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Introduction

The ability to anticipate the behaviour of objects in the phys-
ical environment is crucial for many of our daily actions, 
such as crossing a busy street or catching a ball. Converg-
ing computational and behavioural evidence suggests that 
this ability relies on an ‘intuitive physics engine’ that pre-
dicts future events by running mental simulations (Bates 
et al. 2015; Battaglia et al. 2013; Gerstenberg et al. 2017, 
2021; Hamrick et al. 2016). Intuitive physical inference has 
consistently been linked to the activation of a frontopari-
etal network comprising the supramarginal gyrus (SMG), 
superior parietal lobule (SPL), and dorsal premotor cor-
tex/supplementary motor area (PMd/SMA) (Fischer et al. 
2016). These regions have been shown to contain invariant 
representations of physical properties, providing evidence 
for a generalised neural intuitive physics engine (Pramod et 
al. 2022; Schwettmann et al. 2019). Another line of neuro-
imaging research into intuitive physics provided evidence 
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Abstract
Anticipating the behaviour of moving objects in the physical environment is essential for a wide range of daily actions. 
This ability is thought to rely on mental simulations and has been shown to involve frontoparietal and early visual areas. 
Yet, the connectivity patterns between these regions during intuitive physical inference remain largely unknown. In this 
study, participants underwent fMRI while performing a task requiring them to infer the parabolic trajectory of an occluded 
ball falling under Newtonian physics, and a control task. Building on our previous research showing that when solving 
the physical inference task, early visual areas encode task-specific and perception-like information about the inferred 
trajectory, the present study aimed to (i) identify regions that are functionally coupled with early visual areas during the 
physical inference task, and (ii) investigate changes in effective connectivity within this network of regions. We found 
that early visual areas are functionally connected to a set of parietal and premotor regions when inferring occluded tra-
jectories. Using dynamic causal modelling, we show that predicting occluded trajectories is associated with changes in 
effective connectivity within a parieto-premotor network, which may drive internally generated early visual activity in a 
top-down fashion. These findings offer new insights into the interaction between early visual and frontoparietal regions 
during physical inference, contributing to our understanding of the neural mechanisms underlying the ability to predict 
physical outcomes.
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that early visual areas are also involved in the process. 
These regions have been shown to contain representations 
of inferred physical scenarios that resemble those evoked by 
perception, suggesting that intuitive physical inference may 
be accompanied by visual simulation of the inferred sce-
nario (Ahuja et al. 2022; Zbären et al. 2023). Interestingly, 
during explicitly instructed visual imagery, internally-gen-
erated visual cortex activity is modulated by frontoparietal 
areas similar to those involved in physical inference (Den-
tico et al. 2014; Dijkstra et al. 2017; Ishai et al. 2000; Mech-
elli 2004), suggesting a potential role of these regions in 
generating perception-like images when inferring occluded 
physical scenes. While there is a growing body of evidence 
supporting the involvement of specific brain areas in intui-
tive physics, the underlying connectivity patterns between 
these regions remain largely unknown.

In a recent study, we investigated the neural representa-
tions associated with predicting the parabolic trajectory of 
an occluded ball falling under Newtonian physics (Zbären et 
al. 2023). We designed an intuitive physical inference task 
requiring participants to infer the trajectory of an occluded 
ball falling parabolically. We first established that partici-
pants could learn to accurately predict the ball’s trajectory 
despite the absence of visual input, suggesting that they 
have successfully built and relied on a mental model of the 
physical scene to infer the outcomes. We then showed that 
solving this task activates early visual regions together with 
a frontoparietal network, and that early visual regions rep-
resent task-specific and perception-like information about 
the inferred trajectory. These results suggest that the out-
comes of physical inferences may be represented in form of 
the perceivable sensory consequences in early visual areas, 
despite the absence of visual stimulation. Building upon 
these findings, the aim of the present study was to examine 
connectivity patterns among brain regions involved in phys-
ical inference and whose activity is linked to early visual 
processing when predicting the trajectory of objects falling 
parabolically and under occlusion.

First, we aimed to identify regions that may drive or be 
influenced by early visual activity during physical infer-
ence, by conducting a psychophysiological interaction (PPI) 
analysis. Our findings revealed that all regions consistently 
involved in intuitive physical inference exhibited increased 
functional coupling with early visual areas when predict-
ing the parabolic trajectory of occluded objects. Given the 
absence of task-relevant visual inputs during our physical 
inference task, the measured neural activity within this net-
work reflects internally generated representations of the 
physical scene and thus, the information flow between sen-
sory and higher-order areas is unclear. To examine this, we 
investigated directed connectivity changes associated with 
physical inference of occluded trajectories in the network 

of regions revealed by the PPI analysis, using dynamic 
causal modelling (DCM; Friston et al. 2003). More specifi-
cally, we compared various anatomically plausible dynamic 
causal models to test whether physical inference primarily 
modulates visual-to-parietal connections, parietal-to-visual 
connections, or both, and whether it primarily modulates 
parietal-to-premotor connections, premotor-to-parietal con-
nections, or both.

Materials and methods

The data used in this manuscript have previously been pub-
lished in Zbären et al. (2023), which primarily focused on 
univariate and multivariate pattern analysis of the BOLD 
signal. Here, we have re-analysed the same data with an 
emphasis on functional connectivity analysis and network 
modelling using DCM. The experimental paradigm and pre-
processing pipeline are identical to Zbären et al. (2023). We 
restate the relevant details here for the readers’ convenience.

Participants

Twenty healthy volunteers participated in the study and four 
were excluded from the analyses (for detailed exclusion cri-
teria, see Zbären et al. 2023). The final sample consisted 
of sixteen participants (10 females; 6 males; mean age: 
28.31 ± 9.26) with normal or corrected-to-normal vision. 
The study was approved by the Ethics Committee of the 
Swiss Federal Institute of Technology (EK 2020-N-31; 
Zurich, Switzerland) and conducted in accordance with the 
declaration of Helsinki. All participants provided written 
informed consent before participation and received mon-
etary compensation upon completion.

fMRI task

To investigate intuitive physical inference, we designed a 
task that required participants to predict the fall time and 
landing location of an occluded ball falling parabolically. 
Participants were exposed to a dynamic 3D physics envi-
ronment generated using the Unity3D physics engine (ver-
sion 2019.2.3; http://unity3d.com). The study consisted of 
a behavioural training session, followed by an fMRI ses-
sion happening no more than 7 days later. All participants 
were naïve to the purpose of the experiment throughout both 
sessions.

The behavioural session included instruction and train-
ing on the physical inference task, with participants receiv-
ing written feedback on their performance after each trial. 
During the fMRI session, participants performed a physical 
inference task that was nearly identical to the one they had 
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been trained on, but without receiving any feedback on their 
performance. Throughout the fMRI session, the physical 
inference task was alternated with a visually matched con-
trol task. A cross was displayed at the centre of the screen 
during both sessions, and participants were instructed to 
fixate it while performing both the physical inference and 
control tasks.

In each trial of the physical inference task, participants 
were presented with an object moving horizontally either 
from right to left or from left to right, whose height and 
velocity varied across trials (Fig. 1). The object carried a 
ball that was dropped suddenly, at which point the screen 
was occluded such that neither the object nor the falling ball 
could be seen. The scene followed Newtonian physics, with 
the ball entering projectile motion as soon as it started to 
fall. Subsequently, participants were required to estimate: 
(i) when the ball would reach the ground (i.e., ‘fall time esti-
mation’), indicated by a button press, and (ii) where the ball 
would land, indicated by moving a basket on the bottom of 
the screen to the estimated location. During the fMRI ses-
sion and in contrast to the behavioural session, participants 
were not prompted to indicate their location estimation in 
every trial but only in one catch trial for every six trials. The 
trials of the control task featured the same visual stimuli but 
instead of pressing a button to indicate fall time estimation, 
participants had to press a button as soon as the colour of the 

fixation cross changed. The timings of the colour changes 
were randomly drawn from a distribution ranging from the 
minimum to the maximum true fall times ± 500 ms. Every 
trial was followed by a 3 s rest period.

The fMRI experiment consisted of 6 runs, each contain-
ing the same 18 physical inference and 18 control trials but 
differently pseudo-randomised. The 18 trials were generated 
by combining 3 heights and 3 velocities (i.e., [44, 61, 78 m] 
x [1.3, 1.7, 2.1 m/s]), resulting in trials featuring varying 
true fall times and locations. Within each run, trials were 
presented in 3 blocks of 6 physical inference trials, and 3 
blocks of 6 control trials. Each block started with a word 
cue indicating the task to be performed: ‘ball’ (i.e., physi-
cal inference task) or ‘cross’ (i.e., control task). The blocks 
were alternated within each run, with half of the runs start-
ing with the physical inference and the other half with the 
control condition. One run lasted 10.42 minutes.

Behavioural and self-rating data

The behavioural data were processed in Matlab (version 
9.9; The Mathworks Inc, Natick, MA). To quantify per-
formance, we calculated fall time errors by subtracting the 
estimated fall times from the true fall times. For each par-
ticipant, the absolute time error of each trial was computed 
and then averaged across all trials of the physical inference 

Fig. 1 fMRI task. The left and right columns represent the sequence of 
events in an example physical inference and control trial, respectively. 
Each block starts with a word cue indicating the task to be performed 
(Instruction) presented for 3 s. During each trial, participants first view 
a horizontally moving object with a ball attached, coming from either 
the left or the right side of the screen (Moving object). The moving 
object phase lasts between 4.8 and 7.7 s, depending on the velocity 
of the moving object. Once the object reaches the centre, the ball is 
released and the screen gets occluded such that neither the moving 

object nor the falling ball are seen (Occlusion). During the occlusion 
phase, which lasts 5 s, participants have to press a button to indicate 
when they think the ball lands in the physical inference condition, and 
when the colour of the fixation cross changes in the control condition. 
In some catch trials of the physical inference condition, participants 
additionally have to indicate where they think the ball lands (Location 
estimation). They have 8 s to move the basket to the estimated loca-
tion. Every trial is followed by a 3 s rest period during which a grey 
screen and fixation cross is displayed
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temporal derivative. The design matrix contained the follow-
ing two regressors of interest: a ‘physical inference’ regres-
sor modelling the physical inference task, i.e., the period 
between the start of the occlusion and the button press (indi-
cating the estimated landing time of the ball) minus 500 ms 
to account for motor preparation, and a ‘control’ regressor 
modelling the control task, i.e., the period between the start 
of the occlusion and the colour change. Additionally, there 
were five regressors of no interest, modelling the periods 
of the (i) instructions (ball or cross), (ii) horizontally mov-
ing object, (iii) button presses (including 500 ms of motor 
preparation in the physical inference condition, and the time 
between the colour change and button press in the control 
condition), (iv) the occlusion period of missed trials in 
which there were no button presses, and (v) location estima-
tion in the catch trials. Six motion parameters (i.e., rotations 
and translations along the x, y, and z-axes), as well as white 
matter (WM) and cerebrospinal fluid (CSF) time-series, 
were added as nuisance regressors in the GLM. To further 
reduce motion artifacts, volumes with an absolute mean dis-
placement greater than half the voxel size were scrubbed.

The seed region was created by intersecting an ana-
tomical mask covering V1, V2, and V3 from the Jülich 
Histological Atlas (Eickhoff et al. 2007), with the group 
random-effects activation map revealed by the physical 
inference > control contrast, thresholded at Z > 3.1 and 
FWE-corrected using a cluster significance level of pFWE < 
0.05. The ROI was then transformed to each participant’s 
native functional space, and its time-course extracted. The 
first-level design matrix of the PPI analysis comprised the 
following regressors: (i) the contrast between the occluded 
phase of the ‘physical inference’ versus ‘control’ condition, 
convolved with a double gamma HRF (i.e., task regressor), 
(ii) the time-course of the seed-region (i.e., physiological 
regressor), (iii) the product of the zero-centred task and de-
meaned physiological regressors (i.e., interaction term), (iv) 
an ‘occlusion’ regressor combining the occluded periods of 
the ‘physical inference’ and ‘control’ conditions, and (v) 
the same regressors of no interest and nuisance regressors 
as described above. The interaction term allows the identi-
fication of regions exhibiting task-related covariance with 
the seed region. Accordingly, an ‘interaction term > rest’ 
contrast was defined for each participant, and the resulting 
image entered into a mixed effects higher-level analysis. 
The group z-statistic images were thresholded at Z > 3.1 
and corrected for family-wise-error (FWE) using a cluster 
significance level of pFWE < 0.05.

To test whether functional connectivity strength is associ-
ated with the behavioural and self-rating data, two stepwise 
multiple linear regression analyses (p < .05) were per-
formed: one with the time estimation performance and one 
with the self-rated vividness used as a dependent variable 

condition. Additionally, we assessed self-rated vividness. 
In a post-fMRI debriefing questionnaire, participants were 
asked whether they ‘imagined the falling ball (i.e., saw it in 
their mind’s eye) during the experiment’ and if so, to rate the 
vividness of the image on a visual-analogue scale. The scale 
ranged from 0, corresponding to ‘No image at all, I only 
“know” I am thinking of the object’ to 10, corresponding to 
‘Perfectly realistic, as vivid as real seeing’.

fMRI data acquisition and pre-processing

MRI data were acquired on a 3 tesla Philips Ingenia sys-
tem using a 32-channel head coil. Anatomical images were 
acquired using a T1-weighted sequence (160 sagittal slices, 
voxel size = 1 mm3, TR = 8.3, TE = 3.9 ms, flip angle = 8°, 
matrix size = 240 × 240, FOV = 240 mm (AP) x 240 mm 
(RL) x 160 mm (FH)). Functional images were acquired 
using a whole-brain echo-planar imaging (EPI) sequence 
(40 interleaved transversal slices, TR = 2500, voxel 
size = 2.75 × 2.75 × 3.3 mm, TE = 35 ms, flip angle = 82°, 
matrix size = 80 × 78, FOV = 220 mm (AP) x 220 mm (RL) 
x 132 mm (FH), 250 volumes per run).

fMRI data were pre-processed using FSL version 6.0 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). After discarding 
the first 4 volumes to account for T1 saturation effects, 
the following pre-processing steps were applied to each 
run: motion correction using the Motion Correction Lin-
ear Image Registration Tool (Jenkinson et al. 2002), brain 
extraction using the automated Brain Extraction Tool (BET; 
Smith 2002), spatial smoothing using a Gaussian kernel 
of 5 mm full-width-at-half-maximum (FWHM), and high-
pass filtering using a 100s cut-off as implemented in FSL’s 
Expert Analysis Tool (FEAT). Each run was additionally 
inspected for excessive motion and excluded from further 
analyses if the absolute mean displacement was greater 
than ~ half the voxel size (i.e., 1.4 mm); two runs (from two 
different participants) were excluded. Normalisation was 
performed by aligning functional images to structural ones 
using boundary-based registration (Greve and Fischl 2009), 
aligning structural images to the 2 mm Montreal Neurologi-
cal Institute (MNI-152) standard space using nonlinear reg-
istration (FNIRT), and applying the resulting warp fields to 
the functional images.

fMRI data analysis

Psychophysiological interaction analysis

The PPI analysis was performed using FSL version 6.0. To 
define the seed region, we used a standard contrast analy-
sis with a general linear model (GLM) based on a double 
gamma hemodynamic response function (HRF) and its first 
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occlusion period of the corresponding condition. The GLM 
used for DCM specification (GLM2) contained the fol-
lowing two regressors of interest: an ‘occlusion’ regressor 
combining the occlusion periods of the ‘physical inference’ 
and ‘control’ conditions, and the same ‘physical inference’ 
regressor as in GLM1. The ‘occlusion’ regressor was used 
as a driving input, and the ‘physical inference’ regressor as 
modulatory inputs. As such, the inputs of matrices A and 
B were not redundant to each other (see Eq. 1). All task 
regressors were convolved with a canonical hemodynamic 
response function (HRF) and its first temporal derivative.

Selection of regions of interest and time-series extrac-
tion ROIs were selected based on the results of our PPI 
analysis and previous research characterising the regions 
systematically involved in intuitive physics (Fischer et al. 
2016; Pramod et al. 2022; Schwettmann et al. 2019; Zbären 
et al. 2023). The following regions were included in our 
DCMs: right early visual areas (visual), right supramarginal 
gyrus (SMG), right superior parietal lobule (SPL), right 
dorsal premotor cortex (PMd) overlapping with frontal eye 
fields (FEF), and right supplementary motor area (SMA). 
We restricted our ROIs to the right hemisphere to limit 
model complexity and due to stronger activations of the 
right hemisphere in the PPI analysis. For each ROI, we first 
defined a fixed outer sphere with a radius of 16 mm, centred 
on the MNI coordinates of the group-level right hemisphere 
peak activations in the PPI analysis (i.e., visual [9–88 -14], 
SMG [56 − 36 52], SPL [20–70 50], PMd [30 0 52], and 
SMA [6 − 2 64]). To account for individual differences in 
functional anatomy, we defined a mobile inner sphere with a 
radius of 6 mm, centred on subject-specific peak activations 
from a ‘physical inference > control’ contrast from GLM1.

The peak activations were located within both the outer 
sphere and a mask of the right hemisphere obtained from 
the Harvard-Oxford subcortical structural atlas (Desikan et 
al. 2006). Time-series were extracted from the voxels within 
the inner sphere that exceeded an uncorrected threshold of 
p < .05. In three participants, one of the five ROIs did not 
contain any surviving voxels so we lowered their threshold 
until a peak voxel could be identified (i.e., to p < .1 for two 
participants and p < .2 for the third participant), as recom-
mended in Zeidman et al. (2019). We did not exclude these 
participants as someone with a weak or absent response in 
one brain region may still provide valuable information 
about the other regions in the network. Also note that the use 
of a threshold for time-series extraction is only to remove 
the noisiest voxels.

(see Sect. 2.3). In both regression analyses, the predictors 
consisted of the mean parameter estimate of each significant 
cluster revealed by the PPI analysis.

Dynamic causal modelling

To investigate causal interactions between the brain regions 
identified through the PPI analysis, we used dynamic causal 
modelling (DCM, Friston et al. 2003) implemented in Sta-
tistical Parametric Mapping (SPM12, http://www.fil.ion.
ucl.ac.uk/spm/). DCM for fMRI is a neurophysiologically 
plausible modelling scheme that estimates task-related 
changes in effective connectivity from measured BOLD 
signals, within a network of preselected brain regions. In 
DCM, neural activity changes are characterised by the fol-
lowing state-space equation (Eq. 1):

ż =



A +
m∑

j=1

ujB
j



 z + Cu

The state vector ż  represents changes in neural activity over 
time as a function of the current level of neural activity z
, the experimental stimuli u , and the connectivity param-
eters A , B , and C . The matrix A  specifies the intrinsic 
or endogenous effective connectivity between and within 
regions, while the matrix B  specifies the changes in effec-
tive connectivity due to task-related modulatory inputs uj . 
The matrix C  represents the direct effects of driving inputs 

u  on a given region. The values of extrinsic connections 
have units in Hertz (Hz) and represent synaptic rate con-
stants (i.e., connection strengths) while intrinsic (within-
region) connections are log-scaling parameters.

General linear models To perform the DCM analysis, the 
fMRI data pre-processed in FSL was first transformed 
from native to MNI space, after which two separate first-
level GLMs were implemented in SPM: one for time-series 
extraction and the other for specifying the DCM inputs. The 
reason for using two separate GLMs was to avoid a rank 
deficient design matrix that would have resulted from com-
bining the three necessary regressors (i.e., ‘physical infer-
ence’, ‘control’, and a combination of both) into a single 
GLM. Both GLMs included the same five regressors of no 
interest modelling the periods of the instructions, moving 
objects, button presses, missed trials, and location estima-
tions (see Sect. 2.5.1). In addition, both GLMs contained 
the same nuisance regressors consisting of six motion 
parameters (i.e., rotations and translations along the x, y, 
and z-axes) and the scrubbing regressors. The GLM used for 
time-series extraction (GLM1) contained a ‘physical infer-
ence’ and a ‘control’ regressor of interest, modelling the 
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each subject to estimate a second-level PEB model on the 
B  matrix parameters.

To investigate which connections are most likely to be 
modulated by physical inference, we defined a set of hypoth-
eses expressed as pre-defined reduced PEB models in which 
certain connections have been switched off. We specified 
models in which the following sets of connections could 
be modulated by physical inference: from visual to parietal 
(i.e., SMG and SPL) regions, from parietal to visual regions, 
or both, and from parietal (i.e., SMG and SPL) to premo-
tor (i.e., PMd and SMA) regions, from premotor to parietal 
regions, or both (Fig. 2B). Each type of modulation between 
visual and parietal regions (i.e., visual-to-parietal, parietal-
to-visual, bidirectional) could be combined with each type 
of modulation between parietal and premotor regions (i.e., 
parietal-to-premotor, premotor-to-parietal, bidirectional), 
resulting in a total of nine models. We allowed reciprocal 
connections between the premotor (PMd and SMA) and 
between the parietal (SMG and SPL) regions to always be 
modulated by physical inference, as there was no compel-
ling reason to assume they would not be. This was done 
to limit the number of models and because these connec-
tions were not of particular interest for the current analysis. 
Together with the full model, our model space consisted of 
nine models.

We then tested which of our pre-defined models best 
explains the commonalities across subjects, by comparing 
the log-evidence of the full PEB model against reduced 
ones. Since none of the models could be categorised as a 
winning one (i.e., probability > 95%, see S1 of the Sup-
plementary Material), we averaged the parameters across 
models using Bayesian model averaging (BMA; Hoeting 
et al. 1999). BMA yields weighted averages of parameter 

First-level DCM specification and inversion In the A matrix, 
we specified reciprocal intrinsic connections between the 
following pairs of regions: visual and SMG, visual and 
SPL, SMG and SPL, SMG and PMd, SMG and SMA, SPL 
and PMd, SPL and SMA, and PMd and SMA (Fig. 2A), 
in accordance with the anatomical literature (Bakola et 
al. 2013; Boussaoud et al. 2005; Felleman and Van Essen 
1991; Luppino et al. 1993). We did not specify any con-
nection between premotor and early visual regions, as there 
is no compelling evidence of direct anatomical connections 
(Felleman and Van Essen 1991). The driving input (i.e., the 
‘occlusion’ regressor from GLM2) was specified as enter-
ing the network via visual regions as the onset of this phase 
was marked by a change in the screen colour. The inputs 
were mean-centred, such that the parameter estimates in 
matrix B represent changes in effective connectivity relative 
to the average connectivity across conditions (i.e., physical 
inference and control). In the B matrix, we specified a ‘full’ 
DCM in which all the between-region connections present 
in the A matrix could be modulated by physical inference. 
The DCM for each subject was then inverted, thereby pro-
viding estimates of the connectivity parameters that best 
explain the data.

Second-level analysis using parametric empirical Bayes The 
subject-specific connectivity parameter estimates were then 
taken to the group level, where we used parametric empiri-
cal Bayes (PEB; Friston et al. 2015) together with Bayes-
ian Model Reduction (BMR; Friston et al. 2016) to test 
hypotheses on the group-level connectivity parameters. We 
collated the previously estimated fully connected model of 

Fig. 2 Representation of the model space for DCM. A. Endogenous 
connectivity (i.e., A -matrix). B. Possible modulatory effects (i.e., B
-matrix) on premotor-parietal connections (top panel) and parietal-
visual connections (bottom panel). Each type of parietal-visual modu-

lation was combined with each type of premotor-parietal modulation, 
resulting in a total of nine models (i.e., full PEB model and 8 reduced 
PEB models). Grey arrows represent fixed modulations that are identi-
cal across models
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To assess whether functional connectivity changes are 
relevant for behavioural performance and/or the self-rated 
vividness of the imagined physical scene, we performed two 
stepwise multiple linear regressions with the mean param-
eter estimates of each cluster used as predictors. We found 
that functional coupling between early visual areas and the 
SMG significantly predicted self-rated vividness (β = 0.528, 
p = .035) (Fig. 3B), whereas there were no significant linear 
associations between functional connectivity and time esti-
mation performance.

Dynamic causal modelling

Bayesian model selection (BMS) revealed that the model 
that best explains the data, with a probability of 89%, is the 
one that allows physical inference to modulate top-down 
parietal-visual and bidirectional parietal-premotor connec-
tions, followed by the full model with a probability of 11% 
(Figure S1). However, since no model’s probability reached 
95%, a clear winning model could not be determined. Con-
sequently, Bayesian model averaging (BMA) was used to 
estimate model parameters.

The results of our PEB/BMA analysis showed that physi-
cal inference was associated with strong decreases in effec-
tive connectivity from SMG to SPL and PMd while the 
strongest increases of effective connectivity originated from 
SPL and projected to SMG, SMA, and early visual areas (see 
Fig. 4B and Table S2 of the Supplementary Material). Our 
results further show bidirectional increases of connectivity 
between premotor areas (i.e., SMA and PMd). Interestingly, 
the results did not reveal any significant modulation of con-
nectivity between SMG and early visual areas.

We found an association between increased effective 
connectivity from PMd to SMA and heightened self-rated 
vividness (β = 0.537, p < .05) (Fig. 4C). There were no sig-
nificant linear associations between effective connectivity 
changes and time estimation performance.

estimates, where each parameter estimate is weighted by the 
posterior probability of the associated model, thereby char-
acterizing the direction and size of task-related changes in 
connectivity strength (i.e., expressed in the matrix B ). To 
determine the statistical significance of the parameter esti-
mates, we set a threshold based on free energy and retained 
the parameters with a posterior probability of being present 
versus absent ≥ 0.95. Additionally, to test whether and which 
modulations of effective connectivity were associated with 
time estimation performance and/or self-rated vividness 
(see Sect. 2.3), we performed two stepwise multiple linear 
regression analyses with the DCM parameters informed by 
the group used as predictors.

Results

Behavioural data

In the physical inference task, the mean absolute fall time 
errors were of 0.5441 s ± 0.1466, and the self-reported viv-
idness scores had a mean of 5.525 ± 2.2549.

Psychophysiological interaction analysis

We performed a PPI analysis to identify which regions 
exhibit condition-dependent increases in functional connec-
tivity with early visual areas. Our results revealed increased 
functional connectivity during physical inference, as com-
pared with the control condition, between early visual areas 
and a network of frontoparietal regions. This network com-
prises bilateral dorsal premotor cortex (PMd) with the right 
hemispheric activation overlapping with frontal eye field 
(FEF), bilateral supplementary motor area (SMA), bilat-
eral superior parietal lobule (SPL), and right supramarginal 
gyrus (SMG) with activations extending into the intrapari-
etal sulcus (IPS) (see Fig. 3A and Table S1 of the Supple-
mentary material).

Fig. 3 Results of the PPI analysis. A. Group random-effects activa-
tion map of the PPI analysis, thresholded at Z > 3.1 and FWE-cor-
rected using a cluster significance level of pFWE < 0.05. B. Associa-

tion between parameter estimates of the right SMG/IPS cluster and 
self-rated vividness. The grey shading represents the 95% confidence 
interval

 

1 3

1611



Brain Structure and Function (2024) 229:1605–1615

superior parietal lobule (SPL), dorsal premotor cortex 
(PMd) including frontal eye field (FEF), and supplementary 
motor area (SMA) show increased connectivity with early 
visual areas, compared to a visually matched control task. 
Note that these results are unlikely to be driven by involun-
tary eye movements, as demonstrated by our prior control 
experiment in which participants performed the same task 
while their eye movements were monitored using eye track-
ing, revealing no difference in eye positions and saccades 
between the physical inference and control conditions (for 
further details, see Zbären et al. 2023). All these frontopa-
rietal regions have been shown to be consistently involved 
in intuitive physical inference (Fischer et al. 2016; Pramod 
et al. 2022; Schwettmann et al. 2019), and to contain trajec-
tory-specific information about the occluded ball when solv-
ing this task (Zbären et al. 2023). This network of regions 
overlaps with areas typically involved in visuospatial atten-
tion (Corbetta and Shulman 2002; Nobre 2001) and visual 
imagery (Winlove et al. 2018). Our PPI analysis suggests 
that this frontoparietal network may contribute to evoking 
activity in early visual areas even in the absence of external 
visual input, consistent with previous research demonstrat-
ing the dorsal frontoparietal network’s role in the top-down 
allocation of attention not only towards external sensory 
stimuli but also towards internal representations (Cona and 
Scarpazza 2019). During visual imagery, dorsal premotor 
and parietal areas have been shown to modulate early visual 
activity (Dentico et al. 2014; Dijkstra et al. 2017; Ishai et 
al. 2000; Mechelli 2004). Additionally, we found that the 
strength of the functional coupling between the SMG/IPS 
cluster and early visual areas is a significant predictor of 
the subjective vividness of the imagined scene. This finding 
aligns with previous research showing a positive relation 

Discussion

The aim of the present study was to examine connectivity 
patterns among brain regions involved in physical infer-
ence when predicting the trajectory of objects falling para-
bolically and under occlusion. Participants underwent fMRI 
while performing a task in which they had to infer the tra-
jectory of an occluded ball falling from various heights and 
with various horizontal velocities, and a visually matched 
control task. Building on our previous research demonstrat-
ing that when solving this task, early visual areas contain 
representations of the occluded trajectory similar to those 
activated by observing a ball fall (Zbären et al. 2023), the 
present study aimed to (i) identify regions that interact with 
early visual areas during the physical inference task, and 
(ii) investigate changes in effective connectivity within this 
network of regions. We found that during physical infer-
ence, early visual areas are functionally connected to a set 
of parietal and premotor regions. Our DCM results further 
show that physical inference is associated with bidirectional 
changes in effective connectivity within a parieto-premotor 
network and increased top-down coupling from the SPL to 
early visual areas.

Early visual areas are functionally connected 
to frontoparietal regions when predicting the 
trajectory of occluded objects

Our psychophysiological interaction (PPI) analysis revealed 
that during physical inference, the functional coupling 
between early visual areas and several frontoparietal regions 
increases in a condition-dependent manner. Specifically, the 
supramarginal gyrus (SMG) and intraparietal sulcus (IPS), 

Fig. 4 Dynamic causal modelling analysis. A. Loca-
tion of regions of interest in an example subject: dark 
blue = early visual, green = SPL, red = SMG, pink = SMA, 
cyan = PMd. B. Depiction of the parameter estimates 
computed using PEB/BMA and exhibiting a probabil-
ity ≥ 0.95. Pink arrows indicate an increase in connectiv-
ity and blue arrows indicate a decrease in connectivity 
associated with physical inference, relative to the average 
connectivity across conditions. The thickness of each 
arrow is proportional to the average size of the corre-
sponding parameter estimate. C. Association between the 
parameter estimates of the PMd to SMA modulation and 
self-rated vividness. The grey shading represents the 95% 
confidence interval
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in various tasks requiring the processing of visual informa-
tion (including continuously moving stimuli) and trajectory 
planning (Sulpizio et al. 2020, 2023), our analysis suggests 
a top-down influence of this area on early visual process-
ing during physical inference. This top-down influence 
may facilitate the activation of visual representations of the 
physical scenario, resulting in the formation of perception-
like images in the absence of bottom-up visual inputs. Inter-
estingly, V6Ad has been shown to be specifically activated 
by imagery tasks (Sulpizio et al. 2020). Additionally, the 
SPL increases connectivity bidirectionally with the SMA 
and unidirectionally to PMd, indicating that key areas of the 
dorso-medial parieto-premotor processing stream become 
increasingly connected. In contrast, the SMG/IPS, which is 
typically considered to be part of the dorso-lateral process-
ing stream, decreases its connectivity with both SPL and 
PMd. In summary, our findings put forward the hypothesis 
that performing the physical inference task is associated 
with stronger bidirectional effective connectivity within a 
dorso-medial parieto-premotor processing stream, which 
seems to drive activity in early visual areas and SMG/IPS in 
a top-down fashion.

Previous work has found that visual imagery is associated 
with increased top-down coupling from the intraparietal sul-
cus to early visual regions (Dijkstra et al. 2017), however, in 
our task, SPL seems to mediate this potential interaction via 
increased connectivity to both SMG/IPS and early visual 
areas. Note that the dorso-medial parieto-premotor pathway 
is considered to constitute the ‘vision-for-action’ pathway, 
which has traditionally been identified using sensorimotor 
tasks that involve trajectory planning, for example during 
reaching (Greulich et al. 2020). Our task did not require par-
ticipants to directly translate visuo-spatial information into 
the spatial control of movement, indicating that even though 
these pathways are essential for motor actions, they seem to 
underpin more general aspects of behaviour that consider 
information about the physical world.

Our results did not reveal changes in effective connectiv-
ity between early visual areas and the SMG/IPS. This may 
be explained by the SMG/IPS cluster containing the ante-
rior portion of the IPS (AIP), which does not receive direct 
input from early visual areas, and recent work showing that 
also effective connectivity from AIP to early visual areas is 
limited, as estimated based on resting-state fMRI (Rolls et 
al. 2023a, b). We did not find any significant associations 
between changes in functional or effective connectivity and 
time-estimation performance, suggesting that subject-spe-
cific temporal errors may not primarily emerge from subop-
timal brain connectivity between two specific areas. This is 
not entirely unexpected since time estimation performance 
is likely to reflect the integration of neural processing within 

between the subjective vividness of a mental image and the 
strength of the connection from the intraparietal sulcus to 
early visual area (Dijkstra et al. 2017).

Intuitive physical inference modulates effective 
connectivity within a visuo-fronto-parietal network

Given that functional connectivity cannot offer insights into 
the direction of information flow between connected areas, 
we further investigated the network of regions revealed by 
the PPI analysis in terms of effective connectivity. We built 
anatomically plausible dynamic causal models (DCM) of 
these regions and how their interactions may be modulated 
by physical inference. Bayesian model selection did not 
reveal a clear winning model as none of the models exhib-
ited a probability greater than 95%. Nevertheless, the DCM 
with the highest model evidence tentatively suggests that 
physical inference modulates visual-parietal connections 
in a top-down fashion and parietal-premotor connections 
bidirectionally.

Inference on model parameters using Bayesian model 
averaging revealed that physical inference is associated 
with bidirectional increases in connectivity between SMA 
and SPL, and between SMA and PMd. The SMA has been 
closely linked to imagery, particularly motor imagery (Hétu 
et al. 2013), but also other modalities such as visual imagery 
(Palmiero et al. 2009). Interestingly, we found the increase 
in connectivity from the PMd to the SMA to be predictive 
of the self-rated vividness of the inferred physical scene. 
However, it is worth noting that the size of our sample may 
constrain the generalisability of such brain-behaviour rela-
tionships. Additionally, the SMA is involved in temporal 
processing (Hinton et al. 2004; Macar et al. 1999; Nani et 
al. 2019). Research has shown that when estimating time-
to-contact, humans rely not only on kinematic cues derived 
from visual inputs (e.g., velocity), but also on temporal 
information, particularly during occlusion (Battaglini and 
Ghiani 2021; Chang and Jazayeri 2018). Considering this, 
it is plausible that the SMA might have been implicated in 
tracking time during the occluded fall in our physical infer-
ence task, thereby contributing to predicting the ball’s land-
ing time.

Our results further suggest that solving the physical 
inference task is associated with pronounced connectivity 
changes of the SPL, with an increase in effective connectiv-
ity from SPL to SMG/IPS and visual areas. It is likely that 
our SPL ROI, which was centred around MNIxyz= 20, -70, 
50, contains the human homologue of non-human primates’ 
area V6Ad, which has been shown to respond to coherent 
visual motion stimuli and be involved in spatial trajectory 
planning, particularly in the context of pointing movements 
(Sulpizio et al. 2023). While this area has been implicated 
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adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Ahuja A, Desrochers TM, Sheinberg DL (2022) A role for visual areas 
in physics simulations. Cognit Neuropsychol. https://doi.org/10.1
080/02643294.2022.2034609

Bakola S, Passarelli L, Gamberini M, Fattori P, Galletti C (2013) Corti-
cal Connectivity suggests a role in Limb Coordination for Macaque 
Area PE of the Superior Parietal Cortex. J Neurosci 33(15):6648–
6658. https://doi.org/10.1523/JNEUROSCI.4685-12.2013

Bates CJ, Yildirim I, Tenenbaum JB, Battaglia PW (2015) Humans 
predict liquid dynamics using probabilistic simulation. CogSci 
2015

Battaglia PW, Hamrick JB, Tenenbaum JB (2013) Simulation as an 
engine of physical scene understanding. Proc Natl Acad Sci USA 
110(45):18327–18332. https://doi.org/10.1073/pnas.1306572110

Battaglini L, Ghiani A (2021) Motion behind occluder: amodal per-
ception and visual motion extrapolation. Visual Cognition 
29(8):475–499. https://doi.org/10.1080/13506285.2021.1943094

Boussaoud D, Tanné-Gariépy J, Wannier T, Rouiller EM (2005) Cal-
losal connections of dorsal versus ventral premotor areas in the 
macaque monkey: a multiple retrograde tracing study. BMC Neu-
rosci 6(1):67. https://doi.org/10.1186/1471-2202-6-67

Chang C-J, Jazayeri M (2018) Integration of speed and time for 
estimating time to contact. Proc Natl Acad Sci 115(12):E2879–
E2887. https://doi.org/10.1073/pnas.1713316115

Cona G, Scarpazza C (2019) Where is the where in the brain? A meta-
analysis of neuroimaging studies on spatial cognition. Hum Brain 
Mapp 40(6):1867–1886. https://doi.org/10.1002/hbm.24496

Corbetta M, Shulman GL (2002) Control of goal-directed and stimu-
lus-driven attention in the brain. Nat Rev Neurosci 3(3). https://
doi.org/10.1038/nrn755

Dentico D, Cheung BL, Chang J-Y, Guokas J, Boly M, Tononi G, Van 
Veen B (2014) Reversal of cortical information flow during visual 
imagery as compared to visual perception. NeuroImage 100:237–
243. https://doi.org/10.1016/j.neuroimage.2014.05.081

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker 
D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, 
Killiany RJ (2006) An automated labeling system for subdividing 
the human cerebral cortex on MRI scans into gyral based regions 
of interest. NeuroImage 31(3):968–980. https://doi.org/10.1016/j.
neuroimage.2006.01.021

Dijkstra N, Zeidman P, Ondobaka S, van Gerven MAJ, Friston K 
(2017) Distinct top-down and bottom-up Brain Connectivity dur-
ing Visual Perception and Imagery. Sci Rep 7(1):5677. https://
doi.org/10.1038/s41598-017-05888-8

Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K, 
Amunts K (2007) Assignment of functional activations to proba-
bilistic cytoarchitectonic areas revisited. NeuroImage 36(3):511–
521. https://doi.org/10.1016/j.neuroimage.2007.03.060

Felleman DJ, Van Essen DC (1991) Distributed hierarchical Process-
ing in the Primate Cerebral cortex. Cereb Cortex 1(1):1–47. 
https://doi.org/10.1093/cercor/1.1.1

a distributed network across the whole duration of the phys-
ical inference task.

Conclusion

Our study shows that when solving a physical inference task 
requiring participants to infer projectile motion under occlu-
sion, early visual areas are functionally connected to a set of 
parietal and premotor regions. Our dynamic causal model-
ling results suggest that predicting occluded trajectories is 
associated with changes in bidirectional effective connectiv-
ity within a dorso-medial parieto-premotor network, which 
may drive activity in early visual areas in a top-down fash-
ion. These findings offer new insights into the interaction 
between early visual and physics-responsive frontoparietal 
regions during physical inference, shedding new light on the 
neural mechanisms underlying the ability to make predic-
tions about the physical environment.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s00429-
024-02815-2.

Acknowledgements We would like to thank members of the TNU and 
Marc Bächinger for their help and feedback on the DCM analysis, and 
all the participants for their time and effort.

Author contributions G.A.Z., M.K., S.N.M., and N.W conceived and 
designed research; G.A.Z. performed experiments; G.A.Z analysed 
data; G.A.Z., S.N.M., and N.W interpreted results; G.A.Z prepared 
figures; G.A.Z drafted manuscript; G.A.Z., M.K., S.N.M., and N.W 
edited and revised manuscript. All authors approved final version of 
manuscript.

Funding This work was supported by The Future Learning Initiative, 
ETH Zurich.
Open access funding provided by Swiss Federal Institute of Technol-
ogy Zurich

Data availability Data are openly available on the ETH Library 
Research Collection with the https://doi.org/10.3929/ethz-
b-000578094.

Declarations

Ethics approval This study was performed in line with the principles 
of the Declaration of Helsinki. Approval was granted by the Ethics 
Committee of the Swiss Federal Institute of Technology (EK 2020-N-
31; Zurich, Switzerland).

Consent to participate Informed consent was obtained from all indi-
vidual participants included in the study.

Competing interests The authors declare no conflict of interest.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 

1 3

1614

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/02643294.2022.2034609
https://doi.org/10.1080/02643294.2022.2034609
https://doi.org/10.1523/JNEUROSCI.4685-12.2013
https://doi.org/10.1073/pnas.1306572110
https://doi.org/10.1080/13506285.2021.1943094
https://doi.org/10.1186/1471-2202-6-67
https://doi.org/10.1073/pnas.1713316115
https://doi.org/10.1002/hbm.24496
https://doi.org/10.1038/nrn755
https://doi.org/10.1038/nrn755
https://doi.org/10.1016/j.neuroimage.2014.05.081
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1038/s41598-017-05888-8
https://doi.org/10.1038/s41598-017-05888-8
https://doi.org/10.1016/j.neuroimage.2007.03.060
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1007/s00429-024-02815-2
https://doi.org/10.1007/s00429-024-02815-2
https://doi.org/10.3929/ethz-b-000578094
https://doi.org/10.3929/ethz-b-000578094


Brain Structure and Function (2024) 229:1605–1615

Nani A, Manuello J, Liloia D, Duca S, Costa T, Cauda F (2019) The 
neural correlates of Time: a Meta-analysis of Neuroimaging stud-
ies. J Cogn Neurosci 31(12):1796–1826. https://doi.org/10.1162/
jocn_a_01459

Nobre AC (2001) The attentive homunculus: now you see it, now you 
don’t. Neurosci Biobehavioral Reviews 25(6):477–496. https://
doi.org/10.1016/S0149-7634(01)00028-8

Palmiero M, Olivetti Belardinelli M, Nardo D, Sestieri C, Di Matteo 
R, D’Ausilio A, Romani GL (2009) Mental imagery generation in 
different modalities activates sensory-motor areas. Cogn Process 
10(S2):268–271. https://doi.org/10.1007/s10339-009-0324-5

Pramod R, Cohen MA, Tenenbaum JB, Kanwisher N (2022) Invari-
ant representation of physical stability in the human brain. eLife 
11:e71736. https://doi.org/10.7554/eLife.71736

Rolls ET, Deco G, Huang C-C, Feng J (2023a) Multiple cortical visual 
streams in humans. Cereb Cortex 33(7):3319–3349. https://doi.
org/10.1093/cercor/bhac276

Rolls ET, Deco G, Huang C-C, Feng J (2023b) The human posterior 
parietal cortex: effective connectome, and its relation to function. 
Cereb Cortex 33(6):3142–3170. https://doi.org/10.1093/cercor/
bhac266

Schwettmann SE, Tenenbaum JB, Kanwisher N (2019) Invariant rep-
resentations of mass in the human brain. eLife 8:1–14. https://doi.
org/10.7554/eLife.46619

Smith SM (2002) Fast robust automated brain extraction. Hum Brain 
Mapp 17(3):143–155. https://doi.org/10.1002/hbm.10062

Sulpizio V, Neri A, Fattori P, Galletti C, Pitzalis S, Galati G (2020) 
Real and imagined grasping movements differently activate the 
human Dorsomedial Parietal Cortex. Neuroscience 434:22–34. 
https://doi.org/10.1016/j.neuroscience.2020.03.019

Sulpizio V, Fattori P, Pitzalis S, Galletti C (2023) Functional orga-
nization of the caudal part of the human superior parietal lob-
ule. Neurosci Biobehavioral Reviews 153:105357. https://doi.
org/10.1016/j.neubiorev.2023.105357

Winlove CIP, Milton F, Ranson J, Fulford J, MacKisack M, Macpher-
son F, Zeman A (2018) The neural correlates of visual imagery: 
a co-ordinate-based meta-analysis. Cortex 105:4–25. https://doi.
org/10.1016/j.cortex.2017.12.014

Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian 
model averaging: a tutorial (with comments by M. Clyde, David 
Draper and E. I. George, and a rejoinder by the authors). Stat Sci , 
14(4):382–417. https://doi.org/10.1214/ss/1009212519

Zbären GA, Meissner SN, Kapur M, Wenderoth N (2023) Physical 
inference of falling objects involves simulation of occluded tra-
jectories in early visual areas. Hum Brain Mapp 44(10):4183–
4196. https://doi.org/10.1002/hbm.26338

Zeidman P, Jafarian A, Corbin N, Seghier ML, Razi A, Price CJ, Fris-
ton KJ (2019) A guide to group effective connectivity analysis, 
part 1: first level analysis with DCM for fMRI. NeuroImage 
200:174–190. https://doi.org/10.1016/j.neuroimage.2019.06.031

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Fischer J, Mikhael JG, Tenenbaum JB, Kanwisher N (2016) Func-
tional neuroanatomy of intuitive physical inference. Proc Natl 
Acad Sci 113(34):E5072–E5081. https://doi.org/10.1073/
pnas.1610344113

Friston KJ, Harrison L, Penny W (2003) Dynamic causal model-
ling. NeuroImage 19(4):1273–1302. https://doi.org/10.1016/
S1053-8119(03)00202-7

Friston K, Zeidman P, Litvak V (2015) Empirical Bayes for DCM: 
A Group Inversion Scheme. Frontiers in Systems Neuroscience, 
9. https://www.frontiersin.org/articles/https://doi.org/10.3389/
fnsys.2015.00164

Friston KJ, Litvak V, Oswal A, Razi A, Stephan KE, van Wijk BCM, 
Ziegler G, Zeidman P (2016) Bayesian model reduction and 
empirical Bayes for group (DCM) studies. NeuroImage 128:413–
431. https://doi.org/10.1016/j.neuroimage.2015.11.015

Gerstenberg T, Zhou L, Smith KA, Tenenbaum JB (2017) Faulty Tow-
ers: A hypothetical simulation model of physical support. Pro-
ceedings of the 39th Annual Meeting of the Cognitive Science 
Society

Gerstenberg T, Goodman ND, Lagnado DA, Tenenbaum JB (2021) A 
counterfactual simulation model of causal judgments for physical 
events. Psychol Rev. https://doi.org/10.1037/rev0000281

Greulich RS, Adam R, Everling S, Scherberger H (2020) Shared 
functional connectivity between the dorso-medial and dorso-
ventral streams in macaques. Sci Rep 10(1):18610. https://doi.
org/10.1038/s41598-020-75219-x

Greve DN, Fischl B (2009) Accurate and robust brain image alignment 
using boundary-based registration. NeuroImage 48(1):63–72. 
https://doi.org/10.1016/j.neuroimage.2009.06.060

Hamrick JB, Battaglia PW, Griffiths TL, Tenenbaum JB (2016) Infer-
ring mass in complex scenes by mental simulation. Cognition 
157:61–76. https://doi.org/10.1016/j.cognition.2016.08.012

Hétu S, Grégoire M, Saimpont A, Coll M-P, Eugène F, Michon P-E, 
Jackson PL (2013) The neural network of motor imagery: an ALE 
meta-analysis. Neurosci Biobehavioral Reviews 37(5):930–949. 
https://doi.org/10.1016/j.neubiorev.2013.03.017

Hinton SC, Harrington DL, Binder JR, Durgerian S, Rao SM (2004) 
Neural systems supporting timing and chronometric counting: 
an FMRI study. Cogn Brain Res 21(2):183–192. https://doi.
org/10.1016/j.cogbrainres.2004.04.009

Ishai A, Ungerleider LG, Haxby JV (2000) Distributed neural sys-
tems for the generation of visual images. Neuron 28(3):979–990. 
https://doi.org/10.1016/S0896-6273(00)00168-9

Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved opti-
mization for the Robust and Accurate Linear Registration and 
Motion correction of brain images. NeuroImage 17(2):825–841. 
https://doi.org/10.1006/nimg.2002.1132

Luppino G, Matelli M, Camarda R, Rizzolatti G (1993) Corticocortical 
connections of area F3 (SMA-proper) and area F6 (pre-SMA) in 
the macaque monkey. J Comp Neurol 338(1):114–140. https://
doi.org/10.1002/cne.903380109

Macar F, Vidal F, Casini L (1999) The supplementary motor area in 
motor and sensory timing: evidence from slow brain potential 
changes. Exp Brain Res 125(3):271–280. https://doi.org/10.1007/
s002210050683

Mechelli A (2004) Where bottom-up meets Top-down: neuro-
nal interactions during perception and imagery. Cereb Cortex 
14(11):1256–1265. https://doi.org/10.1093/cercor/bhh087

1 3

1615

https://doi.org/10.1162/jocn_a_01459
https://doi.org/10.1162/jocn_a_01459
https://doi.org/10.1016/S0149-7634(01)00028-8
https://doi.org/10.1016/S0149-7634(01)00028-8
https://doi.org/10.1007/s10339-009-0324-5
https://doi.org/10.7554/eLife.71736
https://doi.org/10.1093/cercor/bhac276
https://doi.org/10.1093/cercor/bhac276
https://doi.org/10.1093/cercor/bhac266
https://doi.org/10.1093/cercor/bhac266
https://doi.org/10.7554/eLife.46619
https://doi.org/10.7554/eLife.46619
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1016/j.neuroscience.2020.03.019
https://doi.org/10.1016/j.neubiorev.2023.105357
https://doi.org/10.1016/j.neubiorev.2023.105357
https://doi.org/10.1016/j.cortex.2017.12.014
https://doi.org/10.1016/j.cortex.2017.12.014
https://doi.org/10.1214/ss/1009212519
https://doi.org/10.1002/hbm.26338
https://doi.org/10.1016/j.neuroimage.2019.06.031
https://doi.org/10.1073/pnas.1610344113
https://doi.org/10.1073/pnas.1610344113
https://doi.org/10.1016/S1053-8119(03)00202-7
https://doi.org/10.1016/S1053-8119(03)00202-7
https://www.frontiersin.org/articles/
https://doi.org/10.3389/fnsys.2015.00164
https://doi.org/10.3389/fnsys.2015.00164
https://doi.org/10.1016/j.neuroimage.2015.11.015
https://doi.org/10.1037/rev0000281
https://doi.org/10.1038/s41598-020-75219-x
https://doi.org/10.1038/s41598-020-75219-x
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.cognition.2016.08.012
https://doi.org/10.1016/j.neubiorev.2013.03.017
https://doi.org/10.1016/j.cogbrainres.2004.04.009
https://doi.org/10.1016/j.cogbrainres.2004.04.009
https://doi.org/10.1016/S0896-6273(00)00168-9
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1002/cne.903380109
https://doi.org/10.1002/cne.903380109
https://doi.org/10.1007/s002210050683
https://doi.org/10.1007/s002210050683
https://doi.org/10.1093/cercor/bhh087

	Inferring occluded projectile motion changes connectivity within a visuo-fronto-parietal network
	Abstract
	Introduction
	Materials and methods
	Participants
	fMRI task
	Behavioural and self-rating data
	fMRI data acquisition and pre-processing
	fMRI data analysis
	Psychophysiological interaction analysis
	Dynamic causal modelling
	General linear models
	Selection of regions of interest and time-series extraction
	First-level DCM specification and inversion
	Second-level analysis using parametric empirical Bayes



	Results
	Behavioural data



