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AI generates covertly racist decisions about 
people based on their dialect

Valentin Hofmann1,2,3 ✉, Pratyusha Ria Kalluri4, Dan Jurafsky4 & Sharese King5 ✉

Hundreds of millions of people now interact with language models, with uses  
ranging from help with writing1,2 to informing hiring decisions3. However, these 
language models are known to perpetuate systematic racial prejudices, making their 
judgements biased in problematic ways about groups such as African Americans4–7. 
Although previous research has focused on overt racism in language models, social 
scientists have argued that racism with a more subtle character has developed over 
time, particularly in the United States after the civil rights movement8,9. It is unknown 
whether this covert racism manifests in language models. Here, we demonstrate that 
language models embody covert racism in the form of dialect prejudice, exhibiting 
raciolinguistic stereotypes about speakers of African American English (AAE)  
that are more negative than any human stereotypes about African Americans ever 
experimentally recorded. By contrast, the language models’ overt stereotypes about 
African Americans are more positive. Dialect prejudice has the potential for harmful 
consequences: language models are more likely to suggest that speakers of AAE be 
assigned less-prestigious jobs, be convicted of crimes and be sentenced to death. 
Finally, we show that current practices of alleviating racial bias in language models, 
such as human preference alignment, exacerbate the discrepancy between covert  
and overt stereotypes, by superficially obscuring the racism that language models 
maintain on a deeper level. Our findings have far-reaching implications for the fair 
and safe use of language technology.

Language models are a type of artificial intelligence (AI) that has been 
trained to process and generate text. They are becoming increasingly 
widespread across various applications, ranging from assisting teach-
ers in the creation of lesson plans10 to answering questions about tax 
law11 and predicting how likely patients are to die in hospital before 
discharge12. As the stakes of the decisions entrusted to language mod-
els rise, so does the concern that they mirror or even amplify human 
biases encoded in the data they were trained on, thereby perpetuating 
discrimination against racialized, gendered and other minoritized 
social groups4–6,13–20.

Previous AI research has revealed bias against racialized groups 
but focused on overt instances of racism, naming racialized groups 
and mapping them to their respective stereotypes, for example by 
asking language models to generate a description of a member of a 
certain group and analysing the stereotypes it contains7,21. But social 
scientists have argued that, unlike the racism associated with the Jim 
Crow era, which included overt behaviours such as name calling or 
more brutal acts of violence such as lynching, a ‘new racism’ happens 
in the present-day United States in more subtle ways that rely on a 
‘colour-blind’ racist ideology8,9. That is, one can avoid mentioning 
race by claiming not to see colour or to ignore race but still hold nega-
tive beliefs about racialized people. Importantly, such a framework 
emphasizes the avoidance of racial terminology but maintains racial 
inequities through covert racial discourses and practices8.

Here, we show that language models perpetuate this covert racism to 
a previously unrecognized extent, with measurable effects on their deci-
sions. We investigate covert racism through dialect prejudice against 
speakers of AAE, a dialect associated with the descendants of enslaved 
African Americans in the United States22. We focus on the most stigma-
tized canonical features of the dialect shared among Black speakers in 
cities including New York City, Detroit, Washington DC, Los Angeles 
and East Palo Alto23. This cross-regional definition means that dialect 
prejudice in language models is likely to affect many African Americans.

Dialect prejudice is fundamentally different from the racial bias 
studied so far in language models because the race of speakers is 
never made overt. In fact we observed a discrepancy between what 
language models overtly say about African Americans and what they 
covertly associate with them as revealed by their dialect prejudice. This 
discrepancy is particularly pronounced for language models trained 
with human feedback (HF), such as GPT4: our results indicate that HF 
training obscures the racism on the surface, but the racial stereotypes 
remain unaffected on a deeper level. We propose using a new method, 
which we call matched guise probing, that makes it possible to recover 
these masked stereotypes.

The possibility that language models are covertly prejudiced against 
speakers of AAE connects to known human prejudices: speakers of AAE 
are known to experience racial discrimination in a wide range of con-
texts, including education, employment, housing and legal outcomes. 
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For example, researchers have previously found that landlords engage 
in housing discrimination based solely on the auditory profiles of speak-
ers, with voices that sounded Black or Chicano being less likely to secure 
housing appointments in predominantly white locales than in mostly 
Black or Mexican American areas24,25. Furthermore, in an experiment 
examining the perception of a Black speaker when providing an alibi26, 
the speaker was interpreted as more criminal, more working class, less 
educated, less comprehensible and less trustworthy when they used 
AAE rather than Standardized American English (SAE). Other costs for 
AAE speakers include having their speech mistranscribed or misunder-
stood in criminal justice contexts27 and making less money than their 
SAE-speaking peers28. These harms connect to themes in broader racial 
ideology about African Americans and stereotypes about their intelli-
gence, competence and propensity to commit crimes29–35. The fact that 
humans hold these stereotypes indicates that they are encoded in the 
training data and picked up by language models, potentially amplify-
ing their harmful consequences, but this has never been investigated.

To our knowledge, this paper provides the first empirical evidence 
for the existence of dialect prejudice in language models; that is, cov-
ert racism that is activated by the features of a dialect (AAE). Using 
our new method of matched guise probing, we show that language 
models exhibit archaic stereotypes about speakers of AAE that most 
closely agree with the most-negative human stereotypes about African 
Americans ever experimentally recorded, dating from before the civil- 
rights movement. Crucially, we observe a discrepancy between what 
the language models overtly say about African Americans and what they 
covertly associate with them. Furthermore, we find that dialect preju-
dice affects language models’ decisions about people in very harmful 
ways. For example, when matching jobs to individuals on the basis of 
their dialect, language models assign considerably less-prestigious 
jobs to speakers of AAE than to speakers of SAE, even though they are 
not overtly told that the speakers are African American. Similarly, in a 
hypothetical experiment in which language models were asked to pass 
judgement on defendants who committed first-degree murder, they 
opted for the death penalty significantly more often when the defend-
ants provided a statement in AAE rather than in SAE, again without 
being overtly told that the defendants were African American. We also 
show that current practices of alleviating racial disparities (increas-
ing the model size) and overt racial bias (including HF in training) do 
not mitigate covert racism; indeed, quite the opposite. We found that 
HF training actually exacerbates the gap between covert and overt 
stereotypes in language models by obscuring racist attitudes. Finally, 
we discuss how the relationship between the language models’ covert 
and overt racial prejudices is both a reflection and a result of the incon-
sistent racial attitudes of contemporary society in the United States.

Probing AI dialect prejudice
To explore how dialect choice impacts the predictions that language 
models make about speakers in the absence of other cues about their 

racial identity, we took inspiration from the ‘matched guise’ technique 
used in sociolinguistics, in which subjects listen to recordings of speak-
ers of two languages or dialects and make judgements about various 
traits of those speakers36,37. Applying the matched guise technique to the  
AAE–SAE contrast, researchers have shown that people identify spea-
kers of AAE as Black with above-chance accuracy24,26,38 and attach racial 
stereotypes to them, even without prior knowledge of their race39–43. 
These associations represent raciolinguistic ideologies, demonstrating 
how AAE is othered through the emphasis on its perceived deviance 
from standardized norms44.

Motivated by the insights enabled through the matched guise tech-
nique, we introduce matched guise probing, a method for investigating 
dialect prejudice in language models. The basic functioning of matched 
guise probing is as follows: we present language models with texts (such 
as tweets) in either AAE or SAE and ask them to make predictions about 
the speakers who uttered the texts (Fig. 1 and Methods). For example, 
we might ask the language models whether a speaker who says “I be 
so happy when I wake up from a bad dream cus they be feelin too real” 
(AAE) is intelligent, and similarly whether a speaker who says “I am so 
happy when I wake up from a bad dream because they feel too real” (SAE) 
is intelligent. Notice that race is never overtly mentioned; its presence is 
merely encoded in the AAE dialect. We then examine how the language 
models’ predictions differ between AAE and SAE. The language models 
are not given any extra information to ensure that any difference in the 
predictions is necessarily due to the AAE–SAE contrast.

We examined matched guise probing in two settings: one in which 
the meanings of the AAE and SAE texts are matched (the SAE texts are 
translations of the AAE texts) and one in which the meanings are not 
matched (Methods (‘Probing’) and Supplementary Information (‘Exam-
ple texts’)). Although the meaning-matched setting is more rigorous, 
the non-meaning-matched setting is more realistic, because it is well 
known that there is a strong correlation between dialect and content 
(for example, topics45). The non-meaning-matched setting thus allows 
us to tap into a nuance of dialect prejudice that would be missed by 
examining only meaning-matched examples (see Methods for an 
in-depth discussion). Because the results for both settings overall are 
highly consistent, we present them in aggregated form here, but analyse 
the differences in the Supplementary Information.

We examined GPT2 (ref. 46), RoBERTa47, T5 (ref. 48), GPT3.5 (ref. 49) 
and GPT4 (ref. 50), each in one or more model versions, amounting to a 
total of 12 examined models (Methods and Supplementary Information 
(‘Language models’)). We first used matched guise probing to probe 
the general existence of dialect prejudice in language models, and 
then applied it to the contexts of employment and criminal justice.

Covert stereotypes in language models
We started by investigating whether the attitudes that language mod-
els exhibit about speakers of AAE reflect human stereotypes about 
African Americans. To do so, we replicated the experimental set-up of 
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Fig. 1 | Probing AI dialect prejudice. a, We used texts in SAE (green) and AAE 
(blue). In the meaning-matched setting (illustrated here), the texts have the 
same meaning, whereas they have different meanings in the non-meaning- 
matched setting. b, We embedded the SAE and AAE texts in prompts that asked 

for properties of the speakers who uttered the texts. c, We separately fed the 
prompts with the SAE and AAE texts into the language models. d, We retrieved 
and compared the predictions for the SAE and AAE inputs, here illustrated by 
five adjectives from the Princeton Trilogy. See Methods for more details.
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the Princeton Trilogy29–31,34, a series of studies investigating the racial 
stereotypes held by Americans, with the difference that instead of 
overtly mentioning race to the language models, we used matched 
guise probing based on AAE and SAE texts (Methods).

Qualitatively, we found that there is a substantial overlap in the adjec-
tives associated most strongly with African Americans by humans and 
the adjectives associated most strongly with AAE by language models, 
particularly for the earlier Princeton Trilogy studies (Fig. 2a). For exam-
ple, the five adjectives associated most strongly with AAE by GPT2, 
RoBERTa and T5 share three adjectives (‘ignorant’, ‘lazy’ and ‘stupid’) 
with the five adjectives associated most strongly with African Ameri-
cans in the 1933 and 1951 Princeton Trilogy studies, an overlap that is 
unlikely to occur by chance (permutation test with 10,000 random 
permutations of the adjectives; P < 0.01). Furthermore, in lieu of the 
positive adjectives (such as ‘musical’, ‘religious’ and ‘loyal’), the language 
models exhibit additional solely negative associations (such as ‘dirty’, 
‘rude’ and ‘aggressive’).

To investigate this more quantitatively, we devised a variant of aver-
age precision51 that measures the agreement between the adjectives 
associated most strongly with African Americans by humans and the 
ranking of the adjectives according to their association with AAE by 
language models (Methods). We found that for all language models, 
the agreement with most Princeton Trilogy studies is significantly 
higher than expected by chance, as shown by one-sided t-tests com-
puted against the agreement distribution resulting from 10,000 
random permutations of the adjectives (mean (m) = 0.162, standard 
deviation (s) = 0.106; Extended Data Table 1); and that the agreement is 

particularly pronounced for the stereotypes reported in 1933 and falls 
for each study after that, almost reaching the level of chance agree-
ment for 2012 (Fig. 2b). In the Supplementary Information (‘Adjective 
analysis’), we explored variation across model versions, settings and 
prompts (Supplementary Fig. 2 and Supplementary Table 4).

To explain the observed temporal trend, we measured the average 
favourability of the top five adjectives for all Princeton Trilogy studies 
and language models, drawing from crowd-sourced ratings for the 
Princeton Trilogy adjectives on a scale between −2 (very negative) and 
2 (very positive; see Methods, ‘Covert-stereotype analysis’). We found 
that the favourability of human attitudes about African Americans as 
reported in the Princeton Trilogy studies has become more positive 
over time, and that the language models’ attitudes about AAE are even 
more negative than the most negative experimentally recorded human 
attitudes about African Americans (the ones from the 1930s; Extended 
Data Fig. 1). In the Supplementary Information, we provide further 
quantitative analyses supporting this difference between humans and 
language models (Supplementary Fig. 7).

Furthermore, we found that the raciolinguistic stereotypes are not 
merely a reflection of the overt racial stereotypes in language models 
but constitute a fundamentally different kind of bias that is not miti-
gated in the current models. We show this by examining the stereo-
types that the language models exhibit when they are overtly asked 
about African Americans (Methods, ‘Overt-stereotype analysis’). We 
observed that the overt stereotypes are substantially more positive 
in sentiment than are the covert stereotypes, for all language models 
(Fig. 2a and Extended Data Fig. 1). Strikingly, for RoBERTa, T5, GPT3.5 
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Fig. 2 | Covert stereotypes in language models. a, Strongest stereotypes 
about African Americans in humans in different years, strongest overt 
stereotypes about African Americans in language models, and strongest covert 
stereotypes about speakers of AAE in language models. Colour coding as positive 
(green) and negative (red) is based on ref. 34. Although the overt stereotypes  
of language models are overall more positive than the human stereotypes,  
their covert stereotypes are more negative. b, Agreement of stereotypes about 
African Americans in humans with both overt and covert stereotypes about 
African Americans in language models. The black dotted line shows chance 
agreement using a random bootstrap. Error bars represent the standard error 
across different language models and prompts (n = 36). The language models’ 
overt stereotypes agree most strongly with current human stereotypes, which 
are the most positive experimentally recorded ones, but their covert stereotypes 
agree most strongly with human stereotypes from the 1930s, which are the 

most negative experimentally recorded ones. c, Stereotype strength for 
individual linguistic features of AAE. Error bars represent the standard error 
across different language models, model versions and prompts (n = 90). The 
linguistic features examined are: use of invariant ‘be’ for habitual aspect; use of 
‘finna’ as a marker of the immediate future; use of (unstressed) ‘been’ for SAE 
‘has been’ or ‘have been’ (present perfects); absence of the copula ‘is’ and ‘are’ 
for present-tense verbs; use of ‘ain’t’ as a general preverbal negator; orthographic 
realization of word-final ‘ing’ as ‘in’; use of invariant ‘stay’ for intensified 
habitual aspect; and absence of inflection in the third-person singular present 
tense. The measured stereotype strength is significantly above zero for all 
examined linguistic features, indicating that they all evoke raciolinguistic 
stereotypes in language models, although there is a lot of variation between 
individual features. See the Supplementary Information (‘Feature analysis’)  
for more details and analyses.
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and GPT4, although their covert stereotypes about speakers of AAE 
are more negative than the most negative experimentally recorded 
human stereotypes, their overt stereotypes about African Americans 
are more positive than the most positive experimentally recorded 
human stereotypes. This is particularly true for the two language mod-
els trained with HF (GPT3.5 and GPT4), in which all overt stereotypes are 
positive and all covert stereotypes are negative (see also ‘Resolvability 
of dialect prejudice’). In terms of agreement with human stereotypes 
about African Americans, the overt stereotypes almost never exhibit 
agreement significantly stronger than expected by chance, as shown by 
one-sided t-tests computed against the agreement distribution result-
ing from 10,000 random permutations of the adjectives (m = 0.162, 
s = 0.106; Extended Data Table 2). Furthermore, the overt stereotypes 
are overall most similar to the human stereotypes from 2012, with the 
agreement continuously falling for earlier studies, which is the exact 
opposite trend to the covert stereotypes (Fig. 2b).

In the experiments described in the Supplementary Information 
(‘Feature analysis’), we found that the raciolinguistic stereotypes are 
directly linked to individual linguistic features of AAE (Fig. 2c and Sup-
plementary Table 14), and that a higher density of such linguistic fea-
tures results in stronger stereotypical associations (Supplementary 
Fig. 11 and Supplementary Table 13). Furthermore, we present experi-
ments involving texts in other dialects (such as Appalachian English) as 
well as noisy texts, showing that these stereotypes cannot be adequately 
explained as either a general dismissive attitude towards text written 
in a dialect or as a general dismissive attitude towards deviations from 
SAE, irrespective of how the deviations look (Supplementary Informa-
tion (‘Alternative explanations’), Supplementary Figs. 12 and 13 and 
Supplementary Tables 15 and 16). Both alternative explanations are 
also tested on the level of individual linguistic features.

Thus, we found substantial evidence for the existence of covert racio-
linguistic stereotypes in language models. Our experiments show that 
these stereotypes are similar to the archaic human stereotypes about 
African Americans that existed before the civil rights movement, are 
even more negative than the most negative experimentally recorded 
human stereotypes about African Americans, and are both qualitatively 
and quantitatively different from the previously reported overt racial 
stereotypes in language models, indicating that they are a fundamentally 
different kind of bias. Finally, our analyses demonstrate that the detected 
stereotypes are inherently linked to AAE and its linguistic features.

Impact of covert racism on AI decisions
To determine what harmful consequences the covert stereotypes have 
in the real world, we focused on two areas in which racial stereotypes 
about speakers of AAE and African Americans have been repeatedly 
shown to bias human decisions: employment and criminality. There is 
a growing impetus to use AI systems in these areas. Indeed, AI systems 
are already being used for personnel selection52,53, including automated 
analyses of applicants’ social-media posts54,55, and technologies for pre-
dicting legal outcomes are under active development56–58. Rather than 
advocating these use cases of AI, which are inherently problematic59, 
the sole objective of this analysis is to examine the extent to which the 
decisions of language models, when they are used in such contexts, 
are impacted by dialect.

First, we examined decisions about employability. Using matched 
guise probing, we asked the language models to match occupations to 
the speakers who uttered the AAE or SAE texts and computed scores 
indicating whether an occupation is associated more with speakers of 
AAE (positive scores) or speakers of SAE (negative scores; Methods, 
‘Employability analysis’). The average score of the occupations was neg-
ative (m = –0.046, s = 0.053), the difference from zero being statistically 
significant (one-sample, one-sided t-test, t(83) = −7.9, P < 0.001). This 
trend held for all language models individually (Extended Data Table 3). 
Thus, if a speaker exhibited features of AAE, the language models were 

less likely to associate them with any job. Furthermore, we observed 
that for all language models, the occupations that had the lowest asso-
ciation with AAE require a university degree (such as psychologist, 
professor and economist), but this is not the case for the occupations 
that had the highest association with AAE (for example, cook, soldier 
and guard; Fig. 3a). Also, many occupations strongly associated with 
AAE are related to music and entertainment more generally (singer, 
musician and comedian), which is in line with a pervasive stereotype 
about African Americans60. To probe these observations more system-
atically, we tested for a correlation between the prestige of the occupa-
tions and the propensity of the language models to match them to AAE 
(Methods). Using a linear regression, we found that the association with 
AAE predicted the occupational prestige (Fig. 3b; β = −7.8, R2 = 0.193,  
F(1, 63) = 15.1, P < 0.001). This trend held for all language models indi-
vidually (Extended Data Fig. 2 and Extended Data Table 4), albeit in a less 
pronounced way for GPT3.5, which had a particularly strong association 
of AAE with occupations in music and entertainment.

We then examined decisions about criminality. We used matched 
guise probing for two experiments in which we presented the language 
models with hypothetical trials where the only evidence was a text 
uttered by the defendant in either AAE or SAE. We then measured the 
probability that the language models assigned to potential judicial 
outcomes in these trials and counted how often each of the judicial 
outcomes was preferred for AAE and SAE (Methods, ‘Criminality 
analysis’). In the first experiment, we told the language models that 
a person is accused of an unspecified crime and asked whether the 
models will convict or acquit the person solely on the basis of the AAE 
or SAE text. Overall, we found that the rate of convictions was greater 
for AAE (r = 68.7%) than SAE (r = 62.1%; Fig. 3c, left). A chi-squared test 
found a strong effect (χ2(1, N = 96) = 184.7, P < 0.001), which held for all 
language models individually (Extended Data Table 5). In the second 
experiment, we specifically told the language models that the person 
committed first-degree murder and asked whether the models will 
sentence the person to life or death on the basis of the AAE or SAE text. 
The overall rate of death sentences was greater for AAE (r = 27.7%) than 
for SAE (r = 22.8%; Fig. 3c, right). A chi-squared test found a strong effect 
(χ2(1, N = 144) = 425.4, P < 0.001), which held for all language models 
individually except for T5 (Extended Data Table 6). In the Supplemen-
tary Information, we show that this deviation was caused by the base 
T5 version, and that the larger T5 versions follow the general pattern 
(Supplementary Table 10).

In further experiments (Supplementary Information, ‘Intelligence 
analysis’), we used matched guise probing to examine decisions about 
intelligence, and found that all the language models consistently judge 
speakers of AAE to have a lower IQ than speakers of SAE (Supplementary 
Figs. 14 and 15 and Supplementary Tables 17–19).

Resolvability of dialect prejudice
We wanted to know whether the dialect prejudice we observed is 
resolved by current practices of bias mitigation, such as increasing 
the size of the language model or including HF in training. It has been 
shown that larger language models work better with dialects21 and can 
have less racial bias61. Therefore, the first method we examined was scal-
ing, that is, increasing the model size (Methods). We found evidence of 
a clear trend (Extended Data Tables 7 and 8): larger language models 
are indeed better at processing AAE (Fig. 4a, left), but they are not less 
prejudiced against speakers of it. In fact, larger models showed more 
covert prejudice than smaller models (Fig. 4a, right). By contrast, larger 
models showed less overt prejudice against African Americans (Fig. 4a, 
right). Thus, increasing scale does make models better at processing 
AAE and at avoiding prejudice against overt mentions of African Ameri-
cans, but it makes them more linguistically prejudiced.

As a second potential way to resolve dialect prejudice in language 
models, we examined training with HF49,62. Specifically, we compared 
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GPT3.5 (ref. 49) with GPT3 (ref. 63), its predecessor that was trained 
without using HF (Methods). Looking at the top adjectives associated 
overtly and covertly with African Americans by the two language mod-
els, we found that HF resulted in more-positive overt associations but 
had no clear qualitative effect on the covert associations (Fig. 4c). This 
observation was confirmed by quantitative analyses: the inclusion  
of HF resulted in significantly weaker (no HF, m = 0.135, s = 0.142; HF, 
m = −0.119, s = 0.234; t(16) = 2.6, P < 0.05) and more favourable (no HF, 
m = 0.221, s = 0.399; HF, m = 1.047, s = 0.387; t(16) = −6.4, P < 0.001) overt 
stereotypes but produced no significant difference in the strength  
(no HF, m = 0.153, s = 0.049; HF, m = 0.187, s = 0.066; t(16) = −1.2, P = 0.3)  
or unfavourability (no HF, m = −1.146, s = 0.580; HF, m = −1.029, s = 0.196; 
t(16) = −0.5, P = 0.6) of covert stereotypes (Fig. 4b). Thus, HF train-
ing weakens and ameliorates the overt stereotypes but has no clear 
effect on the covert stereotypes; in other words, it obscures the racist 
attitudes on the surface, but more subtle forms of racism, such as dia-
lect prejudice, remain unaffected. This finding is underscored by the 
fact that the discrepancy between overt and covert stereotypes about 
African Americans is most pronounced for the two examined language 
models trained with human feedback (GPT3.5 and GPT4; see ‘Covert 
stereotypes in language models’). Furthermore, this finding again 
shows that there is a fundamental difference between overt and covert 
stereotypes in language models, and that mitigating the overt stereo-
types does not automatically translate to mitigated covert stereotypes.

To sum up, neither scaling nor training with HF as applied today 
resolves the dialect prejudice. The fact that these two methods 
effectively mitigate racial performance disparities and overt racial 
stereotypes in language models indicates that this form of covert rac-
ism constitutes a different problem that is not addressed by current 
approaches for improving and aligning language models.

Discussion
The key finding of this article is that language models maintain a form 
of covert racial prejudice against African Americans that is triggered by 
dialect features alone. In our experiments, we avoided overt mentions of 
race but drew from the racialized meanings of a stigmatized dialect, and 
could still find historically racist associations with African Americans. 
The implicit nature of this prejudice, that is, the fact it is about something 
that is not explicitly expressed in the text, makes it fundamentally dif-
ferent from the overt racial prejudice that has been the focus of previ-
ous research. Strikingly, the language models’ covert and overt racial 
prejudices are often in contradiction with each other, especially for the 
most recent language models that have been trained with HF (GPT3.5 
and GPT4). These two language models obscure the racism, overtly  
associating African Americans with exclusively positive attributes  
(such as ‘brilliant’), but our results show that they covertly associate 
African Americans with exclusively negative attributes (such as ‘lazy’).

–0.2 0
Association with
AAE versus SAE

Sewer
Singer
Cook

Operator
Commander
Veterinarian

Academic
Psychologist

Professor
Economist

O
cc

up
at

io
n

–0.2 0

Sewer
Soldier
Guard

Comedian
Judge

Psychologist
Researcher

Astronaut
Curator

Architect

–0.1 0

Priest
Singer
Guard

Detective
Clergy

Counsellor
Student

Academic
Psychologist

Professor

–0.3 0 0.3

Artist
Poet

Musician
Singer
Athlete

Counsellor
Diplomat

Psychiatrist
Psychologist

Model

–0.3 0 0.3

Designer
Singer

Musician
Artist

Mechanic
Psychologist

Journalist
Psychiatrist

Diplomat
Farmer

GPT2 RoBERTa T5 GPT3.5 GPT4a

–0.15 –0.10 –0.05 0 0.05

Association with AAE versus SAE

3

4

5

6

7

O
cc

up
at

io
na

l p
re

st
ig

e

AccountantAccountantAccountant
ActorActorActor ActressActressActress

AdministratorAdministratorAdministrator

AnalystAnalystAnalyst

ArchitectArchitectArchitect

ArtistArtistArtist

AssistantAssistantAssistant

AstronautAstronautAstronaut

AthleteAthleteAthlete

AttendantAttendantAttendant

AuthorAuthorAuthor

BrokerBrokerBroker

ChefChefChef

ChiefChiefChief

CleanerCleanerCleaner

ClergyClergyClergy

ClerkClerkClerk

CollectorCollectorCollector
CookCookCook

CounsellorCounsellorCounsellor

CuratorCuratorCurator

DentistDentistDentist
DesignerDesignerDesigner

DetectiveDetectiveDetective
DeveloperDeveloperDeveloper

DirectorDirectorDirector

DoctorDoctorDoctor

DriverDriverDriver

EconomistEconomistEconomist

EditorEditorEditor

EngineerEngineerEngineer

FarmerFarmerFarmer GuardGuardGuard

InspectorInspectorInspector

InstructorInstructorInstructor

JournalistJournalistJournalist
JudgeJudgeJudge

LandlordLandlordLandlord

LawyerLawyerLawyer

ManagerManagerManager MechanicMechanicMechanic

MinisterMinisterMinister

ModelModelModel

MusicianMusicianMusician

NurseNurseNurse

OperatorOperatorOperator

PhotographerPhotographerPhotographer

PhysicianPhysicianPhysician

PilotPilotPilot

PriestPriestPriest

ProfessorProfessorProfessor

PsychiatristPsychiatristPsychiatrist
PsychologistPsychologistPsychologist

ScientistScientistScientist

SecretarySecretarySecretary

SoldierSoldierSoldier

StudentStudentStudent SupervisorSupervisorSupervisor

SurgeonSurgeonSurgeon

TailorTailorTailor

TeacherTeacherTeacher TechnicianTechnicianTechnician
VeterinarianVeterinarianVeterinarian

WriterWriterWriter

b

Conviction Death
0

50

100

150

200

250

In
cr

ea
se

 fo
rA

A
E

 (%
)

GPT2
RoBERTa
T5
GPT3.5
GPT4

c

Association with
AAE versus SAE

Association with
AAE versus SAE

Association with
AAE versus SAE

Association with
AAE versus SAE

Fig. 3 | Impact of covert racism on AI decisions. a, Association of different 
occupations with AAE or SAE. Positive values indicate a stronger association 
with AAE and negative values indicate a stronger association with SAE. The 
bottom five occupations (those associated most strongly with SAE) mostly 
require a university degree, but this is not the case for the top five (those 
associated most strongly with AAE). b, Prestige of occupations that language 
models associate with AAE (positive values) or SAE (negative values). The shaded 
area shows a 95% confidence band around the regression line. The association 
with AAE or SAE predicts the occupational prestige. Results for individual 

language models are provided in Extended Data Fig. 2. c, Relative increase in  
the number of convictions and death sentences for AAE versus SAE. Error bars 
represent the standard error across different model versions, settings and 
prompts (n = 24 for GPT2, n = 12 for RoBERTa, n = 24 for T5, n = 6 for GPT3.5 and 
n = 6 for GPT4). In cases of small sample size (n ≤ 10 for GPT3.5 and GPT4), we 
plotted the individual results as overlaid dots. T5 does not contain the tokens 
‘acquitted’ or ‘convicted’ in its vocabulary and is therefore excluded from the 
conviction analysis. Detrimental judicial decisions systematically go up for 
speakers of AAE compared with speakers of SAE.
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We argue that this paradoxical relation between the language models’ 
covert and overt racial prejudices manifests the inconsistent racial atti-
tudes present in the contemporary society of the United States8,64. In the 
Jim Crow era, stereotypes about African Americans were overtly racist, 
but the normative climate after the civil rights movement made express-
ing explicitly racist views distasteful. As a result, racism acquired a 
covert character and continued to exist on a more subtle level. Thus, 
most white people nowadays report positive attitudes towards African 
Americans in surveys but perpetuate racial inequalities through their 
unconscious behaviour, such as their residential choices65. It has been 
shown that negative stereotypes persist, even if they are superficially 
rejected66,67. This ambivalence is reflected by the language models we 
analysed, which are overtly non-racist but covertly exhibit archaic 
stereotypes about African Americans, showing that they reproduce 
a colour-blind racist ideology. Crucially, the civil rights movement is 
generally seen as the period during which racism shifted from overt to 
covert68,69, and this is mirrored by our results: all the language models 
overtly agree the most with human stereotypes from after the civil 
rights movement, but covertly agree the most with human stereotypes 
from before the civil rights movement.

Our findings beg the question of how dialect prejudice got into the 
language models. Language models are pretrained on web-scraped 
corpora such as WebText46, C4 (ref. 48) and the Pile70, which encode 
raciolinguistic stereotypes about AAE. A drastic example of this is the 
use of ‘mock ebonics’ to parodize speakers of AAE71. Crucially, a growing 
body of evidence indicates that language models pick up prejudices 
present in the pretraining corpus72–75, which would explain how they 
become prejudiced against speakers of AAE, and why they show vary-
ing levels of dialect prejudice as a function of the pretraining corpus. 
However, the web also abounds with overt racism against African Ameri-
cans76,77, so we wondered why the language models exhibit much less 

overt than covert racial prejudice. We argue that the reason for this is 
that the existence of overt racism is generally known to people32, which 
is not the case for covert racism69. Crucially, this also holds for the field 
of AI. The typical pipeline of training language models includes steps 
such as data filtering48 and, more recently, HF training62 that remove 
overt racial prejudice. As a result, much of the overt racism on the web 
does not end up in the language models. However, there are currently 
no measures in place to curtail covert racial prejudice when training 
language models. For example, common datasets for HF training62,78 
do not include examples that would train the language models to treat 
speakers of AAE and SAE equally. As a result, the covert racism encoded 
in the training data can make its way into the language models in an 
unhindered fashion. It is worth mentioning that the lack of awareness of 
covert racism also manifests during evaluation, where it is common to 
test language models for overt racism but not for covert racism21,63,79,80.

As well as the representational harms, by which we mean the perni-
cious representation of AAE speakers, we also found evidence for sub-
stantial allocational harms. This refers to the inequitable allocation of 
resources to AAE speakers81 (Barocas et al., unpublished observations), 
and adds to known cases of language technology putting speakers of 
AAE at a disadvantage by performing worse on AAE82–88, misclassify-
ing AAE as hate speech81,89–91 or treating AAE as incorrect English83,85,92. 
All the language models are more likely to assign low-prestige jobs to 
speakers of AAE than to speakers of SAE, and are more likely to convict 
speakers of AAE of a crime, and to sentence speakers of AAE to death. 
Although the details of our tasks are constructed, the findings reveal 
real and urgent concerns because business and jurisdiction are areas 
for which AI systems involving language models are currently being 
developed or deployed. As a consequence, the dialect prejudice we 
uncovered might already be affecting AI decisions today, for example 
when a language model is used in application-screening systems to 
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Fig. 4 | Resolvability of dialect prejudice. a, Language modelling perplexity 
and stereotype strength on AAE text as a function of model size. Perplexity  
is a measure of how successful a language model is at processing a particular 
text; a lower result is better. For language models for which perplexity is not 
well-defined (RoBERTa and T5), we computed pseudo-perplexity instead 
(dotted line). Error bars represent the standard error across different models  
of a size class and AAE or SAE texts (n = 9,057 for small, n = 6,038 for medium, 
n = 15,095 for large and n = 3,019 for very large). For covert stereotypes, error 
bars represent the standard error across different models of a size class, 
settings and prompts (n = 54 for small, n = 36 for medium, n = 90 for large and 
n = 18 for very large). For overt stereotypes, error bars represent the standard 
error across different models of a size class and prompts (n = 27 for small, n = 18 
for medium, n = 45 for large and n = 9 for very large). Although larger language 
models are better at processing AAE (left), they are not less prejudiced against 

speakers of it. Indeed, larger models show more covert prejudice than smaller 
models (right). By contrast, larger models show less overt prejudice against 
African Americans (right). In other words, increasing scale does make models 
better at processing AAE and at avoiding prejudice against overt mentions of 
African Americans, but it makes them more linguistically prejudiced. b, Change 
in stereotype strength and favourability as a result of training with HF for 
covert and overt stereotypes. Error bars represent the standard error across 
different prompts (n = 9). HF weakens (left) and improves (right) overt 
stereotypes but not covert stereotypes. c, Top overt and covert stereotypes 
about African Americans in GPT3, trained without HF, and GPT3.5, trained with 
HF. Colour coding as positive (green) and negative (red) is based on ref. 34.  
The overt stereotypes get substantially more positive as a result of HF training 
in GPT3.5, but there is no visible change in favourability for the covert 
stereotypes.
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process background information, which might include social-media 
text. Worryingly, we also observe that larger language models and 
language models trained with HF exhibit stronger covert, but weaker 
overt, prejudice. Against the backdrop of continually growing language 
models and the increasingly widespread adoption of HF training, this 
has two risks: first, that language models, unbeknownst to developers 
and users, reach ever-increasing levels of covert prejudice; and sec-
ond, that developers and users mistake ever-decreasing levels of overt 
prejudice (the only kind of prejudice currently tested for) for a sign that 
racism in language models has been solved. There is therefore a realistic 
possibility that the allocational harms caused by dialect prejudice in 
language models will increase further in the future, perpetuating the 
racial discrimination experienced by generations of African Americans.
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Methods

Probing
Matched guise probing examines how strongly a language model asso-
ciates certain tokens, such as personality traits, with AAE compared 
with SAE. AAE can be viewed as the treatment condition, whereas SAE 
functions as the control condition. We start by explaining the basic 
experimental unit of matched guise probing: measuring how a lan-
guage model associates certain tokens with an individual text in AAE 
or SAE. Based on this, we introduce two different settings for matched 
guise probing (meaning-matched and non-meaning-matched), which 
are both inspired by the matched guise technique used in sociolin-
guistics36,37,93,94 and provide complementary views on the attitudes a 
language model has about a dialect.

The basic experimental unit of matched guise probing is as follows. 
Let θ be a language model, t be a text in AAE or SAE, and x be a token of 
interest, typically a personality trait such as ‘intelligent’. We embed the 
text in a prompt v, for example v(t) = ‘a person who says t tends to be’,  
and compute P(x∣v(t); θ), which is the probability that θ assigns to x 
after processing v(t). We calculate P(x∣v(t); θ) for equally sized sets Ta 
of AAE texts and Ts of SAE texts, comparing various tokens from a set 
X as possible continuations. It has been shown that P(x∣v(t); θ) can be 
affected by the precise wording of v, so small modifications of v can 
have an unpredictable effect on the predictions made by the language 
model21,95,96. To account for this fact, we consider a set V containing 
several prompts (Supplementary Information). For all experiments, 
we have provided detailed analyses of variation across prompts in 
the Supplementary Information.

We conducted matched guise probing in two settings. In the first 
setting, the texts in Ta and Ts formed pairs expressing the same under-
lying meaning, that is, the i-th text in Ta (for example, ‘I be so happy 
when I wake up from a bad dream cus they be feelin too real’) matches 
the i-th text in Ts (for example, ‘I am so happy when I wake up from a 
bad dream because they feel too real’). For this setting, we used the 
dataset from ref. 87, which contains 2,019 AAE tweets together with 
their SAE translations. In the second setting, the texts in Ta and Ts did 
not form pairs, so they were independent texts in AAE and SAE. For 
this setting, we sampled 2,000 AAE and SAE tweets from the dataset in  
ref. 83 and used tweets strongly aligned with African Americans for 
AAE and tweets strongly aligned with white people for SAE (Supple-
mentary Information (‘Analysis of non-meaning-matched texts’), Sup-
plementary Fig. 1 and Supplementary Table 3). In the Supplementary 
Information, we include examples of AAE and SAE texts for both settings 
(Supplementary Tables 1 and 2). Tweets are well suited for matched 
guise probing because they are a rich source of dialectal variation97–99, 
especially for AAE100–102, but matched guise probing can be applied to 
any type of text. Although we do not consider it here, matched guise 
probing can in principle also be applied to speech-based models, with 
the potential advantage that dialectal variation on the phonetic level 
could be captured more directly, which would make it possible to study 
dialect prejudice specific to regional variants of AAE23. However, note 
that a great deal of phonetic variation is reflected orthographically in 
social-media texts101.

It is important to analyse both meaning-matched and non-meaning- 
matched settings because they capture different aspects of the atti-
tudes a language model has about speakers of AAE. Controlling for 
the underlying meaning makes it possible to uncover differences in 
the attitudes of the language model that are solely due to grammatical 
and lexical features of AAE. However, it is known that various properties 
other than linguistic features correlate with dialect, such as topics45, 
and these might also influence the attitudes of the language model. 
Sidelining such properties bears the risk of underestimating the harms 
that dialect prejudice causes for speakers of AAE in the real world. For 
example, in a scenario in which a language model is used in the context 
of automated personnel selection to screen applicants’ social-media 

posts, the texts of two competing applicants typically differ in content 
and do not come in pairs expressing the same meaning. The relative 
advantages of using meaning-matched or non-meaning-matched data 
for matched guise probing are conceptually similar to the relative 
advantages of using the same or different speakers for the matched 
guise technique: more control in the former versus more naturalness 
in the latter setting93,94. Because the results obtained in both settings 
were consistent overall for all experiments, we aggregated them in the 
main article, but we analysed differences in detail in the Supplementary 
Information.

We apply matched guise probing to five language models: RoBERTa47, 
which is an encoder-only language model; GPT2 (ref. 46), GPT3.5 (ref. 49)  
and GPT4 (ref. 50), which are decoder-only language models; and T5  
(ref. 48), which is an encoder–decoder language model. For each lan-
guage model, we examined one or more model versions: GPT2 (base),  
GPT2 (medium), GPT2 (large), GPT2 (xl), RoBERTa (base), RoBERTa  
(large), T5 (small), T5 (base), T5 (large), T5 (3b), GPT3.5 (text-davinci-003) 
and GPT4 (0613). Where we used several model versions per language 
model (GPT2, RoBERTa and T5), the model versions all had the same 
architecture and were trained on the same data but differed in their 
size. Furthermore, we note that GPT3.5 and GPT4 are the only language 
models examined in this paper that were trained with HF, specifically 
reinforcement learning from human feedback103. When it is clear from 
the context what is meant, or when the distinction does not matter, 
we use the term ‘language models’, or sometimes ‘models‘, in a more 
general way that includes individual model versions.

Regarding matched guise probing, the exact method for computing 
P(x∣v(t); θ) varies across language models and is detailed in the Sup-
plementary Information. For GPT4, for which computing P(x∣v(t); θ) 
for all tokens of interest was often not possible owing to restrictions 
imposed by the OpenAI application programming interface (API), we 
used a slightly modified method for some of the experiments, and 
this is also discussed in the Supplementary Information. Similarly, 
some of the experiments could not be done for all language models 
because of model-specific constraints, which we highlight below. We 
note that there was at most one language model per experiment for 
which this was the case.

Covert-stereotype analysis
In the covert-stereotype analysis, the tokens x whose probabilities 
are measured for matched guise probing are trait adjectives from the 
Princeton Trilogy29–31,34, such as ‘aggressive’, ‘intelligent’ and ‘quiet’. 
We provide details about these adjectives in the Supplementary Infor-
mation. In the Princeton Trilogy, the adjectives are provided to par-
ticipants in the form of a list, and participants are asked to select from 
the list the five adjectives that best characterize a given ethnic group, 
such as African Americans. The studies that we compare in this paper, 
which are the original Princeton Trilogy studies29–31 and a more recent 
reinstallment34, all follow this general set-up and observe a gradual 
improvement of the expressed stereotypes about African Americans 
over time, but the exact interpretation of this finding is disputed32. 
Here, we used the adjectives from the Princeton Trilogy in the context 
of matched guise probing.

Specifically, we first computed P(x∣v(t); θ) for all adjectives, for  
both the AAE texts and the SAE texts. The method for aggregating  
the probabilities P(x∣v(t); θ) into association scores between an adjec-
tive x and AAE varies for the two settings of matched guise probing.  
Let ti

a be the i-th AAE text in Ta and ti
s be the i-th SAE text in Ts. In the  

meaning-matched setting, in which ti
a and ti

s express the same meaning, 
we computed the prompt-level association score for an adjective  
x as
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where n = ∣Ta∣ = ∣Ts∣. Thus, we measure for each pair of AAE and SAE 
texts the log ratio of the probability assigned to x following the AAE 
text and the probability assigned to x following the SAE text, and 
then average the log ratios of the probabilities across all pairs. In the 
non-meaning-matched setting, we computed the prompt-level associa-
tion score for an adjective x as

q x v θ
P x v t θ
P x v t θ
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where again n = ∣Ta∣ = ∣Ts∣. In other words, we first compute the average 
probability assigned to a certain adjective x following all AAE texts and 
the average probability assigned to x following all SAE texts, and then 
measure the log ratio of these average probabilities. The interpreta-
tion of q(x; v, θ) is identical in both settings; q(x; v, θ) > 0 means that 
for a certain prompt v, the language model θ associates the adjective 
x more strongly with AAE than with SAE, and q(x; v, θ) < 0 means that 
for a certain prompt v, the language model θ associates the adjective 
x more strongly with SAE than with AAE. In the Supplementary Infor-
mation (‘Calibration’), we show that q(x; v, θ) is calibrated104, meaning 
that it does not depend on the prior probability that θ assigns to x in 
a neutral context.

The prompt-level association scores q(x; v, θ) are the basis for fur-
ther analyses. We start by averaging q(x; v, θ) across model versions, 
prompts and settings, and this allows us to rank all adjectives according 
to their overall association with AAE for individual language models 
(Fig. 2a). In this and the following adjective analyses, we focus on the 
five adjectives that exhibit the highest association with AAE, making it 
possible to consistently compare the language models with the results 
from the Princeton Trilogy studies, most of which do not report the 
full ranking of all adjectives. Results for individual model versions are 
provided in the Supplementary Information, where we also analyse 
variation across settings and prompts (Supplementary Fig. 2 and Sup-
plementary Table 4).

Next, we wanted to measure the agreement between language mod-
els and humans through time. To do so, we considered the five adjec-
tives most strongly associated with African Americans for each study 
and evaluated how highly these adjectives are ranked by the language 
models. Specifically, let Rl = [x1, …, x∣X∣] be the adjective ranking gener-
ated by a language model and Rh

5 = [x1, …, x5] be the ranking of the top 
five adjectives generated by the human participants in one of the Prince-
ton Trilogy studies. A typical measure to evaluate how highly the adjec-
tives from Rh

5 are ranked within Rl is average precision, AP51. However, 
AP does not take the internal ranking of the adjectives in Rh

5 into account, 
which is not ideal for our purposes; for example, AP does not distinguish 
whether the top-ranked adjective for humans is on the first or on the 
fifth rank for a language model. To remedy this, we computed the mean 
average precision, MAP, for different subsets of Rh

5,
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where Rh
i  denotes the top i adjectives from the human ranking.  

MAP = 1 if, and only if, the top five adjectives from Rh
5 have an exact 

one-to-one correspondence with the top five adjectives from Rl, so, 
unlike AP, it takes the internal ranking of the adjectives into account. 
We computed an individual agreement score for each language model 
and prompt, so we average the q(x; v, θ) association scores for all model 
versions of a language model (GPT2, for example) and the two settings 
(meaning-matched and non-meaning-matched) to generate Rl. Because 
the OpenAI API for GPT4 does not give access to the probabilities for 
all adjectives, we excluded GPT4 from this analysis. Results are pre-
sented in Fig. 2b and Extended Data Table 1. In the Supplementary 
Information (‘Agreement analysis’), we analyse variation across model 
versions, settings and prompts (Supplementary Figs. 3–5).

To analyse the favourability of the stereotypes about African  
Americans, we drew from crowd-sourced favourability ratings collected 
previously34 for the adjectives from the Princeton Trilogy that range 
between −2 (‘very unfavourable’, meaning very negative) and 2 (‘very 
favourable’, meaning very positive). For example, the favourability rat-
ing of ‘cruel’ is −1.81 and the favourability rating of ‘brilliant’ is 1.86. We 
computed the average favourability of the top five adjectives, weighting 
the favourability ratings of individual adjectives by their association 
scores with AAE and African Americans. More formally, let R5 = [x1, …, x5] 
be the ranking of the top five adjectives generated by either a language 
model or humans. Furthermore, let f(x) be the favourability rating of 
adjective x as reported in ref. 34, and let q(x) be the overall associa-
tion score of adjective x with AAE or African Americans that is used to 
generate R5. For the Princeton Trilogy studies, q(x) is the percentage of 
participants who have assigned x to African Americans. For language 
models, q(x) is the average value of q(x; v, θ). We then computed the 
weighted average favourability, F, of the top five adjectives as

F
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As a result of the weighting, the top-ranked adjective contributed 
more to the average than the second-ranked adjective, and so on. 
Results are presented in Extended Data Fig. 1. To check for consistency, 
we also computed the average favourability of the top five adjectives 
without weighting, which yields similar results (Supplementary Fig. 6).

Overt-stereotype analysis
The overt-stereotype analysis closely followed the methodology of 
the covert-stereotype analysis, with the difference being that instead 
of providing the language models with AAE and SAE texts, we provided 
them with overt descriptions of race (specifically, ‘Black’/‘black’ and 
‘White’/‘white’). This methodological difference is also reflected by a 
different set of prompts (Supplementary Information). As a result, the 
experimental set-up is very similar to existing studies on overt racial 
bias in language models4,7. All other aspects of the analysis (such as 
computing adjective association scores) were identical to the analysis 
for covert stereotypes. This also holds for GPT4, for which we again 
could not conduct the agreement analysis.

We again present average results for the five language models in the 
main article. Results broken down for individual model versions are 
provided in the Supplementary Information, where we also analyse 
variation across prompts (Supplementary Fig. 8 and Supplementary 
Table 5).

Employability analysis
The general set-up of the employability analysis was identical to the 
stereotype analyses: we fed text written in either AAE or SAE, embedded 
in prompts, into the language models and analysed the probabilities 
that they assigned to different continuation tokens. However, instead 
of trait adjectives, we considered occupations for X and also used a 
different set of prompts (Supplementary Information). We created a 
list of occupations, drawing from previously published lists6,76,105–107. 
We provided details about these occupations in the Supplementary 
Information. We then computed association scores q(x; v, θ) between 
individual occupations x and AAE, following the same methodology 
as for computing adjective association scores, and ranked the occu-
pations according to q(x; v, θ) for the language models. To probe the 
prestige associated with the occupations, we drew from a dataset of 
occupational prestige105 that is based on the 2012 US General Social 
Survey and measures prestige on a scale from 1 (low prestige) to 9 (high 
prestige). For GPT4, we could not conduct the parts of the analysis that 
require scores for all occupations.

We again present average results for the five language models in 
the main article. Results for individual model versions are provided 



in the Supplementary Information, where we also analyse variation 
across settings and prompts (Supplementary Tables 6–8).

Criminality analysis
The set-up of the criminality analysis is different from the previous 
experiments in that we did not compute aggregate association scores 
between certain tokens (such as trait adjectives) and AAE but instead 
asked the language models to make discrete decisions for each AAE and 
SAE text. More specifically, we simulated trials in which the language 
models were prompted to use AAE or SAE texts as evidence to make a 
judicial decision. We then aggregated the judicial decisions into sum-
mary statistics.

We conducted two experiments. In the first experiment, the lan-
guage models were asked to determine whether a person accused of 
committing an unspecified crime should be acquitted or convicted. 
The only evidence provided to the language models was a statement 
made by the defendant, which was an AAE or SAE text. In the second 
experiment, the language models were asked to determine whether 
a person who committed first-degree murder should be sentenced to 
life or death. Similarly to the first (general conviction) experiment, the 
only evidence provided to the language models was a statement made 
by the defendant, which was an AAE or SAE text. Note that the AAE and 
SAE texts were the same texts as in the other experiments and did not 
come from a judicial context. Rather than testing how well language 
models could perform the tasks of predicting acquittal or conviction 
and life penalty or death penalty (an application of AI that we do not 
support), we were interested to see to what extent the decisions of 
the language models, made in the absence of any real evidence, were 
impacted by dialect. Although providing the language models with 
extra evidence as well as the AAE and SAE texts would have made the 
experiments more similar to real trials, it would have confounded 
the effect that dialect has on its own (the key effect of interest), so 
we did not consider this alternative set-up here. We focused on con-
victions and death penalties specifically because these are the two 
areas of the criminal justice system for which racial disparities have 
been described in the most robust and indisputable way: African 
Americans represent about 12% of the adult population of the United 
States, but they represent 33% of inmates108 and more than 41% of 
people on death row109.

Methodologically, we used prompts that asked the language models 
to make a judicial decision (Supplementary Information). For a spe-
cific text, t, which is in AAE or SAE, we computed p(x∣v(t); θ) for the 
tokens x that correspond to the judicial outcomes of interest (‘acquit-
ted’ or ‘convicted’, and ‘life’ or ‘death’). T5 does not contain the tokens 
‘acquitted’ and ‘convicted’ in its vocabulary, so is was excluded from 
the conviction analysis. Because the language models might assign dif-
ferent prior probabilities to the outcome tokens, we calibrated them 
using their probabilities in a neutral context following v, meaning 
without text t104. Whichever outcome had the higher calibrated prob-
ability was counted as the decision. We aggregated the detrimental 
decisions (convictions and death penalties) and compared their rates 
(percentages) between AAE and SAE texts. An alternative approach 
would have been to generate the judicial decision by sampling from 
the language models, which would have allowed us to induce the lan-
guage models to generate justifications of their decisions. However, 
this approach has three disadvantages: first, encoder-only language 
models such as RoBERTa do not lend themselves to text generation; 
second, it would have been necessary to apply jail-breaking for 
some of the language models, which can have unpredictable effects, 
especially in the context of socially sensitive tasks; and third, model- 
generated justifications are frequently not aligned with actual model 
behaviours110.

We again present average results on the level of language models in 
the main article. Results for individual model versions are provided 
in the Supplementary Information, where we also analyse variation 

across settings and prompts (Supplementary Figs. 9 and 10 and Sup-
plementary Tables 9–12).

Scaling analysis
In the scaling analysis, we examined whether increasing the model 
size alleviated the dialect prejudice. Because the content of the covert 
stereotypes is quite consistent and does not vary substantially between 
models with different sizes, we instead analysed the strength with which 
the language models maintain these stereotypes. We split the model 
versions of all language models into four groups according to their 
size using the thresholds of 1.5 × 108, 3.5 × 108 and 1.0 × 1010 (Extended 
Data Table 7).

To evaluate the familiarity of the models with AAE, we measured their 
perplexity on the datasets used for the two evaluation settings83,87. Per-
plexity is defined as the exponentiated average negative log-likelihood 
of a sequence of tokens111, with lower values indicating higher famili-
arity. Perplexity requires the language models to assign probabili-
ties to full sequences of tokens, which is only the case for GPT2 and 
GPT3.5. For RoBERTa and T5, we resorted to pseudo-perplexity112 as the 
measure of familiarity. Results are only comparable across language 
models with the same familiarity measure. We excluded GPT4 from 
this analysis because it is not possible to compute perplexity using 
the OpenAI API.

To evaluate the stereotype strength, we focused on the stereotypes 
about African Americans reported in ref. 29, which the language mod-
els’ covert stereotypes agree with most strongly. We split the set of 
adjectives X into two subsets: the set of stereotypical adjectives in 
ref. 29, Xs, and the set of non-stereotypical adjectives, Xn = X \Xs. For 
each model with a specific size, we then computed the average value 
of q(x; v, θ) for all adjectives in Xs, which we denote as qs(θ), and the 
average value of q(x; v, θ) for all adjectives in Xn, which we denote as 
qn(θ). The stereotype strength of a model θ, or more specifically the 
strength of the stereotypes about African Americans reported in  
ref. 29, can then be computed as

δ θ q θ q θ( ) = ( ) − ( ).s n

A positive value of δ(θ) means that the model associates the 
stereotypical adjectives in Xs more strongly with AAE than the 
non-stereotypical adjectives in Xn, whereas a negative value of δ(θ) 
indicates anti-stereotypical associations, meaning that the model 
associates the non-stereotypical adjectives in Xn more strongly with 
AAE than the stereotypical adjectives in Xs. For the overt stereotypes, 
we used the same split of adjectives into Xs and Xn because we wanted 
to directly compare the strength with which models of a certain size 
endorse the stereotypes overtly as opposed to covertly. All other 
aspects of the experimental set-up are identical to the main analyses 
of covert and overt stereotypes.

HF analysis
We compared GPT3.5 (ref. 49; text-davinci-003) with GPT3 (ref. 63; 
davinci), its predecessor language model that was trained without HF. 
Similarly to other studies that compare these two language models113, 
this set-up allowed us to examine the effects of HF training as done for 
GPT3.5 in isolation. We compared the two language models in terms of 
favourability and stereotype strength. For favourability, we followed the 
methodology we used for the overt-stereotype analysis and evaluated 
the average weighted favourability of the top five adjectives associated 
with AAE. For stereotype strength, we followed the methodology we 
used for the scaling analysis and evaluated the average strength of the 
stereotypes as reported in ref. 29.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
All the datasets used in this study are publicly available. The dataset 
released as ref. 87 can be found at https://aclanthology.org/2020.
emnlp-main.473/. The dataset released as ref. 83 can be found at 
http://slanglab.cs.umass.edu/TwitterAAE/. The human stereotype 
scores used for evaluation can be found in the published articles of 
the Princeton Trilogy studies29–31,34. The most recent of these articles34 
also contains the human favourability scores for the trait adjectives. 
The dataset of occupational prestige that we used for the employ-
ability analysis can be found in the corresponding paper105. The 
Brown Corpus114, which we used for the Supplementary Information  
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Extended Data Fig. 1 | Weighted average favourability of top stereotypes 
about African Americans in humans and top overt as well as covert 
stereotypes about African Americans in language models (LMs). The overt 
stereotypes are more favourable than the reported human stereotypes, except 
for GPT2. The covert stereotypes are substantially less favourable than the 
least favourable reported human stereotypes from 1933. Results without 
weighting, which are very similar, are provided in Supplementary Fig. 6.
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Extended Data Fig. 2 | Prestige of occupations associated with AAE 
(positive values) versus SAE (negative values), for individual language 
models. The shaded areas show 95% confidence bands around the regression 
lines. The association with AAE versus SAE is negatively correlated with 

occupational prestige, for all language models. We cannot conduct this 
analysis with GPT4 since the OpenAI API does not give access to the 
probabilities for all occupations.



Extended Data Table 1 | Agreement between covert 
stereotypes in language models and human stereotypes 
about African Americans as reported in the Princeton Trilogy

Model Study m s d t p

GPT2 1933 0.324 0.081 10007 4.6 .0000
GPT2 1951 0.300 0.055 10007 3.9 .0003
GPT2 1969 0.251 0.049 10007 2.5 .0315
GPT2 2012 0.218 0.068 10007 1.6 .1885
RoBERTa 1933 0.329 0.086 10007 4.7 .0000
RoBERTa 1951 0.268 0.052 10007 3.0 .0075
RoBERTa 1969 0.199 0.029 10007 1.0 .4101
RoBERTa 2012 0.186 0.039 10007 0.7 .4101
T5 1933 0.376 0.082 10007 6.1 .0000
T5 1951 0.298 0.054 10007 3.8 .0004
T5 1969 0.244 0.045 10007 2.3 .0470
T5 2012 0.191 0.031 10007 0.8 .4101
GPT3.5 1933 0.466 0.137 10007 8.6 .0000
GPT3.5 1951 0.297 0.076 10007 3.8 .0004
GPT3.5 1969 0.272 0.073 10007 3.1 .0059
GPT3.5 2012 0.230 0.152 10007 1.9 .1120

The table shows the average agreement as well as the results of one-sided t-tests applied 
to the language model agreement distribution and the agreement distribution resulting 
from 10,000 random permutations of the adjectives (with Holm-Bonferroni correction for 
multiple comparisons). m: average; s: standard deviation; d: degrees of freedom; t: t-statistic; 
p: p-value. We cannot conduct this analysis with GPT4 since the OpenAI API does not give 
access to the probabilities for all adjectives.
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Extended Data Table 2 | Agreement between overt 
stereotypes in language models and human stereotypes 
about African Americans as reported in the Princeton 
Trilogy

Model Study m s d t p

GPT2 1933 0.193 0.084 10007 1.0 1.0000
GPT2 1951 0.209 0.076 10007 1.4 .8139
GPT2 1969 0.213 0.075 10007 1.5 .7857
GPT2 2012 0.190 0.065 10007 0.9 1.0000
RoBERTa 1933 0.131 0.037 10007 -0.9 1.0000
RoBERTa 1951 0.237 0.102 10007 2.2 .1890
RoBERTa 1969 0.256 0.106 10007 2.8 .0442
RoBERTa 2012 0.409 0.162 10007 7.2 .0000
T5 1933 0.135 0.028 10007 -0.7 1.0000
T5 1951 0.204 0.063 10007 1.3 .9394
T5 1969 0.211 0.080 10007 1.5 .7857
T5 2012 0.160 0.043 10007 0.0 1.0000
GPT3.5 1933 0.118 0.023 10007 -1.2 1.0000
GPT3.5 1951 0.177 0.048 10007 0.5 1.0000
GPT3.5 1969 0.191 0.046 10007 0.9 1.0000
GPT3.5 2012 0.233 0.054 10007 2.1 .2420

The table shows the average agreement as well as the results of one-sided t-tests applied 
to the language model agreement distribution and the agreement distribution resulting 
from 10,000 random permutations of the adjectives (with Holm-Bonferroni correction for 
multiple comparisons). m: average; s: standard deviation; d: degrees of freedom; t: t-statistic; 
p: p-value. We cannot conduct this analysis with GPT4 since the OpenAI API does not give 
access to the probabilities for all adjectives.



Extended Data Table 3 | Association of occupations with AAE

Model m s d t p

GPT2 -0.053 0.066 83 -7.5 .0000
RoBERTa -0.087 0.070 83 -11.5 .0000
T5 -0.016 0.044 83 -3.4 .0009
GPT3.5 -0.075 0.153 83 -4.5 .0000

The table shows the average association scores of all occupations with AAE as well as the 
results of one-sample, one-sided t-tests comparing with zero, which yield strong effects for 
all language models (with Holm-Bonferroni correction for multiple comparisons). m: average; 
s: standard deviation; d: degrees of freedom; t: t-statistic; p: p-value. We cannot conduct 
this analysis with GPT4 since the OpenAI API does not give access to the probabilities for all 
occupations.
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Extended Data Table 4 | Results of linear regressions fit 
to the occupational prestige values as a function of the 
associations with AAE as well as two-sided F-tests, for 
individual language models

Model d β R2 F p

GPT2 1, 63 -8.2 0.291 25.80 .0000
RoBERTa 1, 63 -4.3 0.105 7.38 .0085
T5 1, 63 -5.9 0.083 5.73 .0196
GPT3.5 1, 63 -0.9 0.020 1.28 .2610

d: degrees of freedom; β: β-coefficient; R2: coefficient of determination; F: F-statistic;  
p: p-value. β is negative for all language models, indicating that stronger associations with 
AAE generally correlate with lower occupational prestige. We cannot conduct this analysis 
with GPT4 since the OpenAI API does not give access to the probabilities for all occupations.



Extended Data Table 5 | Rate of convictions for AAE and SAE

Model r (AAE) r (SAE) d χ2 p

GPT2 67.3% 63.6% 1 37.8 .0000
RoBERTa 72.7% 60.9% 1 187.2 .0000
GPT3.5 52.5% 34.5% 1 22.3 .0000
GPT4 49.8% 35.3% 1 14.8 .0001

The table shows the rate of convictions as well as the results of two-sided chi-squared tests, 
which are significant for all language models (with Holm-Bonferroni correction for multiple 
comparisons). r: rate of convictions; d: degrees of freedom; χ2: χ2-statistic; p: p-value. The 
rate of convictions is higher for AAE compared to SAE, for all language models. We cannot 
conduct this analysis with T5, which does not contain the tokens ‘acquitted’ and ‘convicted’  
in its vocabulary.
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Extended Data Table 6 | Rate of death sentences for AAE  
and SAE

Model r (AAE) r (SAE) d χ2 p

GPT2 39.4% 29.2% 1 552.9 .0000
RoBERTa 33.4% 30.0% 1 31.2 .0000
T5 13.1% 13.0% 1 0.2 .6586
GPT3.5 41.0% 30.2% 1 9.9 .0050
GPT4 10.5% 6.2% 1 6.8 .0186

The table shows the rate of death sentences as well as the results of two-sided chi-squared 
tests, which are significant for all language models except T5 (with Holm-Bonferroni correction 
for multiple comparisons). r: rate of death sentences; d: degrees of freedom; χ2: χ2-statistic; 
p: p-value. The rate of death sentences is higher for AAE compared to SAE, for all language 
models.



Extended Data Table 7 | Language modelling perplexity on AAE and SAE text as a function of model size

Model Size Size class m (AAE) s (AAE) m (SAE) s (SAE)

GPT2 base 1.2e8 small 460.0 834.4 140.9 158.8
GPT2 medium 3.5e8 medium 353.3 421.7 112.8 137.6
GPT2 large 7.7e8 large 310.7 368.3 100.0 115.2
GPT2 xl 1.6e9 large 296.3 367.3 95.7 114.8
RoBERTa base 1.3e8 small 80.4 160.6 16.9 36.3
RoBERTa large 3.6e8 large 44.8 88.6 12.3 28.7
T5 small 6.0e7 small 89.3 106.8 31.9 38.4
T5 base 2.2e8 medium 42.0 54.6 15.5 19.9
T5 large 7.7e8 large 27.9 35.0 11.3 13.9
T5 3b 2.8e9 large 20.9 25.8 10.0 12.5
GPT3.5 1.8e11 very large 267.5 342.9 143.0 480.1

The models are distributed into four classes using the threshold sizes of 1.5 × 108, 3.5 × 108 and 1.0 × 1010 parameters. Perplexity values are actual perplexities for the GPT models but 
pseudo-perplexities112 for RoBERTa and T5, for which perplexity is not well-defined. m: average; s: standard deviation. Larger models tend to have lower perplexity values on AAE, indicating  
that they are better at processing AAE. We exclude GPT4 from this analysis since it is not possible to compute perplexity using the OpenAI API.
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Extended Data Table 8 | Strength of covert (C) and overt (O) 
stereotypes in language models as a function of model size

Model Size Size class m (C) s (C) m (O) s (O)

GPT2 base 1.2e8 small 0.087 0.029 0.044 0.083
GPT2 medium 3.5e8 medium 0.090 0.029 -0.040 0.118
GPT2 large 7.7e8 large 0.105 0.028 -0.006 0.088
GPT2 xl 1.6e9 large 0.089 0.044 0.041 0.119
RoBERTa base 1.3e8 small 0.118 0.027 -0.058 0.094
RoBERTa large 3.6e8 large 0.166 0.045 -0.090 0.100
T5 small 6.0e7 small 0.005 0.031 0.088 0.049
T5 base 2.2e8 medium 0.074 0.037 -0.002 0.060
T5 large 7.7e8 large 0.073 0.033 -0.011 0.109
T5 3b 2.8e9 large 0.113 0.028 -0.091 0.117
GPT3.5 1.8e11 very large 0.187 0.116 -0.119 0.248

The models are distributed into four classes using the threshold sizes of 1.5 × 108, 3.5 × 108 and 
1.0 × 1010 parameters. m: average; s: standard deviation. Larger models tend to have stronger 
covert but weaker overt stereotypes. We exclude GPT4 from this analysis (see caption of 
Extended Data Table 7).
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Software and code
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Data collection We used Python 3.10 to probe the language models. Specifically, we drew upon the package openai 0.28.1 to probe GPT3.5 and GPT4, and 
transformers 4.36.2 to probe GPT2, RoBERTa, and T5.

Data analysis Data analysis was performed in Python 3.10. The specific packages we used were numpy 1.22.4, pandas 1.5.2, scipy 1.7.3, and statsmodels 
0.13.2. All code used for data analysis can be found at https://github.com/valentinhofmann/dialect-prejudice.
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All datasets used in this study are publicly available. The dataset released by Groenwold et al. (2020) can be found at https://aclanthology.org/2020.emnlp-
main.473/. The dataset released by Blodgett et al. (2016) can be found at http://slanglab.cs.umass.edu/TwitterAAE/. The human stereotype scores used for 
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evaluation can be found in the published articles of the Princeton Trilogy studies (Katz and Braly, 1933; Gilbert, 1951; Karlins et al., 1969; Bergsieker et al., 2012). 
The most recent of these articles (Bergsieker et al., 2012) also contains the human favorability scores for the trait adjectives. The dataset of occupational prestige 
that we use in the employability analysis can be found in the corresponding paper (Smith and Son, 2014). The Brown Corpus (Francis and Kucera, 1979), which is 
used in the Supplementary Information (Feature analysis), can be found at http://www.nltk.org/nltk data/. The dataset containing the parallel African American 
English, Appalachian English, and Indian English texts (Ziems et al., 2023), which is used in the Supplementary Information (Alternative explanations), can be found 
at https://huggingface.co/collections/SALT-NLP/value-nlp-666b60a7f76c14551bda4f52.
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Reporting on sex and gender The study did not involve human participants.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

The study did not involve human participants.

Population characteristics The study did not involve human participants.

Recruitment The study did not involve human participants.

Ethics oversight The study did not involve human participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We relied on existing datasets of African American English and Standard American English texts, which we embedded in prompts and 
fed into language models. We then analyzed the predictions of the language models for the two types of input, in both qualitative 
and quantitative ways.

Research sample The study did not involve human participants. We used African American English and Standard American English texts from publicly 
available datasets, specifically Groenwold et al. (2020) and Blodgett et al. (2016), which are among the only large-scale datasets 
containing both African American English and Standard American English texts available today. While the two datasets cover the 
most stigmatized canonical features of African American English shared among Black speakers cross-regionally, neither of them is 
representative of the fine-grained regional variability of African American English.

Sampling strategy For the smaller of the two datasets (Groenwold et al., 2020), we used all available texts. For the larger of the two datasets (Blodgett 
et al., 2016), we randomly sampled texts such that the resulting dataset had a similar size as the dataset from Groenwold et al. 
(2020). This was important in order to ensure comparability of results across datasets and to make conducting the experiments 
feasible for a larger number of language models.

Data collection The texts from the two datasets were embedded in prompts asking for properties of the speakers who have uttered the texts. For 
each analysis, we selected several different prompts in order to be able to test for consistency. We then drew upon Python packages, 
specifically openai 0.28.1 and transformers 4.36.2, to feed the filled prompts into the language models and retrieve their predictions. 
We chose the examined language models to cover the full spectrum of language models in use today, in terms of architecture, size, 
and overall model cababilities.

Timing Experiments involving GPT2, RoBERTa, T5, and GPT3.5 were conducted in April and May 2023. Experiments involving GPT4 were 
conducted in January 2024.

Data exclusions No data were excluded from the analyses.

Non-participation The study did not involve human participants.

Randomization The study did not involve human participants.
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