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Abstract 
Context  There has been a limited amount of 
research which comparatively examines the local and 
landscape scale ecological determinants of the com-
munity structure of both riparian and aquatic bird 
communities in floodplain ecosystems.
Objectives  Here, we quantified the contribution of 
local habitat structure, land cover and spatial config-
uration of the sampling sites to the taxonomical and 
functional structuring of aquatic and terrestrial bird 
communities in a relatively intact floodplain of the 
river Danube, Hungary.
Methods  We used the relative abundance of species 
and foraging guilds as response variables in partial 
redundancy analyses to determine the relative impor-
tance of each variable group.
Results  Local-scale characteristics of the water bod-
ies proved to be less influential than land cover and 
spatial variables both for aquatic and terrestrial birds 

and both for taxonomic and foraging guild structures. 
Purely spatial variables were important determinants, 
besides purely environmental and the shared propor-
tion of variation explained by environmental and spa-
tial variables. The predictability of community struc-
turing generally increased towards the lowest land 
cover measurement scales (i.e., 500, 250 or 125  m 
radius buffers). Different land cover types contrib-
uted at each scale, and their importance depended on 
aquatic vs terrestrial communities.
Conclusions  These results indicate the relatively 
strong response of floodplain bird communities to 
land cover and spatial configuration. They also sug-
gest that dispersal dynamics and mass-effect mecha-
nisms are critically important for understanding 
the structuring of floodplain bird communities, and 
should therefore be considered by conservation man-
agement strategies.

Keywords  Functional traits · Land cover · Habitat 
structure · Spatial factors · Variance partitioning

Introduction

Floodplains are essential components of natural riv-
erine landscapes, which maintain high biodiversity 
due to the heterogeneity in the structure and spatial 
configuration of terrestrial and aquatic habitats (Ward 
et al. 1999; Thorp et al. 2006). Despite their crucial 
importance for biodiversity, floodplains are among 
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the most endangered ecosystems globally, caused by 
large-scale river regulation works, that altered the 
spatial and temporal complexity of terrestrial, ripar-
ian, wetland and open water habitats (Ward et  al. 
1999; Tockner and Stanford 2002; Habersack et  al. 
2016). In Europe, which is the most human-dom-
inated continent, up to 90% of former floodplains 
have been degraded to functional extinction (Tockner 
et  al. 2010), with the degradation of natural hydro-
logical dynamics and ecological processes between 
the land–water interface. Therefore, a detailed under-
standing of how both the terrestrial and aquatic envi-
ronment shapes the structuring of biotic communities 
in still relatively intact floodplains could provide use-
ful implications for the restoration and conservation 
management of floodplain ecosystems, especially in 
temperate regions, where most large rivers lost their 
floodplains (Hayes et al. 2018; Havrdová et al. 2023).

Birds are important components of the biota of 
floodplain ecosystems, especially since they occupy 
both terrestrial and aquatic habitats (Davis 1994; 
Kingsford et al. 2004; Lorenzón, et al. 2016a, 2019). 
As birds are conspicuous and mobile vertebrates, 
they can respond quickly to the dynamic changes of 
landscapes, which makes them advantageous model 
organisms in landscape ecological research (Sullivan 
et  al. 2007; Gao et  al. 2021). For example, among 
aquatic birds, different species use the mosaic of 
dynamically changing floodplains in various ways 
according to their local environmental characteris-
tics (Kingsford et  al. 2004; Lorenzón et  al. 2016a). 
Hydrological dynamics can filter their community 
composition since there are species groups that prefer 
more secluded wetlands, silt plateaus, deeper water 
bodies or even running rivers (Boulton et al. 2008).

Besides the local environment, the spatial config-
uration of landscape patches can also affect a wide 
variety of ecological processes, which determine 
the community structure of birds (Wiens 2002; 
Thornton et al. 2011; Pérez-García et al. 2014). For 
example, some forest bird species, such as cavity-
nesting species were found to be more sensitive to 
the surrounding land cover than to the local char-
acteristics of habitat patches (Estades and Temple 
1999; Vergara and Armesto 2009; Pérez-García 
et  al. 2014). At the community level, local species 
richness can also depend on both local and regional 
landscape-level factors (Ekroos and Kuussaari 
2012; Pérez-García et al. 2014). Therefore, a better 

understanding of the role of local, landscape-level 
and spatial variables in the structuring of floodplain 
bird communities could help the conservation of 
this important vertebrate group. However, despite 
the recognition of the importance of bird commu-
nities in floodplain habitats (Selwood et  al. 2017; 
Lorenzón et al. 2019; Machar et al. 2022), there is 
currently insufficient knowledge on the structur-
ing of bird communities to both spatial context and 
environmental characteristics of both terrestrial and 
aquatic components of the floodplains of large allu-
vial rivers (Arruda Almeida et  al. 2016; Lorenzón 
et al. 2016b; Fluck et al. 2020).

Characterising trait-environment relationships has 
been emphasized to be a useful alternative approach 
for understanding the responses of ecological com-
munities to the heterogeneity of the environment 
(Erős et al. 2009; Arruda Almeida et al. 2018; Rault 
et  al. 2023). In this regard, functional traits, which 
directly inform the function of species in the environ-
ment proved to be especially important (Erős et  al. 
2009; Tavares et  al. 2015; Arruda Almeida et  al. 
2018). However, taxonomic and functional character-
izations of communities have been developed rather 
independently (Sheldon et  al. 2011; Mouillot et  al. 
2013; Velásquez-Tibatá et  al. 2013). For floodplain 
bird communities, it is generally unknown how, and 
to what extent taxonomic- and trait-based community 
structures show congruent patterns along major envi-
ronmental gradients, and specifically, what is the role 
of different explanatory variable groups in predicting 
taxonomic and trait-based structure (but see e.g., Lor-
enzón et al. 2016b; Andrade et al. 2018; Aguilar et al. 
2021).

Therefore, this study aimed to quantify the rela-
tive importance of local habitat structure, land cover 
and space in the variation of taxonomic and func-
tional structure of both terrestrial-riparian (hereafter 
terrestrial) and aquatic bird communities across a 
river-floodplain landscape of the river Danube, Hun-
gary. We were especially interested in determine the 
individual and shared effects of the above-mentioned 
variable groups to better understand the predictability 
of bird communities and the role of landscape con-
text on predictability. In addition, we also examined 
the role of scale in quantifying the importance of land 
cover variables, since some studies found this charac-
teristic influential (Henckel et  al. 2019; Meffert and 
Dziock 2013).
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For terrestrial bird communities, we predicted that 
land cover will be the most important variable group, 
which would determine both taxonomic and trait 
based structure, which have been shown to be influen-
tial determinant in other studies as well (Bossenbroek 
et al. 2005; Meffert and Dziock 2013; Selwood et al. 
2017; Henckel et  al. 2019). We also predicted that 
the predictive power of land cover will increase with 
decreasing measurement scale of land cover variables 
(i.e., using different radii around the study sites to 
characterize the contribution of land cover) since ter-
restrial birds show a strong affinity to land cover vari-
ables (Meffert and Dziock 2013; Henckel et al. 2019). 
On the contrary, for aquatic bird communities, we 
predicted the overarching importance of local habitat 
features of the waterbodies (Lorenzón et  al. 2016b, 
2019), and especially the importance of hydrological 
connectivity gradient to the main channel, since this 
variable can largely determine other features of habi-
tat structure (Tockner et al. 1999; Bolland et al. 2012; 
Reid et al. 2016). Finally, we also predicted that both 
local habitat features and land cover variables will be 
more important predictors of bird communities than 
purely the spatial location of the sampling sites (i.e., 
space), since dispersal limitation may less influence 
birds than is the case for other taxa (Sullivan et  al. 
2007; Gao et al. 2021), at least at the floodplain scale. 
Rather, spatial location may interact with other fea-
tures of the habitat, especially in floodplain ecosys-
tems, where the strong influence of lateral connec-
tivity gradients may increase the joint (i.e., shared) 
importance of spatial and environmental variables in 
community structuring. Overall, these results would 
indicate that landscape context is especially important 
for understanding the structuring of (floodplain) bird 
communities (Fletcher and Hutto 2008; Yuan et  al. 
2014; Lorenzón et al. 2016a).

Material and methods

Study area and site selection

We appointed our study sites in the Middle Danube, 
Southern Hungary, between river km 1499–1433 
(Fig.  1). The river Danube has a mean annual dis-
charge of 2400 m3  s−1 in this region, with an aver-
age slope of about 5  cm  km−1, and flow velocity of 
0.8–1.2  m  s−1 at mean water level (Schöll and Kiss 

2008). This area consists of the largest functioning 
floodplain in the Middle Danube together with its 
transboundary Croatian counterpart (Hein et al. 2016; 
Funk et al. 2019). The major portion of the floodplain 
is part of the Danube-Dráva National Park and is also 
included in the list of protected sites in the Ramsar 
Convention on Wetlands of International Importance 
Especially as Waterfowl Habitat (Tardy 2007). This 
area has a variety of floodplain forest habitats (such 
as willow-poplar and oak-ash-elm floodplain forests), 
grasslands, agricultural fields, and a diverse array of 
aquatic habitats like side-arms, backwaters, wetlands, 
that are connected differently to the mainstream 
branch of the Danube River (Erős and Bányai 2020; 
Erős et al. 2023).

A total of 27 waterbodies were selected in the 
floodplains (Fig.  1) based on three major criteria: 
(i) to represent a hydrological connectivity gradient 
from the main river to the most isolated backwaters, 
(ii) to be located relatively evenly across the study 
area, (iii) to have no heavy anthropogenic degradation 
(e.g. oxbows with intense recreational activities were 
excluded from site selection). The mean distance 
between the study sites was 14.4 km (min–max range: 
1.2–40.8 km).

Bird census

In 2022, we counted terrestrial and aquatic birds in 
two separate transects of 100 × 300 m as study plots at 
each water body. Since bird populations change over 
time, due to the migrating and nesting phenologies of 
the species, we mitigated this bias in detection prob-
ability by counting the individuals three times from 
late March to early July (Thompson 2002). There was 
at least a 1 month time lag between the three field ses-
sions. All birds seen or heard were registered except 
for flyovers, and we used the maximal abundance of 
each species of the three visits at each transect in fur-
ther analyses. To ensure that the maximum number 
of species was encountered, visits lasted between 1 
to 5 h after sunrise (the period of highest bird activ-
ity) and were only carried out in suitable weather 
conditions (low wind, no rain or mist) (Dallimer et al. 
2012; Andrade et al. 2018). We visited the sampling 
sites in alternating orders, to avoid temporal bias in 
detection probability related to the time of day (Blake 
1992; Cornils et al. 2015).
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For terrestrial birds, we delineated each rectangu-
lar transect perpendicular to the bank of each water 
body (Fig. 1), starting from the beginning of terres-
trial vegetation to represent the horizontal gradient 
in terrestrial floodplain habitats (modified after Perry 
et al. 2011; Yabuhara et al. 2019). Transect of aquatic 
birds was placed parallel with the water body right on 
the bank (i.e. margin of the waterbody) including the 

silt plateau, (modified after Sulai et al. 2015; Andrade 
et al. 2018).The size of all transects was the same (i.e. 
100 m wide 300 m long), regardless of the size and 
shape of the water body.

For the determination of functional structure, 
both terrestrial (45 species) and aquatic (33 spe-
cies) birds were assigned to foraging guilds using 
generally accepted categories (Tables  1 and 2). 

Fig. 1   Location of the study area (top), the exact location of 
the study sites (bottom left) and an example of the aquatic and 
terrestrial bird transect arrangements with the different buffer 

zones for land cover measurements (bottom right). In this 
image the green rectangle indicates a terrestrial bird transect, 
while the blue one represents an aquatic bird transect
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Aquatic birds were categorized as dabbling ducks, 
vegetation gleaners, small waders, large waders, 
divers, fishers and raptors (Tavares et  al. 2015; 
Shuford et  al. 2016), while terrestrial birds were 
categorized as herbivores, ground insectivores, 
shrub insectivores, bark insectivores, canopy insec-
tivores, omnivores and raptors (Pereira et al. 2014; 
Czeszczewik et al. 2015).

Local scale habitat variables

The surface area of each waterbody was measured 
using a Geographical Information System (QGIS 
v.3.16; QGIS Development Team 2022) and Google 
Earth Pro.

Hydrological connectivity was defined as a percent 
proportion of days in a year a waterbody is connected 

Table 1   List of 
encountered species and 
their relative abundances 
along aquatic bird transects 
with their assigned foraging 
guilds

Foraging guild Common name Scientific name Mean relative 
abundance (%)

Dabbling ducks Mute swan Cygnus olor 1.78
Garganey Spatula querquedula 0.55
Eurasian wigeon Mareca penelope 1.62
Mallard Anas platyrhynchos 38.41
Common teal Anas crecca 3.56
Common pochard Aythya ferina 1.47
Ferruginous duck Aythya nyroca 0.29

Vegetation gleaners Common moorhen Gallinula chloropus 0.26
Common coot Fulica atra 2.19

Small waders Black-winged stilt Himantopus himantopus 0.14
Northern lapwing Vanellus vanellus 2.56
Common ringed plover Charadrius hiaticula 0.99
Black-tailed godwit Limosa limosa 0.03
Common sandpiper Actitis hypoleucos 0.49
Green sandpiper Tringa ochropus 3.12
Common redshank Tringa totanus 2.02
Common greenshank Tringa nebularia 0.27

Large waders Eurasian spoonbill Platalea leucorodia 0.01
Black-crowned night-heron Nycticorax nycticorax 0.74
Grey heron Ardea cinerea 10.53
Purple heron Ardea purpurea 0.12
Great white egret Ardea alba 2.56
Little egret Egretta garzetta 8.18

Divers Great crested grebe Podiceps cristatus 0.42
Little grebe Tachybaptus ruficollis 0.13
Pygmy cormorant Microcarbo pygmaeus 0.12
Great cormorant Phalacrocorax carbo 0.34

Fishers Black-headed gull Larus ridibundus 0.13
Common tern Sterna hirundo 0.21
Common kingfisher Alcedo atthis 1.19

Raptors Western marsh-harrier Circus aeruginosus 0.25
Black kite Milvus migrans 2.91
White-tailed sea-eagle Haliaeetus albicilla 1.31
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Table 2   List of encountered species and their relative abundances along terrestrial bird transects with their assigned foraging guilds

Foraging guild Common name Scientific name Mean relative-
abundance (%)

Herbivores Common pheasant Phasianus colchicus 0.42
Common woodpigeon Columba palumbus 2.47
European turtle-dove Streptopelia turtur 0.33
Eurasian collared-dove Streptopelia decaocto 0.07
Common chaffinch Fringilla coelebs 9.24
Hawfinch Coccothraustes coccothraustes 0.90
European greenfinch Chloris chloris 0.67
European goldfinch Carduelis carduelis 0.71
Yellowhammer Emberiza citrinella 1.32
Eurasian tree sparrow Passer montanus 0.79

Ground insectivores Eurasian wryneck Jynx torquilla 0.25
Eurasian green woodpecker Picus viridis 0.73
Grey-faced woodpecker Picus canus 0.19
Northern wren Troglodytes troglodytes 2.11
Eurasian blackbird Turdus merula 2.50
Song thrush Turdus philomelos 2.52
European robin Erithacus rubecula 7.96
Common nightingale Luscinia megarhynchos 1.13
White wagtail Motacilla alba 0.63

Shrub insectivores Black redstart Phoenicurus ochruros 0.21
Eurasian blackcap Sylvia atricapilla 8.37
Common chiffchaff Phylloscopus collybita 4.22

Bark insectivores Great spotted woodpecker Dendrocopos major 4.25
Syrian woodpecker Dendrocopos syriacus 0.14
Middle spotted woodpecker Leiopicus medius 1.85
Lesser spotted woodpecker Dryobates minor 0.58
Black woodpecker Dryocopus martius 0.67
Eurasian nuthatch Sitta europaea 4.91
Short-toed treecreeper Certhia brachydactyla 0.40
Eurasian treecreeper Certhia familiaris 0.56

Canopy insectivores Eurasian golden oriole Oriolus oriolus 1.95
Wood warbler Phylloscopus sibilatrix 0.76
Marsh tit Poecile palustris 1.93
Eurasian blue tit Cyanistes caeruleus 3.71
Great tit Parus major 14.34
Long-tailed tit Aegithalos caudatus 2.47
Spotted flycatcher Muscicapa striata 4.51
Collared flycatcher Ficedula albicollis 2.79

Omnivores Common cuckoo Cuculus canorus 0.78
Carrion crow Corvus corone 0.24
Eurasian jay Garrulus glandarius 0.92
Common starling Sturnus vulgaris 4.15

Raptors Eurasian buzzard Buteo buteo 0.14
Black kite Milvus migrans 0.08
White-tailed sea-eagle Haliaeetus albicilla 0.12
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to the main channel (river Danube) (Reckendorfer 
et al.; 2006; Funk et al. 2013). Mean depth and mean 
current velocity were measured using a digital ter-
rain model and a water velocity meter, respectively. 
Within waterbodies, habitat structure was further 
characterized using visually estimated percentage 
composition of the following variables at the place of 
the samplings: emergent, submerged and floating veg-
etation, floating algae, open water habitat and woody 
debris. The bank structure was similarly character-
ized using the following variables: percentage cover 
of woody (i.e., tree or large bushes) and herbaceous 
vegetation, canopy cover and cover of artificial sur-
faces (concrete, rip-rap). The percentage cover of 
substratum types was visually estimated using the fol-
lowing categories: silt, sand, gravel, and rock. For the 
general characteristics of the environmental variables, 
see Table 3.

We used Principal Component Analysis (hereaf-
ter PCA) to characterize physical habitat structure 
and to reduce the number of explanatory variables 
to a small number of largely independent (orthogo-
nal) environmental gradients (see e.g., Amoros and 
Bornette 2002; Peres-Neto et al. 2003; Heino et al. 
2007; Legendre and Legendre 2012; Czeglédi et al. 

2016, 2020; Sinha et al. 2019). The PCA was con-
ducted on the correlation matrix of the recorded 
physical habitat structure variables, using the func-
tion “prcomp” in the package factoextra 1.0.7. 
(Kassambara and Mundt 2017). The values of the 
variables were square-root arcsin transformed in 
advance of the PCA (Legendre and Legendre 2012; 
Luck et al. 2013).

According to the PCA analysis, the first three most 
influential and interpretable environmental gradients 
with their eigenvalue over 1 and their explained vari-
ance over 10% were as follows (for details see Table 3 
and Online Appendix 1). The PC1 axis characterized 
a gradient where relatively deep water bodies with 
high velocity, and relatively coarse substrate compo-
sition (dominantly sand) occupied one end, while rel-
atively shallow water bodies with dense canopy and/
or macrophyte cover, woody debris and fine substrate 
composition (silt) occupied the other end of the gradi-
ent. The PC2 axis represented a gradient where sites 
with relatively high canopy cover, and trees along the 
bank were situated on one end, while sites with rela-
tively dense macrophyte cover and herbaceous bank 
vegetation the other end of the gradient. PC3 was 
determined mainly by canopy cover, herbaceous bank 

Table 3   Descriptive statistics of local habitat structure variables and their correlation with the first three principal components of 
the local habitat variables PCA

The explained variance of each principal component is shown in parentheses

Unit Mean SD Min Max PC1 (42.05%) PC2 (12.70%) PC3 (12.31%)

Area ha 62.63 115.47 0.30 464.37 0.79 0.44 − 0.25
Depth m 1.31 1.25 0.40 6.00 0.87 0.39 − 0.15
Emergent plants % 9.25 15.64 0.00 75.00 − 0.54 − 0.08 − 0.13
Submerged plants % 6.48 12.33 0.00 57.50 − 0.5 0.46 − 0.31
Floating plants % 16.56 23.09 0.00 80.00 − 0.59 0.47 − 0.03
Surface algae % 0.29 1.44 0.00 7.50 − 0.28 0.34 − 0.47
Open water % 64.38 33.73 3.00 100.00 0.79 − 0.43 0.21
Woody debris % 3.04 6.70 0.00 35.00 − 0.56 0.15 − 0.14
Woody/trees % 66.54 28.95 0.00 100.00 0.16 0.54 0.78
Herbaceous % 31.88 29.13 0.00 100.00 − 0.24 − 0.53 − 0.76
Artificial % 1.58 3.02 0.00 10.00 0.77 − 0.07 − 0.18
Canopy cover % 21.71 25.84 0.00 82.50 − 0.63 0.19 − 0.33
Rock % 3.38 11.78 0.00 48.00 0.77 0.43 − 0.35
Sand % 7.35 12.12 0.00 50.00 0.76 − 0.31 0.03
Silt % 89.27 18.80 35.00 100.00 − 0.92 0.05 0.12
Velocity cm/s 6.12 14.83 0.00 60.00 0.86 0.3 − 0.29
Connectivity % 41.4 34.9 0 100 0.22 − 0.25 − 0.23
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vegetation, woody debris, sand substrate, and the 
composition of macrophyte vegetation.

We used the component scores of the water bodies 
along these most influential first three principal com-
ponents as explanatory variables in further analyses 
(see below at variance partitioning).

Landscape metrics

We measured the percentage cover of selected land 
cover types from the CORINE Land Cover 2018 data-
base GIS layer (European Environmental Agency 
2020, http://​www.​eea.​europa.​eu; Mag et  al. 2011; 
Portaccio et al. 2021) in 125, 250 and 500 m buffers 
around each rectangular study plot (modified after 
Akasaka et  al. 2010; Milder et  al. 2010; Yabuhara 
et al. 2019). The studied land cover types were as fol-
lows: agricultural, artificial, forest, natural grassland, 
transitional woodland-shrub, water body and wetland. 
We measured the percentage cover of each land cover 
type in Quantum GIS version 3.4.12-Madeira (QGIS 
2022).

Spatial metrics

We used only positively autocorrelated Moran’s 
Eigenvector Matrices (MEM) from the geocoordi-
nates of the sites as explanatory variables of spatial 
structuring (Peres-Neto and Legendre 2010; Sattler 
et al. 2010; Ferenc et al. 2014). We used the “dbmem” 
function of the adespatial package in R for the calcu-
lations (version 0.3–20; Dray et al. 2018).

Variance partitioning analyses

We conducted redundancy (RDA) and associated 
variance partitioning analyses (Borcard et  al. 1992, 
2011, 2018; Legendre and Legendre 2012) to quan-
tify the pure and shared effects of the three predic-
tor variable groups (local scale habitat structure, 
land cover and spatial positioning) on the structure 
of aquatic and terrestrial bird communities. We used 
the Hellinger-transformed relative abundance of 
taxa and foraging guilds separately in the analyses. 
Consequently, both the relatively short gradients we 
obtained using preliminary detrended correspond-
ence analyses and Hellinger transformation of the 
data justify the applicability of linear ordination, such 
as RDA (Legendre and Gallagher 2001; Peres-Neto 

et  al. 2006; Legendre and De Cáceres 2013; Loren-
zón et al. 2016b; Borcard et al. 2018; Henckel et al. 
2019; Anderson et al. 2011) Statistical significance of 
the unique contributions of the three sets of predictors 
was tested using the “anova.cca” function with 1000 
runs in package vegan (version 2.6–4; Oksanen et al. 
2017). In advance of variance partitioning, separate 
forward selection of the physical habitat PCA compo-
nents, the land cover and spatial variables were com-
puted using a permutation-based test with the “ord-
istep” function of the package vegan with 1000 runs 
(Rush et  al. 2014; Hill et  al. 2019). Only variables 
that significantly (alpha = 0.05) contributed to com-
munity variability were retained in the final models 
(Lorenzón et al. 2016b; Hill et al. 2019; Sultana et al. 
2022). All analyses were conducted in the R environ-
ment 4.2.2 (R Core Team 2022).

Results

Aquatic birds

Throughout the transects, we recorded 778 aquatic 
birds of 33 species (see Table  1 for the species list 
and relative abundance data). The mallard (Anas 
platyrhynchos), grey heron (Ardea cinerea) and lit-
tle egret (Egretta garzetta) were the three most abun-
dant species and had a relative abundance of 38%, 
11% and 8% respectively. The three foraging guilds 
with the highest relative abundance were dabbling 
ducks (54%), large wading birds (25%) and small 
wading birds (11%). For the relative abundance data 
of aquatic species, the total explained variance was 
10%, 14% and 15% for the 500, 250 and 125 m spatial 
scales, respectively. All three variable groups con-
tributed to the explained variance at the 500 m scale, 
with both pure and shared components (Table  4a), 
while at the 250 m scale pure local habitat structure, 
land cover, spatial and the joint (i.e., spatially struc-
tured local habitat structure) components were influ-
ential. On the other hand, pure land cover, spatial 
variables, locally structured land cover—the shared 
component of local and land cover factors—and the 
intersection of all three variable groups contributed 
to the explained variance at the 125 m scale. Consid-
ering local habitat structure, only the first principal 
component contributed to the explained variance at 
each scale. Land cover types contributed differently 

http://www.eea.europa.eu
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at the different scales (Table  5): at the 500  m scale 
the cover of transitional woodland-shrub areas, at the 
250 m scale, the cover of wetlands and at the 125 m 
scale the cover of forests and wetlands affected taxo-
nomic structure significantly. The importance of land 
cover increased with decreasing scale. The shared 
components had only a marginal contribution to the 
explained variance.

For the relative abundance of aquatic foraging 
guilds, the total explained variance was 14% at each 
spatial scale. All three variable groups contributed to 
the explained variance at the 500 m scale, while land 
cover did not contribute to the explained variance at 
other scales (Table 4b). At the 500 m scale the only 
contributing pure component was the spatial variable 
group, while at other scales pure local, pure spatial 
and spatially structured local components were rep-
resented. Considering local habitat structure, only the 
first principal component contributed to the explained 

variance (Table  5). Land cover types (specifically 
transitional woodland-shrub) proved to be influential 
only at the 500 m scale (Table 5). The majority of the 
explained variance was contributed by the pure spa-
tial component at each scale (57%), while the locally 
structured spatial component comprised the second 
highest proportion (36%). The pure local component 
had only a marginal influence on guild-based struc-
ture (Table 4b).

Terrestrial birds

We observed 1192 individuals of 45 terrestrial bird 
species (see Table  2 for the species list and relative 
abundance data). The great tit (Parus major), com-
mon chaffinch (Fringilla coelebs) and Eurasian black-
cap (Sylvia atricapilla) were the three most abundant 
species and had a relative abundance of 14%, 9% and 
8% respectively. Crown insectivores (25%), ground 

Table 4   Results of variance partitioning analyses, which shows the proportions of explained variance of pure local (lo), land cover 
(la), spatial (sp) variables and their shared components at different landscape scales (500 m, 250 m, 125 m)

Aquatic species relative abundance Local (%) lo+la (%) Land cover 
(%)

Spatial (%) lo + sp (%) lo + la + sp 
(%)

a)
 500 m 18 9 9 36 9 9
 250 m 20 0 33 33 13 0
 125 m 0 13 40 33 0 13

Aquatic foraging guild relative abun-
dance

Local (%) lo + la (%) Land cover 
(%)

Spatial (%) lo + sp (%) lo + la + sp (%)

b)
 500 m 0 7 0 43 14 21
 250 m 7 0 0 57 36 0
 125 m 7 0 0 57 36 0

Terrestrial species relative abundance Land cover 
(%)

la + sp (%) Spatial (%)

c)
 500 m 43 43 14
 250 m 63 38 0
 125 m 67 33 0

Terrestrial foraging guild relative abun-
dance

Land cover 
(%)

la+sp (%) Spatial (%)

d)
 500 m 48 0 52
 250 m 58 0 42
 125 m 70 0 30
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insectivores (18%) and herbivores (17%) were the 
three most abundant foraging guilds and were pre-
sent in 25, 18 and 17% relative abundances. For the 
relative abundance data of terrestrial species, the 
total explained variance was 6%, 8% and 9% for the 
500, 250 and 125 m buffer zones, respectively. Only 
land cover and spatial variables contributed to the 
explained variance (Table  4c). At the 500  m scale, 
both the two pure components and their shared com-
ponent contributed to the explained variance, but at 
other scales, no contribution of the pure spatial com-
ponent emerged. Land cover types contributed differ-
ently to the variance at the different scales (Table 5): 
at the 500 m scale, only the cover of agricultural sur-
faces contributed to the explained variance, while at 
other scales the importance of both agricultural and 
transitional woodland-shrub surfaces emerged. The 
importance of the pure land cover variable group 
increased with decreasing spatial scale (from 43% at 
the 500 m scale to 67% at the 125 m scale). Parallelly, 
the contribution of spatially structured landscape 

component decreased with decreasing scale (from 43 
to 33%). The pure spatial component had only mar-
ginal contribution, and only at the 500 m scale.

For the relative abundance of foraging guilds, the 
total explained variance was 20%, 25% and 32% at 
the 500, 250 and 125  m scales, respectively. Only 
land cover and spatial variables contributed to the 
explained variance, and only with their pure compo-
nents at each scale (Table 4d). Similarly to taxonomic 
structure, land cover types contributed differently to 
guild structure at the different spatial scales (Table 5). 
For example, agricultural fields were important at 
each scale, but natural grasslands were influential 
only at the 250 m and 125 m scales. In addition, the 
contribution of transitional woodland shrub surfaces 
was significant only at the 125 m scale. The impor-
tance of the pure land cover variable group increased 
with decreasing scale, similarly to taxonomic struc-
ture. The pure landscape component contributed 
significantly to the explained variance at each scale, 
and its contribution further increased with decreasing 

Table 5   Determinants of the taxonomic and foraging guild 
structure of aquatic and terrestrial bird communities. Variables 
that contributed significantly to each variable group in vari-
ance partitioning at different landscape scales (500 m, 250 m, 

125  m) are listed.  PC1 characterizes the main environmental 
gradient, while the different MEM vectors represent spatial 
gradients based on Moran’s Eigenvector Matrices

Response Variable group 500 m 250 m 125 m

Aquatic species relative 
abundance

Local scale habitat struc-
ture

PC1 PC1 PC1

Land cover Transitional woodland-
shrub

Wetland Wetland, forest

Spatial vector MEM3 MEM3 MEM3
Aquatic guild relative 

abundance
Local scale habitat struc-

ture
PC1 PC1 PC1

Land cover Transitional woodland-
shrub

– –

Spatial vector MEM3 MEM3 MEM3
Terrestrial species relative 

abundance
Local scale habitat struc-

ture
– – –

Land cover Agricultural Agricultural, 
transitional 
woodland-
shrub

Agricultural, transitional 
woodland-shrub

Spatial vector MEM8 MEM8 MEM8
Terrestrial guild relative 

abundance
Local scale habitat struc-

ture
– – –

Land cover Agricultural Agricultural, 
natural grass-
land

Agricultural, natural 
grassland, transitional 
woodland-shrub

Spatial vector MEM1, MEM5 MEM1, MEM5 MEM1, MEM5
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scale (from 48% at the 500 scale to 70% at the 125 m 
scale).

Discussion

Total variance

We found low total explained variances for both 
aquatic and terrestrial bird communities, which var-
ied between 9 and 32%. These values could have 
been even lower if we had not accounted for detec-
tion probability bias in the methodology, such as by 
conducting three count sessions and alternating the 
order of visits (Thompson 2002; Cornils et al. 2015). 
The lowest and highest total explained variances were 
found for the taxonomic and functional structuring 
of terrestrial birds, respectively, while aquatic birds 
showed intermediate variance values. Several factors 
may contribute to the differences in the predictabil-
ity of terrestrial and bird communities and between 
taxonomic and functional approaches, including for 
example the range of the underlying environmental 
gradient(s), the number of environmental and spatial 
predictors structuring the communities, or the num-
ber of taxa or functional groups used in the analysis 
(Heino et al. 2007, 2013).

Low total explained variance values are more 
general than exceptional in those community eco-
logical studies which deal with the importance of 
environmental structuring and space using variance 
partitioning procedures (Sattler et  al. 2010; Mef-
fert et  al. 2013; Meynard et  al. 2013; Heino et  al. 
2015a). Several authors assumed that low total vari-
ance values can be due to nondeterministic factors, 
such as unmeasured biotic and abiotic variables, or 
more complex spatial structure compared to what 
can be characterized by field observations (Bor-
card et  al. 1992; Sattler et  al. 2010; Henckel et  al. 
2019; Ovaskainen et  al. 2019). On the other hand, 
others argued that the interpretation of ‘unexplained 
variation’ as random variation caused by unmeas-
ured factors is generally inappropriate (e.g., Økland 
1999; Meffer and Dziock 2013). Due to the high 
variability in ecological data, and elusive species 
environmental relationships, Økland (1999) recom-
mended concentrating on the relative contribution 

of variation explained by different sets of explana-
tory variables rather than focusing on the impor-
tance of explained and unexplained variations. 
Stegen and Hurlbert (2011) also argued that low 
explained variance does not necessarily indicate 
weak dispersal limitation and environmental filter-
ing and suggested to use relative proportions of par-
titioned variances to characterize the relative influ-
ences of these two mechanisms. Consequently, we 
focussed on the interpretation of the relative impor-
tance of the different variable groups in the discus-
sion below.

Local scale habitat structure

As hypothesised, local-scale habitat structure of 
the waterbodies and the riparian zone proved to 
be important for aquatic birds in the case of both 
taxonomic and foraging guild structure. However, 
its contribution as a pure or as a shared component 
varied depending on spatial scale, presumably due 
to its interference with land cover variables at dif-
ferent measurement scales. Several papers con-
sidered the importance of the habitat structure of 
water bodies on aquatic bird species composition 
(Godinho et  al. 2010; Arruda Almeida et  al. 2016; 
Lorenzón et al 2016b), but, to the best of our knowl-
edge, this study is the first which used a variance 
partitioning approach to comparatively examine the 
importance of different variable groups on foraging 
guild structure.

The first principal component was the only local 
scale habitat gradient which significantly influenced 
aquatic species, including both taxonomic and forag-
ing guild structures. This is not surprising since PC1 
characterized the most substantial changes in habitat 
quality, embracing differences in area, depth, flow 
velocity, and composition of substrate, aquatic plant 
and riparian vegetation. Interestingly, hydrologic 
connectivity correlated only moderately with these 
habitat variables. This finding shows the complex 
relationship between local scale habitat structure and 
hydrological connectivity and also reveals that con-
nectivity in itself cannot substitute other variables 
for characterizing the habitat structure of floodplain 
water bodies. These results on the importance of 
complex local scale habitat gradients correspond with 
the findings of former studies (e.g., Godinho et  al. 
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2010; Lorenzón et  al. 2019; Arruda Almeida et  al. 
2016; 2018; Fluck et al. 2020).

Land cover

To the best of our knowledge, no scientific papers 
aimed to compare the contribution of habitat char-
acteristics of the water bodies and land cover ele-
ments in the structuring of terrestrial floodplain 
bird communities. Land cover proved to be a more 
important determinant of both the taxonomic and 
functional structure of terrestrial birds than aquatic 
ones. This result is not surprising since terrestrial 
birds use the terrestrial landscape for foraging and 
nesting, while aquatic species are connected more 
to the water bodies and wetlands. However, the 
zero contribution of local scale habitat structure 
of the waterbodies in the structuring of terrestrial 
bird communities is somewhat surprising, since 
floodplain water bodies and wetlands can influence 
insectivore bird populations by the density of the 
swarming aquatic invertebrates, known as aquatic 
subsidies, such as mayflies (Ephemeroptera) and 
stoneflies (Plecoptera), which can be important for-
aging sources in early spring, before the later pulse 
of canopy insects, such as aphids (Hemiptera) and 
caterpillars (Lepidoptera) (Nakano and Murakami 
2001; Murakami and Nakano 2002; Iwata et  al. 
2003; Schilke et al. 2020; Wesner et al. 2020).

The contribution of land cover variables to the 
explained variance generally remained stable or 
increased with decreasing spatial scale of the evalu-
ation area (here from 500 to 125  m). This finding 
thus supports, at least partly, our hypothesis that 
bird communities respond relatively strongly to the 
heterogeneity of land cover, especially at finer spa-
tial scales, which may better fit their territory, forag-
ing- and nesting area (see also Henckel et al. 2019; 
Meffert and Dziock 2013). According to Henckel 
et al. (2019), this statement can also stand for indi-
vidual land cover types, as some types are more 
characteristic factors for fine-scale territories and 
feeding grounds of both terrestrial and aquatic spe-
cies respectively, while others are more influential 
on larger scales. In our case, for aquatic birds, tran-
sitional woodland-shrub surfaces (i.e., shrublands) 
were only significant at the 500 m scale, while wet-
lands were crucial at the two smaller scales. For ter-
restrial birds, agricultural lands were important at 

each scale, while shrublands and natural grasslands 
were influential at the 250 and 125 m scales.

In our study, the variance of aquatic bird spe-
cies structure was influenced by shrublands, wet-
lands and forests. The cover of shrublands was the 
only crucial land cover variable in the variance of 
aquatic bird foraging guild structure. The vertically 
complex but open habitat structure of shrublands 
can influence the structure of aquatic bird com-
munities, for instance, numerous species groups, 
such as large waders prefer to nest in that particu-
lar habitat type in floodplain forests (Liang et  al. 
2007; Parkes et al. 2012). On the other hand, raptors 
favouring aquatic habitats can hunt their prey with 
higher success in open areas of shrublands (Davis 
et al. 2009). Wetlands are crucial for aquatic birds, 
supplying a variety of microhabitats from wet grass-
lands, silty beaches, across different associations of 
aquatic macrophytes to even open water surfaces. 
Such complex habitats can serve as feeding or nest-
ing grounds for diverse aquatic bird communities 
(Lorenzón et  al. 2016a, b; Galib et  al. 2018; Htay 
et  al. 2023). Similarly, forests provide shelter, and 
nesting microhabitats for ground-, canopy- and cav-
ity-nesting water birds alike (Lemelin et  al. 2010; 
Andrade et al. 2018; Sinha et al. 2022).

Agricultural and shrubland surfaces were gener-
ally important drivers in the structuring of terrestrial 
bird communities (i.e., both for species and foraging 
guilds), while natural grasslands only influenced the 
variance of foraging guild structure. The substantially 
simple habitat structure of monocultural agricultural 
lands only can harbour poor bird communities, result-
ing in species and foraging guilds preferring open 
habitats that can tolerate such a low diversity of for-
aging sources (Best et al. 1995; Selwood et al. 2015; 
Socolar and Wilcove 2019). As the vertical structure 
of shrublands is more complex than open grasslands 
but less so than closed forests, this particular habitat 
type can harbour species of open habitats as well as 
forest edge or open forest-dwelling species. Thus, the 
cover of this habitat type can substantially influence 
the explained variance of species structure in a land-
scape (Knutson 1995; Lorenzón et  al. 2016a). The 
cover of natural grasslands can influence the presence 
of numerous foraging guilds, since for example shrub 
insectivores live in either shrublands or forests, while 
bark-foraging and canopy insectivores prefer forest 



Landsc Ecol (2024) 39:174	 Page 13 of 18  174

Vol.: (0123456789)

habitats and hardly can be present in grasslands (Reid 
et al. 2016; Fourcade et al. 2018; Senner et al. 2021).

Space

We found a relatively high contribution of purely 
spatial variables to the explained variance in the 
case of both aquatic and terrestrial birds and both for 
taxonomic and functional structure. This suggests 
that dispersal limitation would be an influential fac-
tor in community structuring (Gianuca et  al. 2013; 
Henckel et al. 2019). On the other hand, the decreas-
ing contribution towards the smaller scales suggests 
the decreasing importance of dispersal limitations 
(Henckel et al. 2019). This result was more expressed 
in terrestrial birds, which in our case are mainly ter-
ritorial forest species, showing only post-natal disper-
sion in the forest corridors on relatively small scales 
(Machtans et  al. 1996; Laurance and Gomez 2005; 
Seaman and Schulze 2010). On the other hand, most 
aquatic birds are considered large distance dispersers, 
regarding their movements between foraging habitats 
(Reynolds et al. 2015; Coughlan et al. 2017). Henckel 
et  al. (2019) suggested that pure spatial structuring 
may be explained by individual movements during 
the breeding season rather than dispersal limitation 
sensu stricto. Purely spatial variables may also indi-
cate the random (i.e., environmentally independent) 
aggregation of some species and/or functional groups 
during their movement across the landscape by mass-
effect mechanisms (Meynard and Quinn 2008; Wat-
son and Watson 2015; de Souza Leite et al. 2022). In 
this regard, mass-effects may increase in importance 
with decreasing distances between sites and small 
spatial extent surveyed (Heino et al. 2015b).

Joint portions

The shared component of space with local or land 
cover variables proved to be also important, espe-
cially in the functional structuring of aquatic birds 
(here spatially structured local scale habitat struc-
ture), and in the taxonomic structure of terrestrial 
birds (spatially structured land cover). Spatially struc-
tured environmental components (both local habitat 
structure and landscape features alike) indicate the 
spatial distribution of important environmental gradi-
ents that influence the dispersion of bird species and 
foraging guilds (Sattler et al. 2010). For example, for 

aquatic birds, this component embraces the sorting 
of species and/or functions along the lateral habitat 
and connectivity gradients from the main river to the 
most secluded backwaters (see also Parkinson et  al. 
2002). For terrestrial species, the spatially structured 
land cover component mirrors the effect of spatial 
heterogeneity in the distribution of land cover types 
(e.g., shrubland surfaces) both longitudinally along 
the river and laterally along the floodplain (Renöfält 
et al. 2005). Nevertheless, the large variability in the 
contribution of pure and shared variance components 
between measurement scales suggests that the effect 
of environmental heterogeneity, space and neutral or 
stochastic mechanisms cannot be easily dissected in 
the case of floodplain bird communities, similarly to 
other ecosystems or organism groups (see e.g., Bor-
card et al. 1992; Sattler et al. 2010; Stegen and Hurl-
bert 2011).

Conclusions

In conclusion, the structuring of floodplain bird com-
munities showed high context-dependency, similar 
to many other studies on the metacommunity struc-
turing of ecological communities. Generally, local 
scale characteristics of the waterbodies and the ripar-
ian zone proved to be less influential in community 
structuring than land cover and spatial variables both 
for aquatic and terrestrial birds and both for taxo-
nomic and foraging guild structure. The importance 
of purely spatial variables suggests that mass-effect 
mechanisms also shape the structuring of floodplain 
bird communities, besides species sorting mecha-
nisms. Mass-effect may have contributed to the low 
predictability of community structuring, despite 
the use of a variety of environmental variables. The 
predictability of community structuring was also 
influenced by the measurement scale of land cover 
variables (i.e., 500, 250 or 125 m radius around the 
survey transect) and was generally highest at the low-
est spatial extent. Overall, these results indicate the 
relatively strong response of floodplain bird commu-
nities to heterogeneities in land use, but also suggest 
that dispersal dynamics of birds across the floodplain 
is also critically important to understand the structur-
ing of bird communities, which should be considered 
by conservation management.
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