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Abstract
The unprecedented habitat fragmentation or loss has threatened the existence of 
many species. Therefore, it is essential to understand whether and how these spe-
cies can pace with the environmental changes. Recent advantages in landscape 
genomics enabled us to identify molecular signatures of adaptation and predict 
how populations will respond to changing environments, providing new insights 
into the conservation of species. Here, we investigated the pattern of neutral and 
putative adaptive genetic variation and its response to changing environments in 
a tertiary relict tree species, Taxus cuspidata Sieb. et Zucc, which is distributed 
in northeast China and adjacent regions. We investigated the pattern of genetic 
diversity and differentiation using restriction site-associated DNA sequencing 
(RAD-seq) and seven nuclear microsatellites (nSSRs) datasets. We further explored 
the endangered mechanism, predicted its vulnerability in the future, and provided 
guidelines for the conservation and management of this species. RAD-seq identi-
fied 16,087 single nucleotide polymorphisms (SNPs) in natural populations. Both 
the SNPs and nSSRs datasets showed high levels of genetic diversity and low ge-
netic differentiation in T. cuspidata. Outlier detection by FST outlier analysis and 
genotype-environment associations (GEAs) revealed 598 outlier SNPs as putative 
adaptive SNPs. Linear redundancy analysis (RDA) and nonlinear gradient forest 
(GF) showed that the contribution of climate to genetic variation was greater than 
that of geography, and precipitation played an important role in putative adap-
tive genetic variation. Furthermore, the genetic offset and risk of non-adaptedness 
(RONA) suggested that the species at the northeast edge may be more vulnerable 
in the future. These results suggest that although the species has maintained high 
current genetic diversity in the face of recent habitat loss and fragmentation, fu-
ture climate change is likely to threaten the survival of the species. Temperature 
(Bio03) and precipitation (Prec05) variables can be potentially used as predictors of 
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1  |  INTRODUC TION

Habitat loss or fragmentation due to climate change or human 
activity is recognized as a major threat to global biodiversity 
(Pykälä, 2019; Rands et al., 2010). Among the various forms of bio-
diversity, genetic diversity is particularly important in conservation 
biology, as it provides the raw material for evolutionary change and 
thus has the potential to adapt to changing environments (Laikre 
et al., 2010; Nielsen et al., 2022; O'Brien et al., 2022). Normally, 
genetic diversity might decrease because of increased random 
genetic drift, inbreeding, and reductions in gene flow due to hab-
itat loss or fragmentation of species (Aguilar et al., 2008; Chung 
et al., 2023; Lowe et al., 2005; Young et al., 1996). However, hab-
itat loss or fragmentation can also lead to highly specific genetic 
consequences (e.g., increased genetic divergence, genetic bottle-
neck and reduced effective population size) for plants because of 
their different life histories, particularly for tree species with long 
generation times (e.g., González et al., 2020; Petit & Hampe, 2006; 
Piotti, 2009).

Forest tree species are largely undomesticated and exhibit local 
adaptation across heterogeneous environments (Bonan,  2008; 
Litkowiec et al., 2018). Neutral molecular markers, such as micro-
satellite genotyping, chloroplast DNA (cpDNA) and mitochondrial 
DNA (mtDNA) fragments, have been used to reveal the genetic dy-
namics of forest tree species especially endangered tree species. 
In general, low genetic diversity and strong genetic differentiation 
were revealed in endangered or critically endangered tree species 
with small population size because of the enhanced genetic drift 
effect and inbreeding (e.g., Frankham,  2005; Yang et  al.,  2020), 
such as T. yunnanensis (Miao et al., 2016), Abies ziyuanensis (Tang 
et  al.,  2008), Cathaya argyrophylla (Wang & Ge,  2006). However, 
high levels of genetic diversity have also been detected in some 
endangered tree species with current small or scattered popu-
lation size (e.g., de Sousa et  al.,  2020; Gitzendanner et  al.,  2012; 
Yousefzadeh et al., 2018).

To date, neutral molecular markers are the most common tools 
for conservation genetic studies, however, genetic variation at neu-
tral loci cannot provide direct information on adaptive selective 
processes involving the interactions between individuals and their 
environment (Hoffmann & Willi,  2008; Holderegger et  al.,  2006). 
Recently, with the advent of high-throughput sequencing technolo-
gies, adaptive genetic markers have become available even for tree 
species with large and complex genomes (Feng & Du, 2022; Mackay 

et al., 2012; Neale & Kremer, 2011). In addition, emerging landscape 
genomics aims to detect adaptive variation along the landscape by 
integrating geographic and environmental information to provide 
unprecedented insights into the evolutionary mechanisms of local 
adaptation (Borrell et  al., 2020; Du et  al., 2020; Sork et  al., 2013; 
Wang et al., 2021). FST outlier analysis and genotype-environment 
associations (GEAs) in landscape genomics have been suggested as 
promising tools for detecting adaptive genetic variation in conser-
vation practices (Ahrens et al., 2018; Chung et al., 2023; Schoville 
et al., 2012). In recent years researchers have increasingly employed 
these methods to study how spatial heterogeneity promotes pop-
ulation genetic dynamics, and how genomic variation promotes 
adaptive evolution in forest tree species, particularly conifers (Jia 
et al., 2020; Mayol et al., 2020; Zhao et al., 2020).

Taxus cuspidata Sieb. et Zucc., a tertiary relict tree species, is a 
keystone-dominant coniferous long-lived wind-pollinated tree spe-
cies with a discontinuous distribution in Japan, Korea, Northeast (NE) 
China and Far Eastern Russia (Kunashir Island, Sakhalin and Primorye) 
(Chung et al., 1999; Kitamura & Murata, 1987). In China, the species 
is mainly located at altitudes ranging from 600 m to 1200 m in the 
Changbai Mountains and neighboring areas. The number of natural 
populations of T. cuspidata has drastically decreased in the last cen-
tury, partially because of human disturbance. Therefore, T. cuspidata 
is considered as “Plant Species with Extremely Small Populations 
(PSESP)” in China (Wade et  al.,  2016), however, it was a Least 
Concern (LC) species in the International Union for Conservation of 
Nature (IUCN) (Katsuki & Luscombe, 2013). Previous studies based 
on paternal inherited mtDNA and cpDNA fragments have shown 
high degrees of genetic diversity in T. cuspidata (Cheng et al., 2015; 
Kozyrenko et al., 2017; Su et al., 2018). However, the contributions 
of geography and climate to genetic variation in T. cuspidata remain 
unclear.

Here, we sampled T. cuspidata natural populations throughout 
the species' distribution range and combined their neutral and non-
neutral genetic variation using nSSRs and SNPs. We aimed to (1) es-
timate the genetic diversity and genetic differentiation within and 
among populations, (2) understand the contribution of geographic 
and climatic factors to genetic variation and (3) predict future adapt-
ability of the species using landscape genomic tools under a sce-
nario of future climate change. Our study lays the groundwork for 
understanding the molecular mechanisms of local adaptation, and 
provides a theoretical foundation for the conservation and manage-
ment of important conifer tree species in East Asia.

response of T. cuspidata under future climate. Together, this study provides a theo-
retical framework for conservation and management strategies for wildlife species 
in the context of future climate change.
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2  |  MATERIAL S AND METHODS

2.1  |  Field sampling

In our study, we collected leaf material in natural populations of T. 
cuspidata in the Changbai Mountains and adjacent areas. The sam-
pling points were strategically distributed across the area, spanning 
from the southwest to the northeast of Changbai Mountains and 
adjacent areas. A total of 200 individuals of T. cuspidata were sam-
pled from 19 natural populations and each population was separated 
by at least 30 km. The detail sampling information of each popula-
tion was listed in Table S1. Leaf samples were labeled and stored in 
plastic bags with silica gel for DNA extraction. Voucher specimens 
of each population were deposited at Beijing Forestry University.

2.2  |  DNA isolation and microsatellite genotyping

Total genomic DNA was extracted from leaf tissue using Plant 
Genomic DNA Kit (Tiangen, Beijing, China) following the manufac-
turer's protocol. The DNA quality was initially checked by 1% aga-
rose electrophoresis gel and then the concentration was measured 
by an ultramicro-spectrophotometer (Thermo Fisher, USA). Seven 
polymorphic nuclear microsatellite (nSSR) loci were used for geno-
typing all 200 individuals after initial screening of 24 nSSR primers 
that had been already applicable to T. cuspidata (Cheng et al., 2015; 
Dubreuil et al., 2008; Kondo, 2016) (see Table S2 for primer details). 
The PCR conditions followed Du et al., 2017 and the PCR products 
were analyzed using an ABI PRISM 3730 Genetic Analyzer (Applied 
Biosystems, USA). Subsequently, the alleles were scored using 
GENEMARKER v. 2.2 (Softgenetics, USA) and the genotype was 
checked twice.

2.3  |  Double-digest RADseq-derived SNP dataset

A subset of samples (130 out of 200 individuals in 19 populations) 
was used for SNP dataset collection by a double-digestion restric-
tion fragment-based procedure (ddRAD-seq) (Peterson et al., 2012) 
(Table S3). The subset of sampling by RAD-seq covered almost the 
entire distribution range to capture the vast majority of diversity. 
For each sample, the genomic DNA was processed for library con-
struction and sequencing. Briefly, DNA was double-digested with 
restriction enzyme TaqI and MseI, followed by the ligation of Illumina 
adaptors. Ligation products were size-selected about 500 bp and 
amplified by kapa HotStart ReadyMix (cat. no. KK2601; KAPA 
Biosystems) with 13 cycles. Paired-end sequencing (2 × 150 bp) was 
performed using an Illumina HiSeq2000 platform at Majorbio Pharm 
Technology Co., Ltd., Shanghai, China.

The data quality control was assessed by FastQC v0.11.7 
(Andrews, 2010). We removed adapter sequences and low-quality 
bases (Phred quality <20) from raw data using Trimmomatic 0.36 
(Bolger et  al.,  2014). Then the reads were all trimmed to 120 bp 

and designed for SNP genotyping using Stacks v1.48 (Catchen 
et al., 2011, 2013). In detail, ustacks was used to assemble our se-
quences into de novo, cstacks was used to build a catalog of loci, sst-
caks was used to match loci against the catalog and the Populations 
was used to output SNPs. A strict criteria was used to filter SNPs 
using VCFtools (Danecek et al., 2011): first, we only kept individuals 
that represented at least 60% of the SNPs; second, a filtering param-
eter of 0.8 was used to avoid the influence of missing data, i.e., more 
than 80% of individuals in a population were required to process a 
locus; third, a minor allele frequency (MAF) < 0.1 was used to filter 
the data and to reduce the likelihood of false-positive results due to 
spurious correlations.

2.4  |  Genetic diversity and structure

We estimated genetic diversity including mean effective number 
of alleles (NE), mean observed heterozygosity (HO), mean expected 
heterozygosity (HE) and mean number of different alleles (NA) 
for each population by GenAlEx 6.5 for nSSR dataset (Peakall & 
Smouse, 2006). We defined two types for ddRAD-seq dataset: neu-
tral genetic variation based on neutral SNPs and non-neutral (puta-
tively adaptive) genetic variation based on outlier SNPs (i.e., outliers 
were detected by FST and GEA analysis; see section outlier detection 
below). We estimated the mean frequency of the most frequent al-
lele at each locus (P), mean nucleotide diversity (π), HO and HE for all, 
neutral, FST-outlier and GEA-outlier SNPs by Populations module in 
Stacks (Catchen et al., 2013).

We conducted a principal component analysis (PCA) to produce 
a lower dimensional subspace that captured most of the variation 
in each of three data types. For nSSRs, “adegenet” (Jombart & 
Ahmed, 2011) was used for the PCA in R 3.6.1 (R Core Team, 2019). 
PLINK v.1.07 was used for the PCA in all, neutral and outlier SNPs 
(Purcell et al., 2007; Zheng et al., 2012).

Population structure was also accessed using Bayesian clustering. 
For nSSRs, we identified population genetic structure through the 
Bayesian Markov chain Monte Carlo (MCMC) clustering method imple-
mented in STRUCTURE v 2.3.4 (Pritchard et al., 2000). Twenty inde-
pendent runs were performed for each value of K (1–10) using 200,000 
generations for the MCMC cycles and 100,000 generations for the 
burn-in by STRUCTURE HARVESTER (Earl & vonHoldt,  2012). The 
most likely number of clusters (K) was determined using ΔK and LnP(K) 
statistics, according to Evanno et  al.  (2005). CLUMPP (Jakobsson & 
Rosenberg, 2007) and DISTRUCT v1.1 (Rosenberg, 2004) were used to 
aligned independent runs and visualize the bar plots of the individual's 
probabilities of population membership.

ADMIXTURE v1.3.0 (Alexander et  al.,  2009; Alexander & 
Lange, 2011), which can deal with large data with fast speed, was 
applied to assess population structure of genetic variation for all, 
neutral and outlier SNPs. We ran ADMIXTURE with default 5-fold 
cross-validation (−cv = 5) to select the optimal K from one to ten, the 
best K exhibits low cross-validation error (CV error) opposed to oth-
ers (Alexander & Lange, 2011).
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We conducted a hierarchical analysis of molecular variance 
(AMOVA) to quantify the degree of genetic divergence among 
and within populations for our nSSRs, all SNPs, neutral SNPs, FST-
outlier SNPs and GEA-outlier SNPs by Arlequin 3.5 (Excoffier & 
Lischer,  2010). The significance of genetic differentiation differ-
ences was evaluated using 10,000 permutations.

2.5  |  Climatic variables

Bioclimatic variables of current climate (representative of 1960–
1990) and future climate (2070: average for 2061–2080) were down-
loaded from the WorldClim Version2 (http://​world​clim.​org/​version2, 
Fick & Hijmans, 2017) at spatial resolutions of 30 s (~1 km2). A total 
of 31 climate variables were extracted by longitudes and latitudes 
of population sites based on raster layers by ArcMap10.2. To avoid 
biased estimates of model coefficients and spurious significance 
levels resulting from multicollinearity, we excluded highly correlated 
climate variables with the threshold values of 0.7 using a variance 
inflation factor (VIF) test in “usdm” R package (Marquaridt,  1970; 
Naimi et al., 2014; R Core Team, 2019). Six climate variables were 
finally retained: isothermality (bio03), maximum temperature of 
warmest month (bio05), mean temperature of driest quarter (bio09), 
precipitation seasonality (bio15), precipitation in May (prec05) and 
precipitation in October (prec10). We also carried out Shapiro–Wilk 
and Levene test (package car, Fox & Weisberg, 2019) to explore each 
variable's data distribution and homogeneity. We found that the 
data for each variable was not normally distributed nor homogene-
ous; therefore, we performed the Kruskal-Wallis rank sum test to 
explore the significance level for each variable.

2.6  |  Outlier detection

Three algorithms were used to detect potentially adaptive loci, 
including one FST outlier analysis approach and two genotype-
environment associations (GEAs) outlier detection approaches.

For the FST outlier analysis, we use Bayesian approach in 
BayeScan 2.0 to directly estimate the posterior probability of a given 
locus under selection (Foll & Gaggiotti, 2008). We used the following 
parameter values: sample size of 5000, 20 pilot runs with 5000 run 
length, 50,000 burn-in iterations and thinning interval of 10. Prior 
odds for neutral model were set to 10 and SNPs with q < 0.01 (−
log10q > 2) were considered as FST-outliers (Puebla et al., 2014).

For genotype-environment associations (GEAs) outlier detection 
approaches, we firstly applied latent factor mixed models (LFMM) 
by package LEA in R (R Core Team,  2019). We use a hierarchical 
Bayesian mixed modelling approach to identify allele–environment 
correlations, while modelling residual population structure with ‘la-
tent factors’ (Frichot et al., 2013; Frichot & François, 2015). In LFMM, 
environmental variables were tested separately and introduced 
into each model as fixed effects, and the number of latent factors 

(K = 3) was selected to account for genetic structure by sparse non-
negative matrix factorization (SNMF) (Figure  S7). The parameters 
were set as follows: 100,000 iterations with a burn-in of 50,000 it-
erations and ten replicate runs. Significant outliers were determined 
as SNPs with p-values of p < 10−3 or –log10 (p-value) > 3. We secondly 
used Bayesian generalized linear mixed models (BayEnv) to detect 
the correlation between SNPs and environmental variables with a 
neutral dataset generated by BayeScan as a null model (Günther & 
Coop, 2013). We initially computed a null covariance matrix of re-
latedness between populations, over 100,000 iterations and five 
independent runs. We then tested all SNPs (including those initially 
identified by BayeScan) under an alternative model where allele 
frequencies are determined by a combination of the covariance 
matrix and an environmental variable. We performed our analysis 
independently across six environmental variables, and using Bayes 
factor (BF) to evaluate the posterior probability that each SNP is 
under selection across independent environmental variable. We also 
performed nonparametric Spearman's rank correlation as alternative 
tests to the BF and detect the correlation between ranks of SNP 
allele frequencies and environmental variables. Therefore, we con-
sidered the SNPs in the top 1% of BF values (BF > 3) and top 10% of 
the absolute value of Spearman rank correlation coefficients (ρ) as 
significant outliers.

2.7  |  Multivariate relationship between genetic 
variation and environmental gradients

To estimate how the genomic variation is influenced by climate or 
geographic variables, we firstly performed redundancy analyses 
(RDAs) and partial redundancy analyses (pRDAs) to detect linear 
relationships between genetic variations and multivariate climatic 
gradients, using “vegan” R package (Oksanen et al., 2019). We con-
structed two pRDAs models to differentiate the independent ef-
fects of climate and geography by reciprocally constraining one of 
the two factors. Briefly, climatic effects were conditioned on the 
effects of geography (pRDAenv to extract pure effects of the cli-
mate) and vice versa (pRDAgeo for pure effects of geography). All 
SNPs, neutral and non-neutral genetic variation with the six climate 
variables and geographic variables (longitude and latitude) were con-
sidered as predictor variables. Statistical significance was evaluated 
from 999 permutations.

We then employed gradient forest (GF) analyses to explore the 
nonlinear relationships between environmental variables and their 
contribution to genetic variation using R package GradientForest 
(Ellis et  al.,  2012). Gradient forest is a machine learning, regres-
sion tree approach that allows for exploration of nonlinear as-
sociations of spatial, environmental and allelic variables (Ellis 
et al., 2012; Fitzpatrick & Keller, 2015). We conducted a GF anal-
ysis on six climate variables to assess the relative importance of 
each predictor variable using weighted R2 value, split importance; 
Ellis et  al.  (2012). Split importance, a measure of the amount of 

http://worldclim.org/version2
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variation explained, is high in positions along the gradient where 
allelic change is large. We ran a gradient forest with 500 regression 
trees per SNP, maxLevel = log2(0.368n)/2, and variable correlation 
threshold of 0.5 to calculate conditional variable importance as 
recommended (Ellis et  al.,  2012; Fitzpatrick & Keller, 2015). The 
default values of the other parameters were carried out for each 
GF model.

2.8  |  Adaptation potential of Taxus cuspidata

We employed two different methods to estimate the adaptive 
potential of T. cuspidata. We selected the Global Climate Model 
BCC-CSM1-1 (IPCC,  2014) under two contrasting representative 
concentration pathways (RCPs), including a low-emission scenario 
(RCP 2.6) and a high-emission scenario (RCP 8.5) in 2070 years for 
future climate scenarios. We first used GF to estimate the genetic 
offset based on all SNPs, FST-outlier SNPs and GEA-outlier SNPs 
under future climatic conditions. Genetic offset, a measure of the 
magnitude of genetic change required between present and fu-
ture climate (Fitzpatrick & Keller, 2015) was used to predict genetic 
variation across grid cells of NE China by “GradientForest” package 
(Ellis et al., 2012) in R (R Core Team, 2019). For each grid cell, the 
Euclidian distances between the current and future genetic compo-
sitions were calculated and served as the metric for genetic offset 
(Ellis et al., 2012).

We also performed a risk of non-adaptedness (RONA) to pre-
dict the adaptive potential of T. cuspidata to future local climate 
using default settings in PYRONA v0.3.6 (Pina-Martins et al., 2019; 
Rellstab et al., 2016). PYRONA ranked the environment factors by 
the number of associations and provided an average RONA value 
weighted by the regression R2 value for each predictor factors. The 
“RONA value” here indicates the mean difference between current 
and future expected allele frequencies, which was used to estimate 
the expected allele frequencies in future based on the present allele 
frequencies and environmental variables. The inferred linear model 
was used to predict expected allele frequencies in future environ-
mental gradients in 2070 according to the Global Climate Model 
BCC-CSM1-1 (IPCC, 2014) under RCP 2.6 and RCP 8.5.

3  |  RESULTS

3.1  |  RAD-based SNP data

We attained a total of 373,894,701 loci with the mean depth of cov-
erage for filtered SNPs at 4.89 (range: 3.58–7.47) and mean propor-
tion of loci with missing data per sample is 0.46 (range: 0.07–0.98) 
(Table S3). A total of 37 individuals with high proportion missing data 
were discarded, and the retaining 93 individuals is at least four indi-
viduals per population (Table 1). Stacks initially recovered 144,575 
SNPs and 16,087 high-quality SNPs were retained after stringent 
quality control.

3.2  |  Genetic diversity and differentiation based on 
nSSRs and SNP datasets

For nSSRs, observed and expected heterozygosity estimated per 
population ranged from 0.26 to 0.46 and 0.28 to 0.48, respectively 
(Table  1, Table S5). The expected heterozygosity (HE) and nucleo-
tide diversity (π) ranged from 0.26 to 0.30 and 0.29 to 0.33 in all 
(Table S4) and neutral SNPs (Table 1). For FST-outlier SNPs, HE and 
π ranged from 0.17 to 0.38 and 0.18 to 0.40, and for GEA-outlier 
SNPs, HE and π ranged from 0.28 to 0.34 and 0.31 to 0.36 (Table 1).

PCA (Figures S1, S2) based on both nSSRs and RAD-seq data-
sets were consistent with Bayesian clustering analysis, which failed 
to detect clear population genetic structure in all populations. The 
most likely number of clusters (K) was two for the nSSRs (Figure 1a, 
Figures S3, S4), one for all and neutral SNPs (Figure 5b, S5a), and 
three for outlier SNPs (Figure  1b, Figures  S5c, S6). These results 
showed a mixed genetic makeup of clusters in all populations.

The results of AMOVA indicated that a large proportion of ge-
netic variation occurred within populations, with low levels of ge-
netic differentiation (FST = 0.07) in nSSRs, all SNPs and neutral SNPs; 
For outlier SNPs, high FST values (FST = 0.32) in FST-outlier SNPs and 
moderate FST values (FST = 0.1) in GEA-outlier SNPs (Table 2).

3.3  |  Outlier detection and environmental association

We identified 63 SNPs as putative outliers and did not detect any 
significantly low outlier FST values that would be indicative of bal-
ancing or purifying selection using BayeScan (Figure S8). According 
to the significance test, each climate variable was significantly dif-
ferent among the populations (Kruskal–Wallis chi-squared = 92, 
p < 0.001). We identified 279 and 286 putative adaptive SNPs that 
were significantly associated with at least one climatic variable using 
LFMM (Figure S9) and BayEnv (Figure S10), respectively, with five 
common SNPs (Figure 2c). More putative adaptive SNPs were sig-
nificantly associated with precipitation variables than temperature 
variables (Table S6). A total of 598 outlier SNPs were identified as 
non-neutral genetic variations and 15,489 neutral SNPs as neutral 
genetic variations.

3.4  |  Environmental associations with genetic 
variation

RDA revealed that a large proportion of genetic variation among 
populations was associated with the six climate variables. The RDA 
results were similar to that of pRDA (Tables S7 and S8; Figures S11a, 
S12); here, we explained the results of pRDA (Table 3, Figures S11b, 
S13). For nSSRs, genetic variation was found to be mainly associ-
ated with climate variables: 5% of the nSSRs variance was explained 
by climate, while geography only accounted for 1% (Table 3). For all 
SNPs and neutral SNPs, 10% of the explained variance was explained 
by climate and 3% by geography (Table 3, Table S8). For outlier SNPs, 
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21% of the FST-outlier SNPs variance was explained by climate and 
4% by geography; 13% of the GEA-outlier SNPs variance was ex-
plained by climate and 3% by geography (Table 3).

For all SNPs, the GF indicated that isothermality (bio03) was the 
most important climate response factor (Figure  2a). However, for 
outlier SNPs, precipitation in May (prec05) and precipitation sea-
sonality (bio15) were the most important climate response factors, 
respectively (Figure 2b,c).

3.5  |  Prediction of population vulnerability under 
future climate change

In the three GF models by all SNPs, FST-outlier and GEA-outlier SNPs, 
the predicted turnover in allele frequencies across the landscape 
followed a southwest to northeast direction: northeastern popula-
tions are expected to have higher genetic offsets in the Changbai 
Mountains and adjacent areas in the future (Figure 3a–f), the degree 

FI G U R E 1 Geographic distribution and sampling sites of Taxus cuspidata. The pie chart shows the genetic clustering of each population based on (a) 
neutral genetic variation by microsatellites (SSRs) and (b) non-neutral genetic variation by outlier SNPs. The red line indicates the distribution range of 
T. cuspidata. Orange, green, blue and yellow represent genetic cluster assignments; the details of the cluster assignments were showed in Table S1.
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Source of variation df
Percentage of 
variation (%)

Fixation 
indices

All SNPs

Among groups 13 6.6

Within populations 172 93.4 FST = 0.07

Neutral genetic variation

nSSRs

Among groups 18 7.5

Within populations 381 92.5 FST = 0.07

Neutral SNPs

Among groups 13 7.2

Within populations 172 92.8 FST = 0.07

Non-neutral genetic variation

FST-outlier SNPs

Among groups 13 38.5

Within populations 172 79.1 FST = 0.32

GEA-outlier SNPs

Among groups 13 10.3

Within populations 172 89.7 FST = 0.10

Note: Significance tests (1000 permutations) showed all fixation indices were significant (p < 0.05).
Abbreviation: df, degree of freedom.

TA B L E  2 Hierarchical analyses of 
molecular variance (AMOVA) of Taxus 
cuspidata populations based on all SNPs, 
neutral and non-neutral genetic variation.

F I G U R E  2 R2-weighted importance of environmental variables explaining genetic gradients for all (a), FST-outlier (b), and GEA-outlier (c) 
SNPs in Taxus cuspidata using GF analysis. A venn diagram showing the overlap of outliers between all SNPs associated with at least one 
climatic variable, as identified by LFMM and BayEnv.
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of genetic offset is slightly higher under RCP 8.5 than that of RCP 
2.6 (Table S9). The RONA revealed that the most represented en-
vironmental variables were prec05, bio03, and prec10 (Table S10). 
Under the combined effect of the three most represented climate 
variables, population THL showed the highest RONA value for RCP 
2.6 (Figure 4). MDJS, HCM and YBJ populations showed the high-
est RONA value for RCP 8.5 in 2070 (Figure 4). The THL and MDJS 
populations had a lower adaptive potential for prec10 by 2070.

4  |  DISCUSSION

Our study integrated population genetics and landscape genomic methods 
to explore neutral and non-neutral genetic variations in T. cuspidata popu-
lations in the Changbai Mountains. The neutral genetic variation dataset 
revealed high genetic diversity and low genetic differentiation, whereas 

non-neutral genetic variation showed high genetic differentiation. GEAs 
revealed that the contribution of climate to genetic variation was greater 
than that of geography, and precipitation played an important role in the 
putative adaptive genetic variation in response to climate change. We 
found that populations in the northeast range will be more vulnerable to 
future climate change as suggested by putative adaptive genetic variation. 
Our study provides insight into how neutral and putative adaptive genetic 
variation interacts with the environment, which is essential for future con-
servation and management of natural populations.

4.1  |  High genetic diversity was maintained in 
present fragmented populations

We integrated the patterns of neutral and non-neutral genetic 
variation in T. cuspidata using nSSRs and RAD-seq datasets. In this 

TA B L E  3 Summary and partitioning of the variance associated with climate and geographical variables based on pRDA in neutral and non-
neutral genetic variation.

Neutral genetic variation Non-neutral genetic variation

nSSRs Neutral SNPs FST-outlier SNPs GEA-outlier SNPs

PVE Eigenvalue p PVE Eigenvalue p PVE Eigenvalue p PVE Eigenvalue p

Geography 1.41 1.10 0.373 3.45 1.69 0.001 4.44 2.6 0.002 2.89 1.53 0.001

Climate 4.97 1.69 0.004 9.96 1.62 0.001 20.96 4.10 0.001 13.41 2.37 0.001

bio03 1.22 2.49 0.014 1.78 1.74 0.001 1.75 2.06 0.047 3.17 3.37 0.001

bio05 0.66 1.35 0.222 1.35 1.32 0.004 4.4 5.16 0.002 1.71 1.81 0.004

bio09 0.96 1.96 0.055 1.63 1.59 0.001 2.79 3.28 0.003 1.99 2.12 0.001

bio15 0.87 1.78 0.082 1.60 1.56 0.001 2.28 2.68 0.012 2.07 2.20 0.001

prec05 0.61 1.21 0.268 1.89 1.85 0.001 7.63 8.95 0.001 2.68 2.85 0.001

prec10 0.65 1.33 0.244 1.72 1.68 0.001 2.11 2.46 0.025 1.79 1.90 0.001

Abbreviation: PVE, percentage of explained variance.

FIG URE 3 Genetic offset to future climate change predicted for all (a, d), FST-outlier (b, e) and GEA-outlier SNPs (c, f) of Taxus cuspidata in 2070. (a–c), 
RCP 2.6; (d–f), RCP 8.5. Red and green indicate high and low genetic offset, respectively. The details of the genetic offset values were showed in Table S9.
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study, high current genetic diversity and low genetic differentiation 
were observed across the extant geographical range in China. The 
present results are in agreement with previous T. cuspidata genetic 
studies by cpDNA fragments in Russian and South Korea (Kozyrenko 
et al., 2017), cpDNA and mtDNA fragments in China (Su et al., 2018), 
and were similar to that of T. baccata from Poland by microsatel-
lites (Litkowiec et al., 2018). In addition, admixture analysis revealed 
substantial gene flow among the populations. For fragmented and 
isolated T. cuspidata populations, substantial gene flow may compen-
sate for the genetic barrier caused by fragmented habitats (Browne 
& Karubian, 2018; Hu et al., 2008; Petit et al., 2005).

Theoretically, fragmentation of species usually has a nega-
tive effect on genetic diversity compared to intact populations 
(Nybom,  2004; Vranckx et  al.,  2012). One possibility for the high 
genetic diversity and gene flow might be the outcrossing nature 
of the species. T. cuspidata is a wind pollination and typical bird-
dispersed plant. Gene flow may be accomplished by both seeds and 
pollen, and pollen often disperses over longer distances than seeds 
(Jordano, 2017; Kremer et al., 2012). However, this seems to be diffi-
cult, particularly for long-distance intervals among the studied pop-
ulations. For yew, a multi-model approach indicated that 95% of the 
seed and pollen dispersal distances were <109 m and 704 m, respec-
tively (Chybicki & Oleksa, 2018). An alternative explanation for high 
genetic diversity is the delayed sexual maturity of the species. The 
unbalanced ratio of females to males of T. cuspidata (1:2.3) was found 
in this region (Long et  al.,  2021). The sex ratio in dioecious plants 
might significantly affect genetic diversity (Rosche et  al.,  2018), 
e.g., the dioecy may increase genetic diversity due to obligate out-
crossing, which has been found in Pherospheara hookeriana (Worth 
et al., 2021). Isolation occurred mainly throughout the last few de-
cades and was probably not long enough to impact current genetic 
diversity (Münzbergová et al., 2013; Rosche et al., 2018). Therefore, 
the short duration of fragmentation tends to maintain the standing 
variations in long-lived plants, which may delay adverse effect in the 
progenies of T. cuspidata (Aguilar et al., 2008; Vranckx et al., 2012).

High genetic differentiation was also observed in the putative 
adaptive genetic variation, the high FST values may be due to the fix-
ation of different alleles in the local populations. This might also be 
caused by natural selection in response to changing environments, 
and adaptive processes may contribute to high FST values. Therefore, 
natural populations of T. cuspidata primarily stem from intense selec-
tive pressure imposed by environmental factors.

4.2  |  Signature of natural selection in T. cuspidata

Outlier detection test is an effective approach to identify the 
presence of putatively adaptive genetic variation. Although 
outlier detection tests can produce false outliers due to con-
founding factors (Schoville et al., 2012), tests with various de-
mographic hypotheses can be utilized and compared to solve 
this issue, and common loci detected in consensus are more 
likely to be actual targets of selection (Ahrens et al., 2018). In 
this study, we applied three outlier methods to detect differ-
ent sets of outlier SNPs that showed signatures of selection. 
The proportion of FST outlier (0.4%) aligns closely with the find-
ings in other conifers, such as Pinus taeda (0.2%) (De La Torre 
et al., 2019), Keteleeria davidiana (0.2%) (Shih et  al., 2018) and 
Cupressus gigantea (0.4%) (Yang et  al.,  2022). The proportion 
of GEA-outlier SNPs (ranging from 1.7% to 1.8%) was similar 
to those of T. baccata (2.6% to 3.0%) (Mayol et  al., 2020) and 
Pinus albicaulis (2.9%) (van Mantgem et al., 2023). In the present 
study, more GEA-outlier SNPs associated with climatic variables 
were correlated with precipitation variables than temperature 
variables. These outlier SNPs of T. cuspidata suggested that sig-
natures of selection may be involved in local adaptation pro-
cesses in response to selective pressure. However, due to the 
short RAD reads and no annotated reference genome, we failed 
to further annotate any genes associated with putatively adap-
tive SNPs.

F I G U R E  4 RONA of Taxus cuspidata under RCP 2.6 (a) and RCP 8.5 (b) prediction models for 2070. Bars represent weighted means (by R2 
value), and grey error bars represent the standard error.
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4.3  |  Genetic variation associated with adaptation 
to climate change

Precipitation and temperature are main climatic factors influenc-
ing plant's distribution and survival (Cuervo-Alarcon et al., 2018). 
Temperature is a key factor influencing the growth and phenology 
of tree species (Schmiege et al., 2021; Vitasse et al., 2009). RDA 
and GF indicated that temperature was found to be associated 
with our nSSRs, neutral SNPs and all SNPs sets. An explanation 
to this temperature-driven genetic variation is that tempera-
ture could affect the connection between populations (i.e., gene 
flow), which has been observed in yews in the northern Italy 
(Mercuri et  al., 2013). Yews are also highly sensitive to extreme 
temperature changes, including T. globosa (Antúnez, 2021) and T. 
baccata (Mayol et  al., 2020; Moir,  1999). Low temperatures can  
encourage the rooting of yews during the early growth stage 
(Muñoz-Gutiérrez et  al.,  2009). Therefore, the maximum tem-
perature of warmest month (bio05) and the mean temperature of 
driest quarter (bio09) might affect the growth and distribution of 
T. cuspidata.

We also found that precipitation was an important variable as-
sociated with putative adaptive genetic variation. Water availabil-
ity may be an important selection factor for yew species, especially 
during the last interglacial period, as indicated by the association 
study in the common yew, T. baccata (Mayol et al., 2020). A previous 
study using ecological niche modeling has also found that the best 
suitable distribution time for T. cuspidata is during the last glacial 
maximum and the most restricted distribution time for the species 
is during the last interglacial period (c. 130 ka), suggesting the cold-
tolerant and wet-sensitive features of the species (Su et al., 2018). 
Therefore, water availability will be a challenge for T. cuspidata when 
facing the changing environments, as suggested by other yew spe-
cies (Linares, 2013).

4.4  |  Species vulnerability and conservation 
strategies

Assessing the vulnerability of species to climate change can pro-
vide insight into the potential risk of species persistence in fu-
ture climate scenarios (Capblancq et al., 2020; Feng & Du, 2022). 
Genetic prediction of adaptation to future climate indicated that 
populations (e.g., MDJHP, YJX and MDJS) in the northeast area 
(Heilongjiang and Jilin Provinces) exhibited a higher risk of genetic 
maladaptation than other populations. These populations showed 
low potential to adapt to changing environments in small or iso-
lated habitats.

For GF genetic offset, the predictive power of genomic offset 
estimates on fitness effects is increasingly being assessed through 
experimental and simulation studies, showing promising results 
(Láruson et al., 2022). The GF offset results in our study differed not 
much between the two future climate scenarios. An explanation for 

the phenomenon is that T. cuspidata has a long lifecycle with long 
generation intervals, in which the rates of emergence and spread of 
novel adaptive alleles in populations through de novo mutations are 
likely to be too slow to respond to climate change.

For all SNPs and putatively adaptive SNPs, northeastern popu-
lations showed higher genetic offsets and vulnerabilities than the 
other populations. Su et al. (2018) found that ecological niche mod-
eling showed a contraction trend in the distribution of T. cuspidata 
by 2070, with northeastern populations located in a contracting 
area. Láruson et al. (2022) showed that higher genetic offset may be 
caused by genetics drift at small population rather than a selection-
driven response. Negative associations between GF offset and 
population size have also been found in previous bird studies (Bay 
et al., 2018; Ruegg et al., 2018). Therefore, the high genetic offset 
of T. cuspidata may also be caused by natural selection and/or small 
population size.

Based on our study and previous reports, we came to the con-
clusion that T. cuspidata is at risk in China with number of challenges, 
such as fragmentation and habitat loss, climate change, disturbance 
and the unbalanced ratio of females to males (Long et al., 2021; Su 
et al., 2018; Wang et al., 2019). Our study specifically recommends 
adopting in  situ conservation strategies for THL, LJD and YBHSP 
populations with high adaptive genetic diversity but vulnerable in 
the future. In addition, populations displaying low adaptive variation, 
including MDJHCH, MDJHP and YBJ, could benefit from ex situ con-
servation strategies. Furthermore, for small or isolated populations 
characterized by limited genetic diversity and high vulnerability 
(e.g., BSSCZ, YBJ), genetic rescue and assisted gene flow techniques 
should be considered to facilitate their adaptation to climate change. 
Previous studies have demonstrated the effectiveness of such 
approaches (Aitken & Bemmels,  2016; Aitken & Whitlock,  2013; 
Whiteley et al., 2015).

It is worth noting that our study represents a pioneering effort 
to integrate neutral and adaptive genetic variation to the conserva-
tion of a threatened tree species. However, to gain deeper insights 
into the molecular mechanisms underlying the threats faced by T. 
cuspidata, future research endeavors should include comprehen-
sive investigations encompassing whole-genome or transcriptome 
sequencing, along with the inclusion of phenotypic and fine-scale 
environmental data.
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