
were handled on ice and frozen on the day of sampling or surgery52. Tis-
sue collected in Uppsala was embedded in optimal cutting temperature 
(OCT) compound (Sakura) and stored at −70 °C. Tissue collected at 
Umeå University Hospital was frozen in pieces and stored at −70 °C. 
Haematoxylin-and-eosin-stained sections from the frozen blocks were 
reviewed by a pathologist to confirm tumour histology and estimate 
tumour cell content. Matching healthy DNA samples were derived 
from peripheral blood (522 patients) or adjacent healthy tissue (541 
patients). Control RNA was obtained from 120 patient-matched colon 
or rectum tissue samples. In total, tumours from 1,126 patients were 
sectioned and sequenced; however, 63 patients were excluded due 
to lack of high-quality DNA- or RNA-sequencing data from tumour or 
paired unaffected tissue.

Tissue retrieval and nucleic acid extraction
For tissue samples from Uppsala, five and eight cryosections of 10 µm 
each were used for RNA and DNA extraction, respectively. The DNA was 
extracted using the NucleoSpin Tissue kit (740952, Macherey-Nagel), 
and RNA was extracted using the RNeasy Mini Kit (74106, Qiagen). For 
tissue samples from Umeå, DNA and RNA were extracted using the 
AllPrep DNA/RNA/miRNA Universal kit (80224, Qiagen). Control DNA 
from blood samples was extracted using the NucleoSpin 96 Blood Core 
kit (740456, Macherey-Nagel) on a Genomics STARlet robot (Hamilton). 
For control samples derived from tissue, DNA and RNA were extracted 
using the same procedures as described for the tumour samples. DNA 
concentration was measured using the Qubit broad-range dsDNA assay 
kit in the Qubit system (Invitrogen), and RNA concentration and quality 
were assessed using the Bioanalyzer RNA 6000 Nano kit (Agilent) for 
samples from Uppsala and the Tape Station 2200 (Agilent) for samples 
from Umeå. RNA samples with RIN ≥ 7, 28S:18S ratio ≥0.8 and concen-
tration ≥60 ng µl−1 were further analysed. We analysed bulk RNA from 
tumours and a smaller set of unaffected control CRC tissue to enable 
analyses across a large sample set. This approach, while common in 
such analyses, requires careful consideration of the impact of tissue 
heterogeneity on the results as systematic differences in cell type com-
position between CRC and healthy colorectal tissues could contribute 
to variations in gene expression profiles.

Whole-genome sequencing and data processing
The WGS libraries were constructed from 1,063 primary CRC tumours 
and their paired control samples according to the manufacturer’s 
instructions for the MGIEasy FS DNA Library Prep Set (1000006987, 
MGI). The libraries were sequenced on the DNBSEQ platform (MGI) 
and 100-bp paired-end sequencing was performed to yield data of 
≥60× read coverage for all of the samples. During WGS data pre-
processing, low-quality reads and adaptor sequences were removed 
by SOAPnuke (v.2.0.7)53 with the parameters ‘-l 5 -q 0.5 -n 0.1 --f 

AAGTCGGAGGCCAAGCGGTCTTAGGAAGACAA -r AAGTCGGATCG 
TAGCCATGTCGTTCTGTGAGCCAAGGAGTTG’. Sentieon Genomics 
software (v.sentieon-genomics-202010; https://www.sentieon.com/) 
was used to map and process high-quality reads for downstream anal-
ysis54, which included the following optimised steps: (1) BWA-MEM 
(v.0.7.17-r1188) with the parameters ‘-M -K 100000000’ in alt-aware 
mapping model was used to align each tumour and control sample to 
the human genome reference hg38 (containing all alternate contigs)55; 
(2) alignment reads were sorted by sort mode of Sentieon utility func-
tions; (3) duplicate reads were marked by Picard (http://broadinstitute.
github.io/picard/); (4) indel realignment and base quality score recali-
bration for aligned reads were carried out by GATK56; (5) and alignment 
quality control was done by Picard.

Somatic short-variant calling
Putative somatic SNVs, MNVs and/or indels were identified in each 
tumour–control pair using multiple accelerated tools (TNhaplotyper, 
corresponding to MuTect257 of GATK3; TNhaplotyper2, correspond-
ing to MuTect257 of GATK4; TNsnv, corresponding to MuTect58) and 
TNscope59 of Sentieon Genomics software (v.sentieon-genomics-2020
10.01). Passed somatic SNVs, MNVs and indels detected by at least two 
tools were retrained as ensemble somatic short variants for each paired 
control–tumour sample. Allele depths of ensemble somatic short vari-
ants were recalculated by TNhaplotyper2 (v.sentieon-genomics-20
2010.01). High-confidence ensemble somatic short variants (depth 
of tumour ≥ 14, depth of control ≥ 8, variant allele reads count of 
tumour ≥ 2, variant allele reads count of control ≤ 2, variant allele frac-
tion of tumour ≥ 0.005 and variant allele fraction of control ≤ 0.02) were 
selected for downstream annotation and analysis. These variants were 
annotated with VEP cache v.101 (corresponding to GENCODE v.35) by 
Personal Cancer Genome Reporter (PCGR) (v.v0.9.1)60.

Somatic SVs and CNV
Somatic SVs were detected in each paired control–tumour sample by 
BRASS (v.6.3.4; https://github.com/cancerit/BRASS) with the param-
eters ‘-j 4 --c 4 --s human --as GRCh38 --pr WGS’, and ascatNgs61 (v.4.5; 
https://github.com/cancerit/ascatNgs) with the parameters ‘-g L -q 20 
-rs ‘human’ -ra GRCh38 -pr WGS -c 4 -force -nobigwig’. The genome cache 
file was generated by VAGrENT62 (v.3.7.0; https://github.com/cancerit/
VAGrENT) with CCDS2Sequence.20180614.txt (https://ftp.ncbi.nlm.
nih.gov/pub/CCDS/current_human/CCDS2Sequence.20180614.txt) 
and ensembl release-104 (http://ftp.ensembl.org/pub/release-104, 
Homo_sapiens.GRCh38.104.gff3.gz, Homo_sapiens.GRCh38.cdna.
all.fa.gz, Homo_sapiens.GRCh38.ncrna.fa.gz). Other files for the 
required parameters of BRASS and ascatNgs were extracted from 
CNV_SV_ref_GRCh38_hla_decoy_ebv_brass6+.tar.gz (ftp://ftp.sanger.
ac.uk/pub/cancer/dockstore/human/GRCh38_hla_decoy_ebv/CNV_SV_
ref_GRCh38_hla_decoy_ebv_brass6+.tar.gz). The SVs present in control 
samples were filtered from the following analyses. Somatic CNVs were 
detected in each paired control–tumour sample by facetsSuite (v.2.0.8; 
https://github.com/mskcc/facets-suite). An image of facetsSuite was 
pulled from docker://stevekm/facets-suite:2.0.8 and run with singular-
ity (v.3.2.0)63. We used the aligned sequence BAM file as input data and 
executed FACETS in a two-pass mode with the default settings64. First, 
the purity model estimated the overall segmented copy-number profile, 
sample purity and ploidy. Subsequently, the dipLogR value inferred 
from diploid state in the purity model enabled the high-sensitivity 
model to detect more focal events. Allele-specific copy numbers for 
each high-confidence ensemble somatic short variant were annotated 
using the wrapper script ‘annotate-maf-wrapper.R’ with high-sensitivity 
output. The gene-level copy-number result was re-annotated with GEN-
CODE v.35. Somatic copy-number states were grouped into eight classes 
based on total copy number (tcn) and minor copy number (also known 
as lower copy number; lcn) estimated by FACETS, including wild type 
class (one copy per allele; tcn=2, lcn=1), homozygous deletions (tcn=0, 
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lcn=0), LOH (tcn=1, lcn=0), copy-neutral LOH (tcn=2, lcn=0), gain-LOH 
(tcn=3 or 4, lcn=0), gain (tcn=3 or 4, lcn≥1), amp-LOH (tcn≥5, lcn=0) 
and amp (tcn≥5, lcn≥1).

ecDNA detection
Amplicons were detected in each sample by PrepareAA (commit 
ba747ce; https://github.com/jluebeck/PrepareAA) with the parameters 
‘--ref GRCh38 -t 4 --cngain 4.999999 --cnsize_min 50000 --downsample 
10 --cnvkit_dir /home/programs/cnvkit.py --run_AA’65,66. An image of 
PrepareAA was obtained from docker://jluebeck/prepareaa:latest and 
run with singularity (v.3.2.0). The amplicons were classified by Ampli-
conClassifier (v.0.4.4; https://github.com/jluebeck/AmpliconClassifier) 
with the parameters ‘--ref hg38 --plotstyle noplot --report_complexity 
--verbose_classification --annotate_cycles_file’67. The samples were 
classified on the basis of which amplicons were present in the sample 
as previously described24.

CIN signature quantification
The activities of the 17 CIN signatures presented previously68 were 
quantified using CINSignatureQuantification (v.1.0.0; https://github.
com/markowetzlab/CINSignatureQuantification) with unrounded 
copy-number segments from facetsSuite. Tumours with normalized 
activities larger than zero, in any CIN signature, were identified as CIN 
samples.

MSI detection
The MSI status of CRC tumours was determined by running the MSIsen-
sor2 (v.0.1, commit e0798c7; https://github.com/niu-lab/msisensor2) 
tumour–control paired module (inherited from MSIsensor) with the 
parameters ‘-c 15 -b 4’. MSIsensor2 automatically detects somatic 
homopolymers and microsatellite changes and calculates the MSI 
score as the percentage of MSI-positive sites in all valid sites. MSIsen-
sor2 software comprises of two modules: tumour-only and paired. The 
tumour-only module is an algorithm for tumour-only sequencing data, 
with a recommended cut-off score of 20. By contrast, the paired module 
is derived from the original MSIsensor1 and the recommended thresh-
old score is 3.5 for MSI69. Correlation analyses between the two modules 
showed a strong correlation between their results, so we selected the 
paired module. Furthermore, some studies subdivide MSI samples 
into MSI-low (scores between 3.5 and 10) and MSI-high (scores above 
10) based on the paired module. However, our analysis revealed that 
most of the samples with scores in the MSI-low range according to the 
paired module had scores above 20 in the tumour-only module, so we 
considered all samples with an MSI score of ≥3.5 as having MSI.

Identification of significantly mutated genes
HM tumours associated with MSI or POLE mutation are frequently 
found in CRC. To avoid signals from samples with lower mutation bur-
den from being masked during downstream WGS analyses, we first 
classified the tumours as HM or nHM based on the total count of somatic 
short variants according as previously described70:

N N> _ + 1.5 × interquartile rangeSNV median SNV

After a first round of calculations, each HM sample was split into two 
separate artificial samples with an equal number of mutation counts. 
This process was repeated until no HM samples were detected by the 
formula. Outlier times indicate how many times a sample was called 
as HM in this process. The mutational heterogeneity caused by the 
increased mutation burden of HM tumours can reduce the power to 
detect driver genes and affect the identification of mutational sig-
natures4,27,71. To identify CRC driver genes, we ran dNdScv72 (v.0.1.0, 
commit dcbf8e5; https://github.com/im3sanger/dndscv) on the whole 
cohort and on HM and nHM samples separately. A list of known cancer 
genes to be excluded from the indel background model was compiled 

from the COSMIC Cancer Gene Census73 (v.95) and intOGen Compen-
dium Cancer Genes (release date 1 February 2020, https://www.intogen.
org/)72,74–80. Covariates (a matrix of covariates (columns) for each gene 
(rows)) were updated to covariates_hg19_hg38_epigenome_pcawg.
rda (commit 9a59b89; https://github.com/im3sanger/dndscv_data). 
The reference database was updated to RefCDS_human_GRCh38_
GencodeV18_recommended.rda (commit 9a59b89; https://github.
com/im3sanger/dndscv_data). The dNdScv R package includes two 
different dN/dS-based algorithms, dNdSloc and dNdScv. dNdSloc 
is similar to a traditional dN/dS implementation, while dNdScv also 
takes into account variable mutation rates across genes and adds a 
negative binomial regression model using epigenomic covariates to 
infer the background mutation rate. The list of significant genes was 
selected by Benjamini–Hochberg-adjusted P values (qall_loc<0.1 or 
qglobal_cv<0.1) and merged from both dNdSloc and dNdScv. Long 
genes81, olfactory receptor genes and genes with transcript per mil-
lion (TPM) > 1 in less than ten tumours were excluded from the poten-
tial driver gene list. Mutually exclusive or co-occurring sets of driver 
genes were detected using the modified somaticInteractions func-
tion of Maftools82 (v.2.12.0), which performs pair-wise Fisher’s exact 
tests to detect significant (Benjamini–Hochberg false-discovery rate 
(FDR) < 0.1) pairs of genes.

Identification of broad and focal somatic copy-number variation
To determine significantly recurrent broad and focal somatic CNVs, 
GISTIC2.083 (v.2.0.23) was run on resulting segmentation profiles from 
facetsSuite high-sensitivity models with the parameters ‘-ta 0.3 -td 0.3 
-qvt 0.25 -rx 0 -brlen 0.7 -conf 0.99 -js 4 -maxseg 25000 -genegistic 1 
-broad 1 -twoside 1 -armpeel 1 -savegene 1 -gcm extreme -smallmem 1 
-v 30’. A higher-amplitude threshold according to GISTIC was used for 
focal copy-number-alteration classification, tumour and control log2 
ratio > 0.9 for amplifications and <−0.3 for deletions83. Recurrently 
amplified or deleted regions were identified by GISTIC peaks and genes 
within each peak were summarized for further analyses.

Mutational signature analysis
Analyses of mutational signatures were performed by SigProfilerEx-
traction84 (v.1.1.4) with the parameters ‘--reference_genome GRCh38 
--opportunity_genome GRCh38 --minimum_signatures 1 --maximum_
signatures 40 --nmf_replicates 500 --cpu 12 --gpu True --cosmic_version 
3.2’. SigProfilerExtraction consists of two processes: de novo signa-
ture extraction and signature assignment27,85,86. Hierarchical de novo 
extraction of SBS, DBS and ID signatures from all samples was fol-
lowed by estimation of the optimal solution (number of signatures) 
based on the stability and accuracy of all 40 solutions. After signa-
tures were identified, the activities of each signature were estimated 
by assigning the number of mutations in each extracted mutational 
signature to each sample. SigProfilerExtraction also decomposed 
de novo signatures to the COSMIC16 signature database27 (v.3.2). The 
cosine similarity87 between mutational signatures of this and the GEL 
cohorts28, and this and the PCAWG cohorts27 (COSMIC v.3.3), were 
calculated using R (v.4.2.0). A de novo signature was considered 
novel if the cosine similarity to both GEL and PCAWG signatures was 
<0.85. The mutational signature associations between decomposed 
signatures were calculated by Stats::cor (method = “spearman”) and 
corrplot::cor_mtest (conf.level = 0.95, “spearman”) in R (v.4.2.0), and 
those with an FDR-adjusted P < 0.05 were considered to be statistically  
significant88.

Analyses of non-coding somatic drivers in regulatory elements
Regulatory elements were defined using SCREEN (Registry of cCREs 
V3; https://screen.encodeproject.org/), a registry of cCREs derived 
from ENCODE data89. Active cCREs annotated in 13 tissue samples 
(small intestine, transverse, sigmoid, left colon tissues) and 7 cell lines 
(CACO-2, HCT116, HT-29, LoVo, RKO, SW480 and HCEC 1CT) derived 
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from colon were collected and downloaded from SCREEN, where cCREs 
are classified into six active groups (promoter-like signatures (PLS), 
proximal enhancer-like signatures (pELS), distal enhancer-like signa-
tures (dELS), DNase-H3K4me3, CTCF-only and DNase-only) based on 
integrated DNase, H3K4me3, H3K27ac and CTCF data. Furthermore, 
the list of genes possibly linked to a cCRE according to experimental 
evidence (for example, Hi-C) was extracted from the cCRE Details page 
of the website. Driver analyses were performed by ActiveDriverWGS71,90 
(v.1.1.2, commit 351ca77; https://github.com/reimandlab/ActiveDriv-
erWGSR) with the parameters ‘-mc 4 -rg hg38 -fh 300’ on non-HM sam-
ples for each cCREs groups. The missense mutations in the analyses of 
regulatory regions were removed to avoid confounding signals from 
known cancer drivers. Mutated elements with a Benjamini–Hochberg 
FDR < 0.05 were considered to be significant and were used in the fol-
lowing analyses90. To evaluate the functional effects of driver cCREs, 
we examined their prognostic value and compared the expression 
levels of their linked genes. Cox proportional hazard analyses were 
performed to identify prognosis-associated cCREs using the Survival 
R package (v.3.3-1). Furthermore, potential associations between each 
cCRE and the expression levels of their linked genes were analysed by 
comparing raw expression values between groups of mutated and 
wild-type samples using two-sided Wilcoxon rank-sum tests. An FDR 
adjustment was applied to the P values from the Wilcoxon test and 
genes with FDR-adjusted P < 0.05 were considered to be differentially 
expressed with statistical significance. Finally, cCREs that had an impact 
on the expression of linked genes were analysed according to survival.

Mitochondrial genome somatic mutation and copy-number 
estimation
We used multiple tools in the GATK4 (v.4.2.0.0) workflow to extract 
reads mapped to the mitochondrial genome from WGS, perform the 
mtDNA variant calling and filter the output VCF file based on specific 
parameters, according to GATK best practices (https://gatk.broadin-
stitute.org/hc/en-us/articles/4403870837275-Mitochondrial-short- 
variant-discovery-SNVs-Indels-). Furthermore, false-positive calls 
potentially caused by reads of mtDNA into the nuclear genome (NuMTs) 
were examined. These mutations normally have a low VAF but are highly 
recurrent in multiple tumours, as well as in matched control samples. 
To remove these false positives, we used stringent sample filtering, 
especially on variants with heteroplasmy <10%. We first performed two 
statistical tests as previously described30: (1) the VAF of a mutation in the 
matched control sequences needed to be <0.0034; and (2) the ratios of:

N N N/RD /( /RD + /RD )MutCtrl Ctrl MutCtrl Ctrl MutTum Tum

needed to be <0.0629, where NMut refers to mutation allele count, RD to 
average read depth, and Ctrl and Tum are control and matched tumour 
tissues, respectively. These cut-offs were adapted from a previous 
study30 and set by the median results of all mutation candidates plus 2 
times the interquartile range. As the mutation rate of tumour-specific 
NuMTs is around 2.3% (ref. 91), we retained mutations with a frequency 
of <0.023. To avoid false-negative calls, mutations with VAFmax < 0.1 and 
VAFmedian < 0.05 were examined, and the tumours in which the muta-
tion had VAF > 0.05 were retained92. The mean sequencing depth for 
the mitochondrial genome was 14,286-fold, allowing high-sensitivity 
detection of somatic mutations at a very low levels of heteroplasmy; 
thus, variants with 0.01 < VAF < 0.95 were used for subsequent analy-
ses. For mtDNA copy-number calculation, we used pysam (v.0.15.3) 
to filter and estimate the raw copy number of each sample. We then 
calculated the normalized copy number as described previously5. The 
survival best cut-point of mtDNA copy number was identified with 
surv_cutpoint (maxstat test: Maximally Selected Rank and Statistics) 
implemented in survminer (v.0.4.9). The associations between muta-
tional signatures and mtDNA copy number were calculated by Stats::cor  
(method = “spearman”) and corrplot::cor_mtest (conf.level = 0.95, 

“spearman”) in R (v.4.2.0), and those with FDR P < 0.05 were considered 
to be statistically significant88.

Relative timing of somatic variants and copy-number events
For each nHM tumour, allele-specific copy-number-annotated high- 
confidence ensemble somatic short variants and high-sensitivity 
copy-number events of autosomes (except the acrocentric chromo-
some arms 13p, 14p, 15p, 21p and 22p) were timed and related to one 
another with different probabilities using PhylogicNDT25,93 (v.1.0, 
commit 84d3dd2; https://github.com/broadinstitute/PhylogicNDT). 
Single-patient timing and event timing in the cohort were inferred using 
PhylogicNDT LeagueModel as previously described26. The driver gene 
list identified in this cohort was specified to run PhylogicNDT.

RNA sequencing and determination of gene expression levels
The rRNA was removed from total RNA using the MGIEasy rRNA Deple-
tion Kit (1000005953, MGI) and sequencing libraries were prepared 
for the 1,063 primary CRC tumours and 120 adjacent control tissue 
samples using the MGIEasy RNA Library Prep Kit V3.0 (1000006384, 
MGI) according to the manufacturer’s instructions. Sequencing of 
2 × 100 bp paired‐end reads was performed using the DNBSEQ platform 
(MGI) with a target depth of 30 million paired-end reads per sample. 
Pre-processing of RNA-seq data, including removal of low-quality reads 
and rRNA reads, was performed using Bowtie2 (v.2.3.4.1)94 and SOAP-
nuke. Clean sequencing data were mapped to human reference GRCh38 
using STAR (v.2.7.1a)95. Expression levels of genes and transcripts were 
quantified using RNA-SeQC (v.2.3.6)96. Transcripts with expression level 
0 in all samples were excluded from further analyses and the mRNA 
expression matrix (19,765 × 1,183) was converted to log2(TPM + 1).

Detection of oncogenic RNA fusions
Gene fusions were detected by STAR-Fusion97 (v.1.10.0; https://github.
com/STAR-Fusion/STAR-Fusion) using clean FASTQ files with the param-
eters ‘--FusionInspector validate --examine_coding_effect --denovo_
reconstruct --CPU 8 --STAR_SortedByCoordinate’ and Arriba98 (v.2.1.0; 
https://github.com/suhrig/arriba) starting with BAM files aligned by 
STAR95 (v.2.7.8a; https://github.com/alexdobin/STAR). An image of 
STAR-Fusion was pulled from docker://trinityctat/starfusion:1.10.0 
and run with singularity (v.3.2.0). Genome lib used in STAR-Fusion was 
downloaded from CTAT genome lib (https://data.broadinstitute.org/
Trinity/CTAT_RESOURCE_LIB/__genome_libs_StarFv1.10/GRCh38_gen-
code_v37_CTAT_lib_Mar012021.plug-n-play.tar.gz). Aligned BAM files for 
Arriba were generated as described in the user manual (https://arriba.
readthedocs.io/en/latest/). Gene fusions from Arriba were then anno-
tated by FusionAnnotator (v.0.2.0; https://github.com/FusionAnnota-
tor/FusionAnnotator) and merged with results of STAR-Fusion. Merged 
results were then filtered and prioritized with putative oncogenic fusions 
by annoFuse99 (v.0.91.0; https://github.com/d3b-center/annoFuse).

Unsupervised expression classification for generation of CRPS
We used Seurat (v.4.1.0) to identify stable clusters of all CRC samples 
and among MSI tumours100. Potential batch effects or source differ-
ences between samples were corrected by Celligner101 (v.1.0.1; https://
github.com/broadinstitute/Celligner_ms), and the resulting matrix was 
imported into Seurat as scale data. Three different parameters were 
evaluated by repeating clustering with different k.param in FindNeigh-
bors (10 to 30, step=5), number of principle components (10 to 100, 
step=5) and resolution in FindClusters (0.5 to 1.4, step=0.1). The stability 
of clusters was assessed by Jaccard similarity index and the preferred 
clustering result (resolution=0.9, PC = 20, K = 20) was determined by 
scclusteval102 (v.0.0.0.9000).

CMS and iCMS classification
For the CMS classification, three CMS classifier algorithms (CMSclas-
sifier (v.1.0.0) with random-forest prediction41, CMSclassifier-single 
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sample prediction41 and CMScaller103 (v.0.9.2)) were evaluated and 
the results from the CMSclassifier-random forest was used. Expres-
sion data were processed using these three R packages separately or 
combined, generating four sets of results. In the combined mode, the 
CMS subtype of each tumour was determined when two algorithms 
made the same prediction, otherwise it was assigned as NA. Among all 
four sets of results, CMSclassifier-random forest predicted the most 
control samples as NA and assigned more MSI samples to CMS1, indi-
cating a lower false-positive rate and a higher accuracy. The Intrinsic 
CMS (iCMS) classification was performed based on 715 marker genes of 
intrinsic epithelial cancer signature as described previously7. The iCMS2 
marker genes were obtained from the iCMS2_up and iCMS3_down lists, 
and the iCMS3_up and iCMS2_down lists were used as iCMS3 markers. 
Subsequently, the iCMS2 and iCMS3 scores for each tumour were cal-
culated using the ‘ntp’ function of the CMScaller R package. Tumours 
were defined as indeterminate if permutation-based FDR was ≥ 0.05.

Model building and validation of CRPS classification
To validate the CRPS de novo classification, we built a classification 
model based on a deep residual learning framework, involving the fol-
lowing steps: (1) gene expression data were first converted into pathway 
profiles by single-sample gene set enrichment analysis (ssGSEA104) 
implemented in Gene Set Variation Analysis (GSVA105 (v.1.42.0), param-
eters ‘min.sz=5, max.sz=300’) using MSigDB106–108 (v.7.4). We eventually 
obtained 30,049 pathways for 1,183 samples, including 1,063 tumours 
and 120 adjacent unaffected control samples. (2) RelieF implemented 
in scikit-rebate109 (v.0.62) was used to refine the obtained pathway 
features. The RelieF algorithm used nearest-neighbour instances to 
calculate feature weights and assigned a score for the contribution of 
each feature to the CRPS classification. The features were then ranked 
by scores and the top 2,000 were selected for the model training. (3) We 
used TensorFlow110 (v.2.3.1) to construct the supervised machine learn-
ing model with a 50-layer residual network architecture (ResNet50-1D), 
of which the 4 stacked blocks were composed of 48 convolutional 
layers, 1 max pool and 1 average pool layer. The filters and strides were 
set as previously described111 and the kernel size was set to height. The 
activation function was set to SeLU, except for the last layer, which used 
Softmax for full connection. During model compilation, we used the 
Nadam algorithm as the optimizer in terms of speed of model training 
and chose Categorical Crossentropy as loss of function in the classifica-
tion task. To train the model sufficiently, epochs were set to 500 and 
LearningRateScheduler in TensorFlow was used to control the learning 
rate precisely in the beginning of each epoch; finally, ModelCheckpoint 
in TensorFlow was used to save the model with the maximum F1 score. 
(4) All 1,183 samples were divided into a training set (80%), a test set 
(10%) and a validation set (10%). Before the model training, a 1D vector, 
which represents each gene sets row of samples (gs1, gs2, …, gsn), was 
converted to a 2D matrix (1, nfeatures) with the np.reshape function, and 
used as the input data for Tensor (input shape structures were set to 
(none, −1, 2000)). ResNet50 learned the representations of the input 
data and was fitted to the training set. The number of output classes 
in TensorFlow was set to 6, corresponding to 5 clusters of CRPS and a 
normal sample cluster. To avoid bias caused by class imbalance during 
the learning process, the Random OverSampling Examples algorithm 
in Imbalanced-learn112 (v.0.9.0) was applied to ensure that at least one 
sample from each CRPS class could be randomly selected for model 
training. Samples with class probabilities of less than 0.5 were catego-
rized as NA. Moreover, Shapley Additive exPlanations (SHAP)113 was 
applied to explain the model predictions on CRPS classifications, the 
molecular features of which could therefore be interpreted. To test 
the CRPS classification model, a total of ten external CRC datasets 
(n = 2,832) from NCBI GEO114 (GSE2109, GSE13067, GSE13294, GSE14333, 
GSE20916, GSE33113, GSE35896 and GSE39582), NCI Genomic Data 
Commons115 (TCGA-COAD4, TCGA-READ4) and AC-ICAM31 were uni-
formly processed and transformed to pathway profiles with ssGSEA. 

After class prediction of these CRC samples by our CRPS classification 
model, survival and pathway analyses were performed. Among these 
external datasets, only the GSE39582, TCGA and AC-ICAM cohorts 
have sufficient sample sizes and completeness of clinical data to allow 
survival analyses. Thus, the comparisons of prognostic prediction 
between CMS, iCMS and CRPS were performed using these three 
datasets individually and combined. Pathway analyses of CRPS from 
our dataset and from TCGA were performed using CMScaller103. The 
CRPS classification model is available at GitHub (https://github.com/
SkymayBlue/U-CAN_CRPS_Model).

Pathway analyses
GSEA106 (v.4.2.3 desktop) and MSigDB107,108 (v.7.4) were used in pathway 
analyses, with the following settings: filter ‘geneset min=15 max=200’. 
We also used PROGENy116 (v.1.16.0) to investigate 14 oncogenic path-
ways in CRPS, as previously described. The integrated presentation 
of pathways regulated by CRC somatic alterations were processed 
using PathwayMapper (v.2.3.0; http://pathwaymapper.org/)117. Path-
way templates were merged, including cross-pathway interactions118, 
using the Newt tool (v.3.0.5; https://newteditor.org/)119, which allows 
experimental data to be visually overlaid on the pathway templates.

Hypoxia scoring and associations with mutational features
Hypoxia scores were calculated for 1,063 CRC tumours and 120 unaf-
fected control samples using the Buffa hypoxia signature45 as previ-
ously described44. In brief, samples with an mRNA abundance above the 
median tumour value of each gene in the signature were given a Buffa 
hypoxia score of +1, otherwise they were given a Buffa hypoxia score of 
−1. The sum of the score for every gene in the signature is the hypoxia 
score of the sample. We used a linear model to analyse the associa-
tions between hypoxia scores and mutational features of interest in all 
tumours, nHM tumours and HM tumours using R stats package (v.4.1.0). 
For each mutational feature tested in the cohort, a full model and a null 
model were created and both were adjusted for tumour purity, age at 
diagnosis and sex120. The equations for the two models were adapted 
from a previous study44:

Full = hypoxia ~ feature + age + sex + purity

Null = hypoxia ~ age + sex + purity

Comparisons between the two models were made using ANOVA, 
and hypoxia was considered to be statistically significantly associated 
with a mutational feature when FDR- or Bonferroni-adjusted P values 
were <0.1. Bonferroni adjustment was applied only to P values when 
<20 tests were conducted. The scaled residuals for all full models were 
calculated using the simulateResiduals function in the DHARMa pack-
age121 (v.0.4.5), and their uniform distributions were verified using 
the Kolmogorov–Smirnov test. Tested mutational features included 
mutational signatures, SNV, CNV and SV densities, driver mutations 
and subclonality. In the mutational signature analysis, the proportion 
of each signature in each tumour was used in the full model. To test 
the association between hypoxia and specific genetic alterations, we 
considered 22 metrics of mutational density, including 10 SNV mutation 
counts encompassing all regions, coding region, non-coding region, 
nonsynonymous, SNV, DNV, TNV, DEL, INS and INDEL; 8 metrics of CNV 
mutational density which were adapted from PCAWG44, including the 
fraction of genome with total copy-number aberrations (PGA, total), 
PGA gain, PGA loss, PGA gain:loss, average CNV length, average CNV 
length gain, average CNV length loss and average CNV length gain:loss; 
and 4 SV types, including deletion, inversion, tandem-duplication 
and translocation. Mutational density by deciles of all 22 metrics were 
calculated using the R package dplyr122. Finally, in the subclonality 
analysis, clonal and subclonal mutations and numbers of subclones 
for each tumour were derived from PhylogicNDT as described above.
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Prediction of cell types in the tumour microenvironment
The CIBERSORT48 (v.1.04) and xCell47 (v.1.1.0) computational methods 
were applied with the default settings on TPM gene expression data for 
microenvironment estimation.

Survival analyses
The OS was defined as time from diagnosis of primary tumour to 
death or censored if alive at last follow-up, RFS was defined as time 
from surgery to earliest local or distant recurrence date or death, or 
censored if no recurrence or death at last follow-up, while survival 
after recurrence was defined as the time from recurrence to death. 
The OS analyses included all patients with stage I–IV, whereas patients 
with stage IV at diagnosis were excluded in the RFS analyses. Separate 
OS analyses were also performed for stage I–III for some variables. 
Cox’s proportional hazards models were built to determine the prog-
nostic impact of clinical and genomic features using the R packages 
finalfit and survival (v.1.0.4/v3.3-1). Univariable Cox regression was 
performed on all identified coding or non-coding drivers and clinical 
variables, while multivariable Cox regression was applied to drivers 
that were statistically significant in the univariable analyses (P < 0.05) 
with co-variates including tumour site, pretreatment status, tumour 
stage, age groups, tumour grade and hypermutation status. The OS 
and RFS curves were constructed using the Kaplan–Meier method 
and the differences between groups were assessed using the log-rank 
test, using the R package survminer (v.0.4.9). In the Supplementary 
Tables 18, 19, 21, 23 and 30 showing associations with either OS or RFS, 
analyses showing P < 0.05 were marked in bold. No compensation for 
multiple testing was done in these analyses.

Ethics declarations
Patient inclusion, sampling and analyses were performed under the 
ethical permits 2004-M281, 2010-198, 2007-116, 2012-224, 2015-419, 
2018-490 (Uppsala EPN), 2016-219 (Umeå EPN) and the Swedish Ethi-
cal Review Authority 2019-566. All of the participants provided writ-
ten informed consent at enrolment. All of the samples were stored in 
the respective central biobank service facilities in Uppsala (Uppsala 
Biobank) and Umeå (Biobanken Norr) and obtained for use in analyses 
here after approved applications. Sequencing and sequence data analy-
ses of pseudonymized samples were performed at BGI Research, which 
had access to patient age range, sex and tumour-level data. Samples 
and data were transferred from UU to BGI Research under Biobank 
Sweden MTA and applicable GDPR standard terms for transfer to third 
countries. The analysis of patient-level data was performed at UU. The 
study conformed to the ethical principles for medical research involv-
ing human participants outlined in the Declaration of Helsinki.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Short somatic variant call, CNV and SV data are available at the European 
Variation Archive123 under accession number PRJEB61514, expression 
profiles at the ArrayExpress124 under accession number E-MTAB-12862 
or all data at the CNGB Sequence Archive (CNSA)125 of the China 
National GeneBank DataBase (CNGBdb)126 under accession number 
CNP0004160. The raw transcriptome data generated in this Article 
are available under controlled access through EGA under accession 
number EGAD50000000169. WGS raw data and more detailed clinical 
information have been deposited at Uppsala University and inquir-
ies to access them should be directed to the corresponding author 
and U-CAN, a cancer biobank at Uppsala University (https://www.
uu.se/forskning/u-can/). Access to raw data and clinical information 

is subject to Swedish legal regulations, GDPR, permission from the 
Swedish Ethical Review Authority and U-CAN terms. All patients in 
U-CAN have explicitly consented to genomic data deposition in public 
repositories. However, to protect their integrity and fulfil requirements 
in an evolving legal landscape, we have opted for restricted access to 
genome and transcriptome sequence datasets. Access requests can 
be addressed to the corresponding author and will be responded to 
within 2 weeks. The remaining data are available within the Article and 
Supplementary Information. The human genome reference hg38 (con-
taining all alternate contigs) files were downloaded from GATK resource 
bundle (ftp.broadinstitute.org/gsapubftp-anonymous/bundle/hg38). 
The basic gene annotation file (gencode.v35.basic.annotation.gtf.gz) 
was downloaded from GENCODE (ftp.ebi.ac.uk/pub/databases/gen-
code/Gencode_human/release_35). A high-confidence list of genes 
with substantial published evidence in oncology (Cancer Gene Census 
v95) was downloaded from COSMIC (https://cancer.sanger.ac.uk/cos-
mic). A compendium of mutational cancer driver genes (release date  
1 February 2020) was downloaded from intOGen (https://www.into-
gen.org/). COSMIC mutational signatures (v.3.3) were downloaded 
from COSMIC (https://cancer.sanger.ac.uk/signatures/downloads/). 
Genomics England (GEL) 100,000 Genomes Project (100kGP) muta-
tional signatures (science.abl9283_tables_s1_to_s33.xlsx) were down-
loaded from the Science website (https://www.science.org/doi/10.1126/
science.abl9283#supplementary-materials). The Registry of candi-
date cis-Regulatory Elements (cCREs V3) derived from ENCODE data 
was downloaded from SCREEN (https://screen.encodeproject.org/). 
Genome lib (GRCh38_gencode_v37_CTAT_lib_Mar012021.plug-n-play) 
used in STAR-Fusion was downloaded from CTAT genome lib (https://
data.broadinstitute.org/Trinity/CTAT_RESOURCE_LIB/__genome_libs_
StarFv1.10/). The Molecular Signatures Database (v.7.4) was downloaded 
from MSigDB (https://www.gsea-msigdb.org/gsea/downloads.jsp).

Code availability
The source code for the CRPS classification model is available to 
use on GitHub under the GPL-2.0 License (https://github.com/
SkymayBlue/U-CAN_CRPS_Model).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Mutually exclusive and co-occurring gene mutations 
in the 96 colorectal cancer driver genes displayed by hypermutation status. 
Significant pairs of genes with mutually exclusive or co-occurring mutations 
were detected in a, non-hypermutated (n = 821) and b, hypermutated (n = 242) 
tumours with Fisher’s Exact test adjusted by Benjamini-Hochberg False 
Discovery Rate (* FDR < 0.05 and ▪ FDR < 0.1). The number of patients with the 
mutation is shown inside brackets next to the gene name. Association of genes 
with clinical features with indication of the proportion of tumours affected  
is shown to the left (* FDR P < 0.05). Oncoplots display mutually exclusive and  
co-occurring driver gene mutations grouped by pathway with gene mutation 

prevalence shown to the right. The expression levels (log10(TPM)) of each pair  
of genes with co-occurring mutations were compared between wild-type 
samples (control group, +/+), samples carrying mutations of one gene (+/− or −/+) 
and samples carrying mutations of both genes (−/−) in the pair. Names of paired 
genes are indicated on the top of boxes and their colours correspond to colours 
of “+” or “−”. The number of samples for each group is shown at the bottom of  
each box. The boxes represent the interquartile ranges (IQRs) between the first 
and third quartiles, the centre line represents the median, and the whiskers 
extend 1.5 times the IQR from the top and bottom of the box (* P < 0.05, ** P < 0.01, 
*** P < 0.001, **** P < 0.0001, Two-sided Wilcoxon Rank Sum Test).
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Extended Data Fig. 2 | Copy number and structural variation landscape  
for the 96 driver genes. a, Copy number variation subtypes were called by 
facetsSuite. RNA expression level (TPM Log2FC) in samples with gains or losses 
of the driver gene were compared with that of wild-type samples (*FDR < 0.05, 
** FDR < 0.01, *** FDR < 0.001, Two-sided Wilcoxon Rank Sum Test). b, Structural 

variants affecting driver genes (top) and DNA damage repair genes (bottom). 
Circos plots with counts (middle ring) for deletions (yellow), inversions (blue), 
tandem-duplications (green) and translocations (grey), displayed by gene and 
chromosomal location. CNV, copy number variation; LOH, loss of heterozygosity; 
cnLOH, copy number neutral LOH; ampLOH, amplification LOH.
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Altered in 1,027 (96.61%) of 1,063 tumours
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Extended Data Fig. 4 | Somatic mutational landscape of mitochondrial 
genomes in colorectal cancer. a, Oncoplot of somatic mitochondrial DNA gene 
(rows) mutations in 1,027 (97%) of the 1,063 sequenced tumours (columns). The 
TMB for each sample is presented at the top and the number of tumours with 
the mutation is shown on the right, coloured by mutation type. b, Variant allele 
frequency (VAF) accumulation curves for missense, silent and truncating 
mitochondria mutations (one-tailed F-test). c, dN/dS ratio for mtDNA somatic 
missense mutations by different VAF cut-offs. The numbers of missense and 
silent mutations for different VAF cut-offs were indicated. The error bars 
represent the 95% confidence intervals of the dN/dS ratio (likelihood).  

d, Total amount of mitochondrial mutations displayed per age group with one-
way ANOVA comparison. The boxes represent the interquartile ranges (IQRs) 
between the first and third quartiles, the centre line represents the median, and 
the whiskers extend 1.5 times the IQR from the top and bottom of the box. The 
numbers of tumours in each age group are shown at the bottom of the box plots 
and mean values are shown as black dots. e, Mutually exclusive or co-occurring 
mitochondrial gene mutations in all tumours with Fisher’s Exact test adjusted 
by Benjamini-Hochberg False Discovery Rate (* FDR < 0.05 and ▪ FDR < 0.1).  
The number of patients with the mutation is shown inside brackets next to the 
gene name.
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Extended Data Fig. 6 | Somatic mutations and copy number variation in 
colorectal cancer prognostic subtypes (CRPS). a, Somatic mutations in  
96 driver genes for the 1,063 colorectal tumours displayed by CRPS subtype.  
b, Frequency and type of somatic copy number variation in 96 driver genes 

displayed by CRPS subtype. c, Focal copy number regions displayed by CRPS 
subtype determined by GISTIC if Q < 0.1. LOH, loss of heterozygosity; cn, copy 
number neutral; AMP, amplification; HOMDEL, homozygous deletion; 
HETLOSS, heterozygous deletion.



e

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60
Time (months)

O
ve

ra
ll 

Su
rv

iv
al

208 175 146 124 104 88 62
485 429 355 289 238 189 143
204 181 147 127 102 83 68
346 297 244 205 154 115 89CMS4

CMS3
CMS2
CMS1

Number at risk

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60
Time (months)

O
ve

ra
ll 

Su
rv

iva
l

709 625 514 417 332 258 203
222 186 162 138 112 95 70
342 302 230 192 155 109 83iCMS3_MSS

iCMS3_MSI
iCMS2_MSS

Number at risk

TCGA CRC gene sets 1,063 CRC gene sets

C
R

PS
1

C
R

PS
2

C
R

PS
3

C
R

PS
4

C
R

PS
5

C
R

PS
n

93 120 191 86 82 87

Adipogenesis
Angiogenesis

Apical Junction
Apical Surface

Apoptosis
CDX2 down

CDX2 up
Cholesterol Homeostasis

Complement
CRC MSI−MSS up
CRC MSS−MSI up

CRC stem down
CRC stem up

Crypt:EPHB2−ISC
Crypt:Late TA

Crypt:LGR5−ISC
Crypt:Proliferation
CTNNB1 induced

DNA Repair
E2F Targets

Epithelial Mesenchymal Transition
Estrogen Response Early
Estrogen Response Late

Extracellular Matrix mCRC
Fatty Acid Metabolism

Fatty acids:react
G2M Checkpoint
Gastro−Intestinal

Glucose metabolism:react
Glycerophospholipid biosynthesis:react

Glycerophospholipid catabolism:react
Glycolysis

Hedgehog Signaling
HNF1A down

HNF1A up
HNF4A down

HNF4A up
Hypoxia

IL2 STAT5 Signaling
IL6 JAK STAT3 Signaling
Inflammatory Response

Interferon Alpha Response
Interferon Gamma Response

KRAS Signaling down
KRAS Signaling up

Liver
Mitotic Spindle

MTORC1 Signaling
MYC Targets
Myogenesis

Notch Signaling
Oxidative Phosphorylation

P53 Pathway
Peroxisome

PI3K AKT MTOR Signaling
Protein Secretion

Reactive Oxygen Species Pathway
Retionic acid induced

Retionic acid repressed
Stromal estimate

TGFB down
TGFB up

TNFA Signaling Via NFkB
Unfolded Protein Response

UV Response down
UV Response up

WNT Beta−catenin Signaling
WNT induced

WNT repressed

C
R

PS
1

C
R

PS
2

C
R

PS
3

C
R

PS
4

C
R

PS
5

C
R

PS
n10 0 10

down up
�log10

Log-rank P = 0.0058

Log-rank P = 0.18

CMS1 vs. 4
HR(95% CI)

CMS2 vs. 4

P value

CMS3 vs. 4

aHR(95% CI)
0.72 (0.52-1.01)

aP value

0.65 (0.50-0.85)
0.64 (0.46-0.90)

0.054
0.002
0.011

1.01 (0.72-1.41)
0.76 (0.58-0.99)
0.81 (0.57-1.15)

0.972
0.040
0.239

iCMS2_MSS vs. 3_MSS
HR(95% CI)

iCMS3_MSI vs. 3_MSS

P value
0.87 (0.68-1.12)

aHR(95% CI)

0.72 (0.51-1.02)

aP value
0.295
0.066

0.82 (0.63-1.05)
0.86 (0.60-1.23)

0.115
0.404

1,063 CRC dataset All external datasets (including TCGA) TCGA dataset only

n=56 (9%)
NA

n=161 (26%)
CMS4

n=77 (12%)
CMS3

n=231 (38%)
CMS2

n=90 (15%)
CMS1

c

CRPS1
n=93 (13%)

CRPS2
n=120 (17%)

CRPS3
n=191 (27%)

CRPS4
n=86 (12%)

CRPSn
n=87 (12%)

CRPS5
n=82 (12%)

NAn=356 (14%)
NA

n=592 (24%)
CMS4

n=331 (13%)
CMS3

n=802 (33%)
CMS2

n=384 (16%)
CMS1

n=39 (6%)
n=120 (4%)

NA

n=414 (15%)
CRPS5

n=210 (7%)
CRPSn

n=547 (19%)
CRPS4

n=860 (30%)
CRPS3

n=243 (9%)
CRPS2

n=438 (16%)
CRPS1

b

n=1,333 (47%)
iCMS2

n=255 (9%)
NA

n=1,244 (44%)
iCMS3

n=3 (0%)
NA

n=114 (11%)
CRPS5

n=130 (12%)
CRPS4

n=221 (21%)
CRPS3

n=294 (28%)
CRPS2

n=301 (28%)
CRPS1

a

n=84 (8%)
NA

n=467 (44%)
iCMS3

n=512 (48%)
iCMS2

301 295 221 132 114 120
d

CRPS1 vs. 4
HR(95% CI)

CRPS2 vs. 4

P value

CRPS3 vs. 4

aHR(95% CI)

CRPS5 vs. 4

aP value
0.69 (0.50-0.95)
0.51 (0.33-0.79)
0.72 (0.56-0.94)
0.83 (0.60-1.15)

0.024
0.003
0.015
0.253

0.91 (0.66-1.27)
0.60 (0.39-0.93)
0.84 (0.64-1.09)
0.98 (0.70-1.36)

0.594
0.023
0.178
0.8990.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60
Time (months)

O
ve

ra
ll 

Su
rv

iva
l 

236 205 166 141 120 97 74
163 139 106 82 55 39 30
501 457 380 318 271 220 161
280 242 203 168 136 107 85
208 180 142 117 90 69 54CRPS5

CRPS4
CRPS3
CRPS2
CRPS1

Number at risk

++++++ + +++ +++++++++++++++++++++++++++++++++++ ++++++++++ +++++ ++++++++++++++++++++++ ++++++++++

++++ ++ ++++++ +++++++++++++++++++++++++ +++++++++++++++++++ +++++
+++++ + + +++ ++++++++++ +++++ +++ +

++ ++ +++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++ + ++ + ++++++++++++++++ ++++++++++++++++++++ ++++++++++ + ++++++++ + ++++++ +++++++++++++++++++

+++ + + ++ ++++++++++++++++++++++ ++ ++++++++ ++++++++++++++++ ++++++ +++++ +++++++++++++++++ ++Log-rank P = 0.014

Extended Data Fig. 7 | Validation of CRPS for colorectal tumour 
classification. a, Comparison of CRPS to iCMS in this cohort. b-c, In total,  
eleven external CRC datasets (n = 2,832 samples) from NCBI GEO and NCI 
Genomic Data Commons were uniformly processed and transformed to pathway 
profiles with ssGSEA. Comparison of CRPS, CMS and iCMS classification for all 
external datasets (b) and the TCGA COAD/READ dataset only (c). The samples 
were coloured after their CMS subtype. d, Overall survival shown by CRPS, CMS 

and iCMS subgroups for external datasets, calculated with Kaplan-Meier curves 
and log-rank test. Adjusted HR (aHR) and P (aP) values or HR and P values were 
calculated by multivariable Cox with or without adjustment for tumour stage.  
e, Comparison of CMS Gene-Set activities using CMScaller (version: v0.9.2) for 
the TCGA dataset (left) and this cohort (right) displayed by CRPS subgroup 
(columns). Upregulation marked in red and downregulation in blue for each 
activity by row. NA, undefined subtype.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Survival, somatic mutations and copy number 
variation in two classes of MSI tumours. a, Overall and recurrence free 
survival displayed by mismatch repair status and MSI class for cells predicted 
by CIBERSORT (left) and xCell (right) algorithms. Univariable Cox regression 
was performed on cell types that showed expression in at least 5 patients with 
survival data, and statistically significant differences (* P < 0.05, ** P < 0.01, and 
*** P < 0.001) were further tested by multivariable Cox regression with co-variates 
including tumour site, treatment status, tumour stage, age groups, and tumour 

grade. The hazard ratio values are indicated by colour intensity. b, Percentage 
of tumours with somatic mutations in 96 driver genes for MSI class 1 (top) and 
class 2 (bottom) cases. c, Percentage of tumours with somatic copy number 
variation of 96 driver genes for MSI class 1 (top) and class 2 (bottom) cases.  
d, Percentage of tumours with focal copy number regions (Q < 0.1) gained or 
lost, determined by GISTIC in the MSI class 1 (top) and class 2 (bottom) cases. 
LOH, loss of heterozygosity; cn, copy number neutral; AMP, amplification; 
HOMDEL, homozygous deletion; HETLOSS, heterozygous deletion.
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