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Abstract
The unprecedented habitat fragmentation or loss has threatened the existence of 
many species. Therefore, it is essential to understand whether and how these spe-
cies can pace with the environmental changes. Recent advantages in landscape 
genomics enabled us to identify molecular signatures of adaptation and predict 
how populations will respond to changing environments, providing new insights 
into the conservation of species. Here, we investigated the pattern of neutral and 
putative adaptive genetic variation and its response to changing environments in 
a tertiary relict tree species, Taxus cuspidata	 Sieb.	 et	 Zucc,	 which	 is	 distributed	
in northeast China and adjacent regions. We investigated the pattern of genetic 
diversity	 and	 differentiation	 using	 restriction	 site-	associated	 DNA	 sequencing	
(RAD-	seq)	and	seven	nuclear	microsatellites	(nSSRs)	datasets.	We	further	explored	
the endangered mechanism, predicted its vulnerability in the future, and provided 
guidelines	for	the	conservation	and	management	of	this	species.	RAD-	seq	identi-
fied	16,087	single	nucleotide	polymorphisms	 (SNPs)	 in	natural	populations.	Both	
the SNPs and nSSRs datasets showed high levels of genetic diversity and low ge-
netic differentiation in T. cuspidata. Outlier detection by FST outlier analysis and 
genotype-	environment	associations	(GEAs)	revealed	598	outlier	SNPs	as	putative	
adaptive	 SNPs.	 Linear	 redundancy	 analysis	 (RDA)	 and	 nonlinear	 gradient	 forest	
(GF)	showed	that	the	contribution	of	climate	to	genetic	variation	was	greater	than	
that of geography, and precipitation played an important role in putative adap-
tive genetic variation. Furthermore, the genetic offset and risk of non- adaptedness 
(RONA)	suggested	that	the	species	at	the	northeast	edge	may	be	more	vulnerable	
in the future. These results suggest that although the species has maintained high 
current genetic diversity in the face of recent habitat loss and fragmentation, fu-
ture climate change is likely to threaten the survival of the species. Temperature 
(Bio03)	and	precipitation	(Prec05)	variables	can	be	potentially	used	as	predictors	of	
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1  |  INTRODUC TION

Habitat loss or fragmentation due to climate change or human 
activity is recognized as a major threat to global biodiversity 
(Pykälä, 2019; Rands et al., 2010).	Among	the	various	forms	of	bio-
diversity, genetic diversity is particularly important in conservation 
biology, as it provides the raw material for evolutionary change and 
thus has the potential to adapt to changing environments (Laikre 
et al., 2010; Nielsen et al., 2022; O'Brien et al., 2022).	Normally,	
genetic diversity might decrease because of increased random 
genetic drift, inbreeding, and reductions in gene flow due to hab-
itat	 loss	or	fragmentation	of	species	 (Aguilar	et	al.,	2008; Chung 
et al., 2023; Lowe et al., 2005; Young et al., 1996).	However,	hab-
itat loss or fragmentation can also lead to highly specific genetic 
consequences (e.g., increased genetic divergence, genetic bottle-
neck	and	reduced	effective	population	size)	for	plants	because	of	
their different life histories, particularly for tree species with long 
generation times (e.g., González et al., 2020; Petit & Hampe, 2006; 
Piotti, 2009).

Forest tree species are largely undomesticated and exhibit local 
adaptation across heterogeneous environments (Bonan, 2008; 
Litkowiec et al., 2018).	Neutral	molecular	markers,	such	as	micro-
satellite	genotyping,	chloroplast	DNA	(cpDNA)	and	mitochondrial	
DNA	(mtDNA)	fragments,	have	been	used	to	reveal	the	genetic	dy-
namics of forest tree species especially endangered tree species. 
In general, low genetic diversity and strong genetic differentiation 
were revealed in endangered or critically endangered tree species 
with small population size because of the enhanced genetic drift 
effect and inbreeding (e.g., Frankham, 2005; Yang et al., 2020),	
such as T. yunnanensis	 (Miao	et	al.,	2016),	Abies ziyuanensis (Tang 
et al., 2008),	Cathaya argyrophylla (Wang & Ge, 2006).	However,	
high levels of genetic diversity have also been detected in some 
endangered tree species with current small or scattered popu-
lation size (e.g., de Sousa et al., 2020; Gitzendanner et al., 2012; 
Yousefzadeh et al., 2018).

To date, neutral molecular markers are the most common tools 
for conservation genetic studies, however, genetic variation at neu-
tral loci cannot provide direct information on adaptive selective 
processes involving the interactions between individuals and their 
environment (Hoffmann & Willi, 2008; Holderegger et al., 2006).	
Recently, with the advent of high- throughput sequencing technolo-
gies, adaptive genetic markers have become available even for tree 
species with large and complex genomes (Feng & Du, 2022;	Mackay	

et al., 2012; Neale & Kremer, 2011).	In	addition,	emerging	landscape	
genomics aims to detect adaptive variation along the landscape by 
integrating geographic and environmental information to provide 
unprecedented insights into the evolutionary mechanisms of local 
adaptation (Borrell et al., 2020; Du et al., 2020; Sork et al., 2013; 
Wang et al., 2021).	FST outlier analysis and genotype- environment 
associations	(GEAs)	in	landscape	genomics	have	been	suggested	as	
promising tools for detecting adaptive genetic variation in conser-
vation	practices	 (Ahrens	et	al.,	2018; Chung et al., 2023; Schoville 
et al., 2012).	In	recent	years	researchers	have	increasingly	employed	
these methods to study how spatial heterogeneity promotes pop-
ulation genetic dynamics, and how genomic variation promotes 
adaptive evolution in forest tree species, particularly conifers (Jia 
et al., 2020;	Mayol	et	al.,	2020;	Zhao	et	al.,	2020).

Taxus cuspidata	Sieb.	et	Zucc.,	a	tertiary	relict	tree	species,	 is	a	
keystone- dominant coniferous long- lived wind- pollinated tree spe-
cies	with	a	discontinuous	distribution	in	Japan,	Korea,	Northeast	(NE)	
China	and	Far	Eastern	Russia	(Kunashir	Island,	Sakhalin	and	Primorye)	
(Chung et al., 1999;	Kitamura	&	Murata,	1987).	In	China,	the	species	
is	mainly	 located	at	altitudes	ranging	from	600 m	to	1200 m	in	the	
Changbai	Mountains	and	neighboring	areas.	The	number	of	natural	
populations of T. cuspidata has drastically decreased in the last cen-
tury, partially because of human disturbance. Therefore, T. cuspidata 
is considered as “Plant Species with Extremely Small Populations 
(PSESP)”	 in	 China	 (Wade	 et	 al.,	 2016),	 however,	 it	 was	 a	 Least	
Concern	(LC)	species	in	the	International	Union	for	Conservation	of	
Nature	(IUCN)	(Katsuki	&	Luscombe,	2013).	Previous	studies	based	
on	 paternal	 inherited	mtDNA	 and	 cpDNA	 fragments	 have	 shown	
high degrees of genetic diversity in T. cuspidata (Cheng et al., 2015; 
Kozyrenko et al., 2017; Su et al., 2018).	However,	the	contributions	
of geography and climate to genetic variation in T. cuspidata remain 
unclear.

Here, we sampled T. cuspidata natural populations throughout 
the species' distribution range and combined their neutral and non- 
neutral	genetic	variation	using	nSSRs	and	SNPs.	We	aimed	to	(1)	es-
timate the genetic diversity and genetic differentiation within and 
among	populations,	 (2)	understand	 the	contribution	of	geographic	
and	climatic	factors	to	genetic	variation	and	(3)	predict	future	adapt-
ability of the species using landscape genomic tools under a sce-
nario of future climate change. Our study lays the groundwork for 
understanding the molecular mechanisms of local adaptation, and 
provides a theoretical foundation for the conservation and manage-
ment	of	important	conifer	tree	species	in	East	Asia.

response of T. cuspidata under future climate. Together, this study provides a theo-
retical framework for conservation and management strategies for wildlife species 
in the context of future climate change.

K E Y W O R D S
climate change, conservation, genetic diversity, genotype- environment associations, habitat 
fragmentation, local adaptation
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2  |  MATERIAL S AND METHODS

2.1  |  Field sampling

In our study, we collected leaf material in natural populations of T. 
cuspidata	in	the	Changbai	Mountains	and	adjacent	areas.	The	sam-
pling points were strategically distributed across the area, spanning 
from	 the	 southwest	 to	 the	 northeast	 of	 Changbai	Mountains	 and	
adjacent	areas.	A	total	of	200	individuals	of	T. cuspidata were sam-
pled	from	19	natural	populations	and	each	population	was	separated	
by	at	 least	30 km.	The	detail	sampling	 information	of	each	popula-
tion was listed in Table S1. Leaf samples were labeled and stored in 
plastic	bags	with	silica	gel	for	DNA	extraction.	Voucher	specimens	
of each population were deposited at Beijing Forestry University.

2.2  |  DNA isolation and microsatellite genotyping

Total	 genomic	 DNA	 was	 extracted	 from	 leaf	 tissue	 using	 Plant	
Genomic	DNA	Kit	(Tiangen,	Beijing,	China)	following	the	manufac-
turer's	protocol.	The	DNA	quality	was	initially	checked	by	1%	aga-
rose electrophoresis gel and then the concentration was measured 
by	 an	 ultramicro-	spectrophotometer	 (Thermo	 Fisher,	 USA).	 Seven	
polymorphic	nuclear	microsatellite	(nSSR)	loci	were	used	for	geno-
typing all 200 individuals after initial screening of 24 nSSR primers 
that had been already applicable to T. cuspidata (Cheng et al., 2015; 
Dubreuil et al., 2008; Kondo, 2016)	(see	Table S2	for	primer	details).	
The PCR conditions followed Du et al., 2017 and the PCR products 
were	analyzed	using	an	ABI	PRISM	3730	Genetic	Analyzer	(Applied	
Biosystems,	 USA).	 Subsequently,	 the	 alleles	 were	 scored	 using	
GENEMARKER	 v.	 2.2	 (Softgenetics,	 USA)	 and	 the	 genotype	 was	
checked twice.

2.3  |  Double- digest RADseq- derived SNP dataset

A	subset	of	samples	(130	out	of	200	individuals	 in	19	populations)	
was used for SNP dataset collection by a double- digestion restric-
tion	fragment-	based	procedure	(ddRAD-	seq)	(Peterson	et	al.,	2012)	
(Table S3).	The	subset	of	sampling	by	RAD-	seq	covered	almost	the	
entire distribution range to capture the vast majority of diversity. 
For	each	sample,	the	genomic	DNA	was	processed	for	library	con-
struction	 and	 sequencing.	 Briefly,	DNA	was	 double-	digested	with	
restriction enzyme TaqI and MseI, followed by the ligation of Illumina 
adaptors.	 Ligation	 products	 were	 size-	selected	 about	 500 bp	 and	
amplified	 by	 kapa	 HotStart	 ReadyMix	 (cat.	 no.	 KK2601;	 KAPA	
Biosystems)	with	13 cycles.	Paired-	end	sequencing	(2 × 150 bp)	was	
performed	using	an	Illumina	HiSeq2000	platform	at	Majorbio	Pharm	
Technology Co., Ltd., Shanghai, China.

The data quality control was assessed by FastQC v0.11.7 
(Andrews,	2010).	We	removed	adapter	 sequences	and	 low-	quality	
bases (Phred quality <20)	 from	 raw	data	 using	 Trimmomatic	 0.36	
(Bolger et al., 2014).	 Then	 the	 reads	 were	 all	 trimmed	 to	 120 bp	

and designed for SNP genotyping using Stacks v1.48 (Catchen 
et al., 2011, 2013).	 In	detail,	ustacks was used to assemble our se-
quences into de novo, cstacks was used to build a catalog of loci, sst-
caks was used to match loci against the catalog and the Populations 
was	used	to	output	SNPs.	A	strict	criteria	was	used	to	 filter	SNPs	
using VCFtools (Danecek et al., 2011):	first,	we	only	kept	individuals	
that	represented	at	least	60%	of	the	SNPs;	second,	a	filtering	param-
eter of 0.8 was used to avoid the influence of missing data, i.e., more 
than	80%	of	individuals	in	a	population	were	required	to	process	a	
locus;	third,	a	minor	allele	frequency	(MAF) < 0.1	was	used	to	filter	
the data and to reduce the likelihood of false- positive results due to 
spurious correlations.

2.4  |  Genetic diversity and structure

We estimated genetic diversity including mean effective number 
of alleles (NE),	mean	observed	heterozygosity	(HO),	mean	expected	
heterozygosity (HE)	 and	 mean	 number	 of	 different	 alleles	 (NA)	
for	 each	 population	 by	 GenAlEx	 6.5	 for	 nSSR	 dataset	 (Peakall	 &	
Smouse, 2006).	We	defined	two	types	for	ddRAD-	seq	dataset:	neu-
tral genetic variation based on neutral SNPs and non- neutral (puta-
tively	adaptive)	genetic	variation	based	on	outlier	SNPs	(i.e.,	outliers	
were detected by FST	and	GEA	analysis;	see	section	outlier	detection	
below).	We	estimated	the	mean	frequency	of	the	most	frequent	al-
lele at each locus (P),	mean	nucleotide	diversity	(π),	HO and HE for all, 
neutral, FST-	outlier	and	GEA-	outlier	SNPs	by	Populations module in 
Stacks (Catchen et al., 2013).

We	conducted	a	principal	component	analysis	(PCA)	to	produce	
a lower dimensional subspace that captured most of the variation 
in	 each	 of	 three	 data	 types.	 For	 nSSRs,	 “adegenet”	 (Jombart	 &	
Ahmed,	2011)	was	used	for	the	PCA	in	R	3.6.1	(R	Core	Team,	2019).	
PLINK	v.1.07	was	used	for	the	PCA	in	all,	neutral	and	outlier	SNPs	
(Purcell et al., 2007;	Zheng	et	al.,	2012).

Population structure was also accessed using Bayesian clustering. 
For nSSRs, we identified population genetic structure through the 
Bayesian	Markov	chain	Monte	Carlo	(MCMC)	clustering	method	imple-
mented in STRUCTURE v 2.3.4 (Pritchard et al., 2000).	Twenty	inde-
pendent runs were performed for each value of K	(1–10)	using	200,000	
generations	 for	 the	MCMC	 cycles	 and	 100,000	 generations	 for	 the	
burn-	in	 by	 STRUCTURE	 HARVESTER	 (Earl	 &	 vonHoldt,	 2012).	 The	
most	likely	number	of	clusters	(K)	was	determined	using	ΔK	and	LnP(K)	
statistics, according to Evanno et al. (2005).	 CLUMPP	 (Jakobsson	&	
Rosenberg, 2007)	and	DISTRUCT	v1.1	(Rosenberg,	2004)	were	used	to	
aligned independent runs and visualize the bar plots of the individual's 
probabilities of population membership.

ADMIXTURE	 v1.3.0	 (Alexander	 et	 al.,	 2009;	 Alexander	 &	
Lange, 2011),	which	can	deal	with	 large	data	with	 fast	speed,	was	
applied to assess population structure of genetic variation for all, 
neutral	and	outlier	SNPs.	We	ran	ADMIXTURE	with	default	5-	fold	
cross-	validation	(−cv = 5)	to	select	the	optimal	K	from	one	to	ten,	the	
best	K	exhibits	low	cross-	validation	error	(CV	error)	opposed	to	oth-
ers	(Alexander	&	Lange,	2011).
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We conducted a hierarchical analysis of molecular variance 
(AMOVA)	 to	 quantify	 the	 degree	 of	 genetic	 divergence	 among	
and within populations for our nSSRs, all SNPs, neutral SNPs, FST- 
outlier	 SNPs	 and	 GEA-	outlier	 SNPs	 by	 Arlequin	 3.5	 (Excoffier	 &	
Lischer, 2010).	 The	 significance	 of	 genetic	 differentiation	 differ-
ences was evaluated using 10,000 permutations.

2.5  |  Climatic variables

Bioclimatic	 variables	 of	 current	 climate	 (representative	 of	 1960–
1990)	and	future	climate	(2070:	average	for	2061–2080)	were	down-
loaded	from	the	WorldClim	Version2	(http:// world clim. org/ version2, 
Fick & Hijmans, 2017)	at	spatial	resolutions	of	30 s	(~1 km2).	A	total	
of 31 climate variables were extracted by longitudes and latitudes 
of	population	sites	based	on	raster	layers	by	ArcMap10.2.	To	avoid	
biased estimates of model coefficients and spurious significance 
levels resulting from multicollinearity, we excluded highly correlated 
climate variables with the threshold values of 0.7 using a variance 
inflation	 factor	 (VIF)	 test	 in	 “usdm”	 R	 package	 (Marquaridt,	 1970; 
Naimi et al., 2014; R Core Team, 2019).	Six	climate	variables	were	
finally	 retained:	 isothermality	 (bio03),	 maximum	 temperature	 of	
warmest	month	(bio05),	mean	temperature	of	driest	quarter	(bio09),	
precipitation	seasonality	 (bio15),	precipitation	 in	May	(prec05)	and	
precipitation	in	October	(prec10).	We	also	carried	out	Shapiro–Wilk	
and Levene test (package car, Fox & Weisberg, 2019)	to	explore	each	
variable's data distribution and homogeneity. We found that the 
data for each variable was not normally distributed nor homogene-
ous; therefore, we performed the Kruskal- Wallis rank sum test to 
explore the significance level for each variable.

2.6  |  Outlier detection

Three algorithms were used to detect potentially adaptive loci, 
including one FST outlier analysis approach and two genotype- 
environment	associations	(GEAs)	outlier	detection	approaches.

For the FST outlier analysis, we use Bayesian approach in 
BayeScan 2.0 to directly estimate the posterior probability of a given 
locus under selection (Foll & Gaggiotti, 2008).	We	used	the	following	
parameter	values:	sample	size	of	5000,	20	pilot	runs	with	5000	run	
length,	50,000	burn-	in	 iterations	and	thinning	 interval	of	10.	Prior	
odds for neutral model were set to 10 and SNPs with q < 0.01	 (−
log10q > 2)	were	considered	as	FST- outliers (Puebla et al., 2014).

For	genotype-	environment	associations	(GEAs)	outlier	detection	
approaches,	we	 firstly	applied	 latent	 factor	mixed	models	 (LFMM)	
by	 package	 LEA	 in	 R	 (R	 Core	 Team,	 2019).	We	 use	 a	 hierarchical	
Bayesian mixed modelling approach to identify allele–environment 
correlations, while modelling residual population structure with ‘la-
tent factors’ (Frichot et al., 2013; Frichot & François, 2015).	In	LFMM,	
environmental variables were tested separately and introduced 
into each model as fixed effects, and the number of latent factors 

(K = 3)	was	selected	to	account	for	genetic	structure	by	sparse	non-	
negative	matrix	 factorization	 (SNMF)	 (Figure S7).	 The	 parameters	
were	set	as	follows:	100,000	iterations	with	a	burn-	in	of	50,000	it-
erations and ten replicate runs. Significant outliers were determined 
as SNPs with p- values of p < 10−3 or –log10 (p-	value) > 3.	We	secondly	
used	Bayesian	generalized	 linear	mixed	models	 (BayEnv)	 to	detect	
the correlation between SNPs and environmental variables with a 
neutral dataset generated by BayeScan as a null model (Günther & 
Coop, 2013).	We	 initially	computed	a	null	covariance	matrix	of	 re-
latedness between populations, over 100,000 iterations and five 
independent runs. We then tested all SNPs (including those initially 
identified	 by	 BayeScan)	 under	 an	 alternative	 model	 where	 allele	
frequencies are determined by a combination of the covariance 
matrix and an environmental variable. We performed our analysis 
independently across six environmental variables, and using Bayes 
factor	 (BF)	 to	 evaluate	 the	 posterior	 probability	 that	 each	 SNP	 is	
under selection across independent environmental variable. We also 
performed nonparametric Spearman's rank correlation as alternative 
tests to the BF and detect the correlation between ranks of SNP 
allele frequencies and environmental variables. Therefore, we con-
sidered	the	SNPs	in	the	top	1%	of	BF	values	(BF > 3)	and	top	10%	of	
the absolute value of Spearman rank correlation coefficients (ρ)	as	
significant outliers.

2.7  |  Multivariate relationship between genetic 
variation and environmental gradients

To estimate how the genomic variation is influenced by climate or 
geographic variables, we firstly performed redundancy analyses 
(RDAs)	 and	 partial	 redundancy	 analyses	 (pRDAs)	 to	 detect	 linear	
relationships between genetic variations and multivariate climatic 
gradients,	using	“vegan”	R	package	(Oksanen	et	al.,	2019).	We	con-
structed two pRDAs	 models	 to	 differentiate	 the	 independent	 ef-
fects of climate and geography by reciprocally constraining one of 
the two factors. Briefly, climatic effects were conditioned on the 
effects of geography (pRDAenv	 to	extract	pure	effects	of	 the	 cli-
mate)	and	vice	versa	 (pRDAgeo	for	pure	effects	of	geography).	All	
SNPs, neutral and non- neutral genetic variation with the six climate 
variables	and	geographic	variables	(longitude	and	latitude)	were	con-
sidered as predictor variables. Statistical significance was evaluated 
from	999	permutations.

We	then	employed	gradient	forest	(GF)	analyses	to	explore	the	
nonlinear relationships between environmental variables and their 
contribution to genetic variation using R package GradientForest 
(Ellis et al., 2012).	Gradient	 forest	 is	 a	machine	 learning,	 regres-
sion tree approach that allows for exploration of nonlinear as-
sociations of spatial, environmental and allelic variables (Ellis 
et al., 2012; Fitzpatrick & Keller, 2015).	We	conducted	a	GF	anal-
ysis on six climate variables to assess the relative importance of 
each predictor variable using weighted R2 value, split importance; 
Ellis et al. (2012).	 Split	 importance,	 a	measure	of	 the	 amount	 of	

http://worldclim.org/version2
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variation explained, is high in positions along the gradient where 
allelic	change	is	large.	We	ran	a	gradient	forest	with	500	regression	
trees	per	SNP,	maxLevel = log2(0.368n)/2,	and	variable	correlation	
threshold	 of	 0.5	 to	 calculate	 conditional	 variable	 importance	 as	
recommended (Ellis et al., 2012; Fitzpatrick & Keller, 2015).	The	
default values of the other parameters were carried out for each 
GF model.

2.8  |  Adaptation potential of Taxus cuspidata

We employed two different methods to estimate the adaptive 
potential of T. cuspidata.	 We	 selected	 the	 Global	 Climate	 Model	
BCC-	CSM1-	1	 (IPCC,	 2014)	 under	 two	 contrasting	 representative	
concentration	 pathways	 (RCPs),	 including	 a	 low-	emission	 scenario	
(RCP	2.6)	and	a	high-	emission	scenario	 (RCP	8.5)	 in	2070 years	for	
future climate scenarios. We first used GF to estimate the genetic 
offset based on all SNPs, FST-	outlier	 SNPs	 and	 GEA-	outlier	 SNPs	
under future climatic conditions. Genetic offset, a measure of the 
magnitude of genetic change required between present and fu-
ture climate (Fitzpatrick & Keller, 2015)	was	used	to	predict	genetic	
variation	across	grid	cells	of	NE	China	by	“GradientForest”	package	
(Ellis et al., 2012)	 in	R	 (R	Core	Team,	2019).	For	each	grid	cell,	 the	
Euclidian distances between the current and future genetic compo-
sitions were calculated and served as the metric for genetic offset 
(Ellis et al., 2012).

We	 also	 performed	 a	 risk	 of	 non-	adaptedness	 (RONA)	 to	 pre-
dict the adaptive potential of T. cuspidata to future local climate 
using	default	settings	in	PYRONA	v0.3.6	(Pina-	Martins	et	al.,	2019; 
Rellstab et al., 2016).	PYRONA	ranked	the	environment	factors	by	
the	number	of	 associations	 and	provided	 an	 average	RONA	value	
weighted by the regression R2 value for each predictor factors. The 
“RONA	value”	here	indicates	the	mean	difference	between	current	
and future expected allele frequencies, which was used to estimate 
the expected allele frequencies in future based on the present allele 
frequencies and environmental variables. The inferred linear model 
was used to predict expected allele frequencies in future environ-
mental	 gradients	 in	 2070	 according	 to	 the	 Global	 Climate	Model	
BCC-	CSM1-	1	(IPCC,	2014)	under	RCP	2.6	and	RCP	8.5.

3  |  RESULTS

3.1  |  RAD- based SNP data

We	attained	a	total	of	373,894,701	loci	with	the	mean	depth	of	cov-
erage	for	filtered	SNPs	at	4.89	(range:	3.58–7.47)	and	mean	propor-
tion	of	loci	with	missing	data	per	sample	is	0.46	(range:	0.07–0.98)	
(Table S3).	A	total	of	37	individuals	with	high	proportion	missing	data	
were	discarded,	and	the	retaining	93	individuals	is	at	least	four	indi-
viduals per population (Table 1).	Stacks	 initially	recovered	144,575	
SNPs and 16,087 high- quality SNPs were retained after stringent 
quality control.

3.2  |  Genetic diversity and differentiation based on 
nSSRs and SNP datasets

For nSSRs, observed and expected heterozygosity estimated per 
population ranged from 0.26 to 0.46 and 0.28 to 0.48, respectively 
(Table 1, Table S5).	 The	expected	heterozygosity	 (HE)	 and	nucleo-
tide diversity (π)	 ranged	 from	0.26	 to	0.30	and	0.29	 to	0.33	 in	 all	
(Table S4)	and	neutral	SNPs	(Table 1).	For	FST- outlier SNPs, HE and 
π	 ranged	 from	0.17	 to	0.38	and	0.18	 to	0.40,	 and	 for	GEA-	outlier	
SNPs, HE and π ranged from 0.28 to 0.34 and 0.31 to 0.36 (Table 1).

PCA	 (Figures S1, S2)	based	on	both	nSSRs	and	RAD-	seq	data-
sets were consistent with Bayesian clustering analysis, which failed 
to detect clear population genetic structure in all populations. The 
most	likely	number	of	clusters	(K)	was	two	for	the	nSSRs	(Figure 1a, 
Figures S3, S4),	one	 for	all	 and	neutral	SNPs	 (Figure 5b, S5a),	 and	
three for outlier SNPs (Figure 1b, Figures S5c, S6).	 These	 results	
showed a mixed genetic makeup of clusters in all populations.

The	results	of	AMOVA	indicated	that	a	 large	proportion	of	ge-
netic variation occurred within populations, with low levels of ge-
netic differentiation (FST = 0.07)	in	nSSRs,	all	SNPs	and	neutral	SNPs;	
For outlier SNPs, high FST values (FST = 0.32)	in	FST- outlier SNPs and 
moderate FST values (FST = 0.1)	in	GEA-	outlier	SNPs	(Table 2).

3.3  |  Outlier detection and environmental association

We identified 63 SNPs as putative outliers and did not detect any 
significantly low outlier FST values that would be indicative of bal-
ancing or purifying selection using BayeScan (Figure S8).	According	
to the significance test, each climate variable was significantly dif-
ferent	 among	 the	 populations	 (Kruskal–Wallis	 chi-	squared = 92,	
p < 0.001).	We	identified	279	and	286	putative	adaptive	SNPs	that	
were significantly associated with at least one climatic variable using 
LFMM	(Figure S9)	and	BayEnv	 (Figure S10),	 respectively,	with	 five	
common SNPs (Figure 2c).	More	putative	adaptive	SNPs	were	sig-
nificantly associated with precipitation variables than temperature 
variables (Table S6).	A	total	of	598	outlier	SNPs	were	 identified	as	
non-	neutral	genetic	variations	and	15,489	neutral	SNPs	as	neutral	
genetic variations.

3.4  |  Environmental associations with genetic 
variation

RDA	 revealed	 that	 a	 large	 proportion	 of	 genetic	 variation	 among	
populations	was	associated	with	the	six	climate	variables.	The	RDA	
results were similar to that of pRDA	(Tables S7 and S8; Figures S11a, 
S12);	here,	we	explained	the	results	of	pRDA	(Table 3, Figures S11b, 
S13).	 For	 nSSRs,	 genetic	 variation	was	 found	 to	 be	mainly	 associ-
ated	with	climate	variables:	5%	of	the	nSSRs	variance	was	explained	
by	climate,	while	geography	only	accounted	for	1%	(Table 3).	For	all	
SNPs	and	neutral	SNPs,	10%	of	the	explained	variance	was	explained	
by	climate	and	3%	by	geography	(Table 3, Table S8).	For	outlier	SNPs,	



6 of 15  |     LUO et al.

TA
B

LE
 1
 
G
en
et
ic
	d
iv
er
si
ty
	o
f	T

ax
us

 c
us

pi
da

ta
 b

as
ed

 o
n 

ne
ut

ra
l a

nd
 n

on
- n

eu
tr

al
 g

en
et

ic
 v

ar
ia

tio
n.

N
eu

tr
al

 g
en

et
ic

 v
ar

ia
tio

n
N

on
- n

eu
tr

al
 g

en
et

ic
 v

ar
ia

tio
n

nS
SR

s
N

eu
tr

al
 S

N
Ps

F ST
- o

ut
lie

r S
N

Ps
G

EA
- o

ut
lie

r S
N

Ps

Po
pu

la
tio

n
N

N
A

N
E

H
o

H
E

P
H

o
H

E
π

P
H

o
H

E
π

P
H

o
H

E
π

M
D
JH
C
H

15
	(8
)

4.
14

2.
48

0.
39

0.
48

0.
79

0.
27

0.
28

0.
30

0.
86

0.
18

0.
19

0.
21

0.
77

0.
27

0.
32

0.
34

M
D
JS

15
	(8
)

4.
14

2.
34

0.
36

0.
44

0.
78

0.
25

0.
30

0.
32

0.
77

0.
16

0.
30

0.
33

0.
77

0.
25

0.
31

0.
33

H
C
M

15
	(8
)

3.
43

1.
90

0.
29

0.
40

0.
80

0.
26

0.
27

0.
30

0.
81

0.
31

0.
25

0.
27

0.
75

0.
29

0.
33

0.
35

M
D
JH
P

15
	(7
)

3.
57

2.
17

0.
38

0.
43

0.
80

0.
24

0.
26

0.
29

0.
87

0.
15

0.
17

0.
18

0.
78

0.
25

0.
29

0.
31

YB
D

15
	(8
)

3.
57

2.
13

0.
42

0.
46

0.
79

0.
28

0.
29

0.
31

0.
80

0.
29

0.
29

0.
31

0.
76

0.
31

0.
32

0.
34

YB
H

G
15
	(8
)

3.
00

1.
90

0.
29

0.
34

0.
78

0.
31

0.
30

0.
32

0.
84

0.
23

0.
22

0.
24

0.
76

0.
34

0.
32

0.
35

YB
J

5	
(4
)

2.
29

1.
71

0.
46

0.
34

0.
81

0.
31

0.
26

0.
30

0.
88

0.
19

0.
17

0.
20

0.
79

0.
33

0.
28

0.
33

YJ
X

15
	(8
)

2.
57

1.
58

0.
26

0.
29

0.
78

0.
30

0.
30

0.
32

0.
83

0.
23

0.
23

0.
25

0.
76

0.
31

0.
32

0.
35

YB
H

S
4	
(4
)

2.
14

1.
73

0.
39

0.
34

0.
79

0.
28

0.
27

0.
33

0.
84

0.
20

0.
21

0.
26

0.
77

0.
30

0.
29

0.
35

YB
H

SP
6	
(6
)

3.
14

2.
21

0.
36

0.
39

0.
80

0.
28

0.
27

0.
31

0.
75

0.
26

0.
32

0.
35

0.
76

0.
32

0.
31

0.
36

LJ
D

7	
(7
)

2.
71

2.
23

0.
31

0.
47

0.
79

0.
26

0.
29

0.
31

0.
77

0.
29

0.
32

0.
34

0.
77

0.
27

0.
31

0.
34

LJ
B

5	
(4
)

2.
43

1.
71

0.
43

0.
34

0.
79

0.
32

0.
28

0.
32

0.
79

0.
30

0.
29

0.
33

0.
77

0.
37

0.
31

0.
36

BS
SC
Z

5	
(5
)

2.
29

1.
94

0.
26

0.
28

0.
81

0.
27

0.
26

0.
29

0.
85

0.
21

0.
21

0.
24

0.
77

0.
33

0.
31

0.
35

TH
L

10
	(8
)

2.
57

1.
72

0.
30

0.
34

0.
78

0.
30

0.
30

0.
33

0.
71

0.
34

0.
38

0.
40

0.
75

0.
30

0.
34

0.
36

M
ea
n

2.
99

1.
98

0.
35

0.
38

0.
79

0.
28

0.
28

0.
31

0.
81

0.
24

0.
25

0.
28

0.
77

0.
30

0.
31

0.
34

A
bb
re
vi
at
io
ns
:	N
,	n
um
be
r	o
f	i
nd
iv
id
ua
ls
	u
se
d	
fo
r	n
SS
Rs
	a
nd
	R
A
D
-	s
eq
	in
	p
ar
en
th
es
es
;	N

A
, N

o.
 o

f d
iff

er
en

t a
lle

le
s 

an
d 

N
E, 

ef
fe

ct
iv

e 
nu

m
be

r o
f a

lle
le

s;
 H

o a
nd

 H
E, 

ob
se

rv
ed

 a
nd

 e
xp

ec
te

d 
he

te
ro

zy
go

si
ty

; P
, 

m
ea

n 
fr

eq
ue

nc
y 

of
 th

e 
m

os
t f

re
qu

en
t a

lle
le

 a
t e

ac
h 

lo
cu

s;
 π

, m
ea

n 
nu

cl
eo

tid
e 

di
ve

rs
ity

.



    |  7 of 15LUO et al.

21%	of	the	FST- outlier SNPs variance was explained by climate and 
4%	by	geography;	13%	of	 the	GEA-	outlier	 SNPs	variance	was	ex-
plained	by	climate	and	3%	by	geography	(Table 3).

For	all	SNPs,	the	GF	indicated	that	isothermality	(bio03)	was	the	
most important climate response factor (Figure 2a).	 However,	 for	
outlier	 SNPs,	 precipitation	 in	May	 (prec05)	 and	 precipitation	 sea-
sonality	(bio15)	were	the	most	important	climate	response	factors,	
respectively (Figure 2b,c).

3.5  |  Prediction of population vulnerability under 
future climate change

In the three GF models by all SNPs, FST-	outlier	and	GEA-	outlier	SNPs,	
the predicted turnover in allele frequencies across the landscape 
followed a southwest to northeast direction: northeastern popula-
tions are expected to have higher genetic offsets in the Changbai 
Mountains	and	adjacent	areas	in	the	future	(Figure 3a–f),	the	degree	

FI G U R E 1 Geographic	distribution	and	sampling	sites	of	Taxus cuspidata.	The	pie	chart	shows	the	genetic	clustering	of	each	population	based	on	(a)	
neutral	genetic	variation	by	microsatellites	(SSRs)	and	(b)	non-	neutral	genetic	variation	by	outlier	SNPs.	The	red	line	indicates	the	distribution	range	of	
T. cuspidata. Orange, green, blue and yellow represent genetic cluster assignments; the details of the cluster assignments were showed in Table S1.
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Source of variation df
Percentage of 
variation (%)

Fixation 
indices

All	SNPs

Among	groups 13 6.6

Within populations 172 93.4 FST = 0.07

Neutral genetic variation

nSSRs

Among	groups 18 7.5

Within populations 381 92.5 FST = 0.07

Neutral SNPs

Among	groups 13 7.2

Within populations 172 92.8 FST = 0.07

Non- neutral genetic variation

FST- outlier SNPs

Among	groups 13 38.5

Within populations 172 79.1 FST = 0.32

GEA-	outlier	SNPs

Among	groups 13 10.3

Within populations 172 89.7 FST = 0.10

Note:	Significance	tests	(1000	permutations)	showed	all	fixation	indices	were	significant	(p < 0.05).
Abbreviation:	df,	degree	of	freedom.

TA B L E  2 Hierarchical	analyses	of	
molecular	variance	(AMOVA)	of	Taxus 
cuspidata populations based on all SNPs, 
neutral and non- neutral genetic variation.

F I G U R E  2 R2-	weighted	importance	of	environmental	variables	explaining	genetic	gradients	for	all	(a),	FST-	outlier	(b),	and	GEA-	outlier	(c)	
SNPs in Taxus cuspidata	using	GF	analysis.	A	venn	diagram	showing	the	overlap	of	outliers	between	all	SNPs	associated	with	at	least	one	
climatic	variable,	as	identified	by	LFMM	and	BayEnv.
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of	genetic	offset	 is	slightly	higher	under	RCP	8.5	than	that	of	RCP	
2.6 (Table S9).	The	RONA	revealed	 that	 the	most	 represented	en-
vironmental	variables	were	prec05,	bio03,	and	prec10	(Table S10).	
Under the combined effect of the three most represented climate 
variables,	population	THL	showed	the	highest	RONA	value	for	RCP	
2.6 (Figure 4).	MDJS,	HCM	and	YBJ	populations	showed	the	high-
est	RONA	value	for	RCP	8.5	in	2070	(Figure 4).	The	THL	and	MDJS	
populations had a lower adaptive potential for prec10 by 2070.

4  |  DISCUSSION

Our study integrated population genetics and landscape genomic methods 
to explore neutral and non- neutral genetic variations in T. cuspidata popu-
lations	in	the	Changbai	Mountains.	The	neutral	genetic	variation	dataset	
revealed high genetic diversity and low genetic differentiation, whereas 

non-	neutral	genetic	variation	showed	high	genetic	differentiation.	GEAs	
revealed that the contribution of climate to genetic variation was greater 
than that of geography, and precipitation played an important role in the 
putative adaptive genetic variation in response to climate change. We 
found that populations in the northeast range will be more vulnerable to 
future climate change as suggested by putative adaptive genetic variation. 
Our study provides insight into how neutral and putative adaptive genetic 
variation interacts with the environment, which is essential for future con-
servation and management of natural populations.

4.1  |  High genetic diversity was maintained in 
present fragmented populations

We integrated the patterns of neutral and non- neutral genetic 
variation in T. cuspidata	using	nSSRs	and	RAD-	seq	datasets.	In	this	

TA B L E  3 Summary	and	partitioning	of	the	variance	associated	with	climate	and	geographical	variables	based	on	pRDA	in	neutral	and	non-	
neutral genetic variation.

Neutral genetic variation Non- neutral genetic variation

nSSRs Neutral SNPs FST- outlier SNPs GEA- outlier SNPs

PVE Eigenvalue p PVE Eigenvalue p PVE Eigenvalue p PVE Eigenvalue p

Geography 1.41 1.10 0.373 3.45 1.69 0.001 4.44 2.6 0.002 2.89 1.53 0.001

Climate 4.97 1.69 0.004 9.96 1.62 0.001 20.96 4.10 0.001 13.41 2.37 0.001

bio03 1.22 2.49 0.014 1.78 1.74 0.001 1.75 2.06 0.047 3.17 3.37 0.001

bio05 0.66 1.35 0.222 1.35 1.32 0.004 4.4 5.16 0.002 1.71 1.81 0.004

bio09 0.96 1.96 0.055 1.63 1.59 0.001 2.79 3.28 0.003 1.99 2.12 0.001

bio15 0.87 1.78 0.082 1.60 1.56 0.001 2.28 2.68 0.012 2.07 2.20 0.001

prec05 0.61 1.21 0.268 1.89 1.85 0.001 7.63 8.95 0.001 2.68 2.85 0.001

prec10 0.65 1.33 0.244 1.72 1.68 0.001 2.11 2.46 0.025 1.79 1.90 0.001

Abbreviation:	PVE,	percentage	of	explained	variance.

FIG URE 3 Genetic	offset	to	future	climate	change	predicted	for	all	(a,	d),	FST-	outlier	(b,	e)	and	GEA-	outlier	SNPs	(c,	f)	of	Taxus cuspidata	in	2070.	(a–c),	
RCP	2.6;	(d–f),	RCP	8.5.	Red	and	green	indicate	high	and	low	genetic	offset,	respectively.	The	details	of	the	genetic	offset	values	were	showed	in	Table S9.
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study, high current genetic diversity and low genetic differentiation 
were observed across the extant geographical range in China. The 
present results are in agreement with previous T. cuspidata genetic 
studies	by	cpDNA	fragments	in	Russian	and	South	Korea	(Kozyrenko	
et al., 2017),	cpDNA	and	mtDNA	fragments	in	China	(Su	et	al.,	2018),	
and were similar to that of T. baccata from Poland by microsatel-
lites (Litkowiec et al., 2018).	In	addition,	admixture	analysis	revealed	
substantial gene flow among the populations. For fragmented and 
isolated T. cuspidata populations, substantial gene flow may compen-
sate for the genetic barrier caused by fragmented habitats (Browne 
& Karubian, 2018; Hu et al., 2008; Petit et al., 2005).

Theoretically, fragmentation of species usually has a nega-
tive effect on genetic diversity compared to intact populations 
(Nybom, 2004;	 Vranckx	 et	 al.,	 2012).	 One	 possibility	 for	 the	 high	
genetic diversity and gene flow might be the outcrossing nature 
of the species. T. cuspidata is a wind pollination and typical bird- 
dispersed plant. Gene flow may be accomplished by both seeds and 
pollen, and pollen often disperses over longer distances than seeds 
(Jordano, 2017; Kremer et al., 2012).	However,	this	seems	to	be	diffi-
cult, particularly for long- distance intervals among the studied pop-
ulations.	For	yew,	a	multi-	model	approach	indicated	that	95%	of	the	
seed and pollen dispersal distances were <109 m	and	704 m,	respec-
tively (Chybicki & Oleksa, 2018).	An	alternative	explanation	for	high	
genetic diversity is the delayed sexual maturity of the species. The 
unbalanced ratio of females to males of T. cuspidata	(1:2.3)	was	found	
in this region (Long et al., 2021).	 The	 sex	 ratio	 in	 dioecious	 plants	
might significantly affect genetic diversity (Rosche et al., 2018),	
e.g., the dioecy may increase genetic diversity due to obligate out-
crossing, which has been found in Pherospheara hookeriana (Worth 
et al., 2021).	 Isolation	occurred	mainly	 throughout	 the	 last	 few	de-
cades and was probably not long enough to impact current genetic 
diversity	(Münzbergová	et	al.,	2013; Rosche et al., 2018).	Therefore,	
the short duration of fragmentation tends to maintain the standing 
variations in long- lived plants, which may delay adverse effect in the 
progenies of T. cuspidata	(Aguilar	et	al.,	2008;	Vranckx	et	al.,	2012).

High genetic differentiation was also observed in the putative 
adaptive genetic variation, the high FST values may be due to the fix-
ation of different alleles in the local populations. This might also be 
caused by natural selection in response to changing environments, 
and adaptive processes may contribute to high FST values. Therefore, 
natural populations of T. cuspidata primarily stem from intense selec-
tive pressure imposed by environmental factors.

4.2  |  Signature of natural selection in T. cuspidata

Outlier detection test is an effective approach to identify the 
presence	 of	 putatively	 adaptive	 genetic	 variation.	 Although	
outlier detection tests can produce false outliers due to con-
founding factors (Schoville et al., 2012),	 tests	with	various	de-
mographic hypotheses can be utilized and compared to solve 
this issue, and common loci detected in consensus are more 
likely	 to	be	actual	 targets	of	selection	 (Ahrens	et	al.,	2018).	 In	
this study, we applied three outlier methods to detect differ-
ent sets of outlier SNPs that showed signatures of selection. 
The proportion of FST	outlier	(0.4%)	aligns	closely	with	the	find-
ings in other conifers, such as Pinus taeda	 (0.2%)	 (De	La	Torre	
et al., 2019),	Keteleeria davidiana	 (0.2%)	 (Shih	et	 al.,	2018)	 and	
Cupressus gigantea	 (0.4%)	 (Yang	 et	 al.,	 2022).	 The	 proportion	
of	 GEA-	outlier	 SNPs	 (ranging	 from	 1.7%	 to	 1.8%)	 was	 similar	
to those of T. baccata	 (2.6%	 to	 3.0%)	 (Mayol	 et	 al.,	2020)	 and	
Pinus albicaulis	(2.9%)	(van	Mantgem	et	al.,	2023).	In	the	present	
study,	more	GEA-	outlier	SNPs	associated	with	climatic	variables	
were correlated with precipitation variables than temperature 
variables. These outlier SNPs of T. cuspidata suggested that sig-
natures of selection may be involved in local adaptation pro-
cesses in response to selective pressure. However, due to the 
short	RAD	reads	and	no	annotated	reference	genome,	we	failed	
to further annotate any genes associated with putatively adap-
tive SNPs.

F I G U R E  4 RONA	of	Taxus cuspidata	under	RCP	2.6	(a)	and	RCP	8.5	(b)	prediction	models	for	2070.	Bars	represent	weighted	means	(by	R2 
value),	and	grey	error	bars	represent	the	standard	error.
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4.3  |  Genetic variation associated with adaptation 
to climate change

Precipitation and temperature are main climatic factors influenc-
ing	plant's	distribution	and	survival	(Cuervo-	Alarcon	et	al.,	2018).	
Temperature is a key factor influencing the growth and phenology 
of tree species (Schmiege et al., 2021;	Vitasse	et	al.,	2009).	RDA	
and GF indicated that temperature was found to be associated 
with	our	nSSRs,	 neutral	 SNPs	and	all	 SNPs	 sets.	An	explanation	
to this temperature- driven genetic variation is that tempera-
ture could affect the connection between populations (i.e., gene 
flow),	 which	 has	 been	 observed	 in	 yews	 in	 the	 northern	 Italy	
(Mercuri	 et	 al.,	2013).	 Yews	 are	 also	highly	 sensitive	 to	 extreme	
temperature changes, including T. globosa	 (Antúnez,	2021)	and	T. 
baccata	 (Mayol	 et	 al.,	2020;	Moir,	 1999).	 Low	 temperatures	 can	 
encourage the rooting of yews during the early growth stage 
(Muñoz-	Gutiérrez	 et	 al.,	 2009).	 Therefore,	 the	 maximum	 tem-
perature	of	warmest	month	(bio05)	and	the	mean	temperature	of	
driest	quarter	(bio09)	might	affect	the	growth	and	distribution	of	
T. cuspidata.

We also found that precipitation was an important variable as-
sociated with putative adaptive genetic variation. Water availabil-
ity may be an important selection factor for yew species, especially 
during the last interglacial period, as indicated by the association 
study in the common yew, T. baccata	(Mayol	et	al.,	2020).	A	previous	
study using ecological niche modeling has also found that the best 
suitable distribution time for T. cuspidata is during the last glacial 
maximum and the most restricted distribution time for the species 
is	during	the	last	interglacial	period	(c.	130 ka),	suggesting	the	cold-	
tolerant and wet- sensitive features of the species (Su et al., 2018).	
Therefore, water availability will be a challenge for T. cuspidata when 
facing the changing environments, as suggested by other yew spe-
cies (Linares, 2013).

4.4  |  Species vulnerability and conservation 
strategies

Assessing	the	vulnerability	of	species	to	climate	change	can	pro-
vide insight into the potential risk of species persistence in fu-
ture climate scenarios (Capblancq et al., 2020; Feng & Du, 2022).	
Genetic prediction of adaptation to future climate indicated that 
populations	 (e.g.,	MDJHP,	 YJX	 and	MDJS)	 in	 the	 northeast	 area	
(Heilongjiang	and	Jilin	Provinces)	exhibited	a	higher	risk	of	genetic	
maladaptation than other populations. These populations showed 
low potential to adapt to changing environments in small or iso-
lated habitats.

For GF genetic offset, the predictive power of genomic offset 
estimates on fitness effects is increasingly being assessed through 
experimental and simulation studies, showing promising results 
(Láruson et al., 2022).	The	GF	offset	results	in	our	study	differed	not	
much	between	the	two	future	climate	scenarios.	An	explanation	for	

the phenomenon is that T. cuspidata has a long lifecycle with long 
generation intervals, in which the rates of emergence and spread of 
novel adaptive alleles in populations through de novo mutations are 
likely to be too slow to respond to climate change.

For all SNPs and putatively adaptive SNPs, northeastern popu-
lations showed higher genetic offsets and vulnerabilities than the 
other populations. Su et al. (2018)	found	that	ecological	niche	mod-
eling showed a contraction trend in the distribution of T. cuspidata 
by 2070, with northeastern populations located in a contracting 
area. Láruson et al. (2022)	showed	that	higher	genetic	offset	may	be	
caused by genetics drift at small population rather than a selection- 
driven response. Negative associations between GF offset and 
population size have also been found in previous bird studies (Bay 
et al., 2018; Ruegg et al., 2018).	Therefore,	the	high	genetic	offset	
of T. cuspidata may also be caused by natural selection and/or small 
population size.

Based on our study and previous reports, we came to the con-
clusion that T. cuspidata is at risk in China with number of challenges, 
such as fragmentation and habitat loss, climate change, disturbance 
and the unbalanced ratio of females to males (Long et al., 2021; Su 
et al., 2018; Wang et al., 2019).	Our	study	specifically	recommends	
adopting in situ conservation strategies for THL, LJD and YBHSP 
populations with high adaptive genetic diversity but vulnerable in 
the future. In addition, populations displaying low adaptive variation, 
including	MDJHCH,	MDJHP	and	YBJ,	could	benefit	from	ex	situ	con-
servation strategies. Furthermore, for small or isolated populations 
characterized by limited genetic diversity and high vulnerability 
(e.g.,	BSSCZ,	YBJ),	genetic	rescue	and	assisted	gene	flow	techniques	
should be considered to facilitate their adaptation to climate change. 
Previous studies have demonstrated the effectiveness of such 
approaches	 (Aitken	 &	 Bemmels,	 2016;	 Aitken	 &	Whitlock,	 2013; 
Whiteley et al., 2015).

It is worth noting that our study represents a pioneering effort 
to integrate neutral and adaptive genetic variation to the conserva-
tion of a threatened tree species. However, to gain deeper insights 
into the molecular mechanisms underlying the threats faced by T. 
cuspidata, future research endeavors should include comprehen-
sive investigations encompassing whole- genome or transcriptome 
sequencing, along with the inclusion of phenotypic and fine- scale 
environmental data.
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