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Optimal techno‑economic 
assessment of isolated microgrid 
integrated with fast charging 
stations using radial basis deep 
learning
Abdelmonem Draz *, Ahmed M. Othman  & Attia A. El‑Fergany 

The global transportation electrification commerce sector is now booming. Stakeholders are paying 
an increased attention to the integration of electric vehicles and electric buses into  the transportation 
networks. As a result, there is an urgent need to invest in public charging infrastructure, particularly 
for fast charging facilities. Consequently, and to complete the portfolio of the green environment, 
these fast-charging stations (FCSs) are designed using 100% of renewable energy sources (RESs). 
Thus, this paper proposes an optimization model for the techno-economic assessment of FCSs 
comprising photovoltaic and wind turbines with various energy storage devices (ESDs). In this 
regard, the FCS performance is evaluated using flywheels and super capacitors due to their high-
power density and charging/discharging cycles and rates. Then, optimal sizing of these distributed 
generators is attained considering diverse technical and economical key performance indicators. 
Afterwards, the problem gets more sophisticated by investigating the effect of RES’s uncertainties 
on the selection criterion of the FCS’s components, design and capacity. Eventually, as an effort 
dedicated to an online energy management approach, a deep learning methodology based on radial 
basis network (RBN) is implemented, validated, and carried out. In stark contrast to conventional 
optimization approaches, RBN demonstrates its superiority by obtaining the optimum solutions in a 
relatively short amount of time.

Keywords  Fast charging stations, Electric vehicles, Renewable energy sources, Energy storage systems, 
Microgrids, Energy management strategies

Motivation
Negative environmental impacts of fossil fuel sources besides their high energy costs are considered as the main 
motivators for developing sustainable energy1,2. In order to minimize carbon emissions and operating costs, 
micro grids (MGs) are equipped with energy management systems which perform economic dispatch and unit 
commitment processes3,4. MGs utilize the concept of decentralized generation in which the load demand is met 
by various types of renewable energy sources (RESs) and energy storage devices (ESDs)5–7. Distributed genera-
tors (DGs) as revealed in Fig. 1 can be classified as dispatchable sources when the generation is controlled to 
meet the demand or non-dispatchable when the generation is uncontrolled. Non-dispatchable DGs are weather-
dependent sources that are intermittent in nature which in turn brings out the need for installing ESDs such 
as batteries or super capacitors (SCs)8,9. It is worth mentioning that the selection of non-dispatchable sources 
relies on meteorological data such as temperature, solar radiation, and wind speed10,11. It is worth noting that 
flywheels and SCs are characterized by fast discharging rates as declared in Fig. 2 that make them the favorable 
options in fast charging stations (FCSs) due to their high-power density. Moreover, the usage of batteries will 
not be applicable if the recharge time exceeds a certain limit as revealed in Fig. 2.

Due to the emissions produced by conventional gasoline vehicles, they are replaced by electric vehicles (EVs) 
as an environmentally friendly solution12,13. However, the deployment of EVs fleet across roadways attracts the 
attention of utility operators for the implementation of public charging infrastructures14. FCSs represent the 
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widespread solution in highways for customer’s satisfaction15,16 although they bring technical and economic 
issues17. Power quality, voltage stability, and overloading problems are samples of the technical challenges facing 
the utility’s planners18. This is due to the fact that FCSs are rapacious burdens on the electric network because 
of demanding huge power in very short time duration19,20. FCSs may be deemed as hybrid renewable microgrid 
(HRMG) comprising various forms of ESDs operating either in an on-grid mode or off-grid mode to complete 
the portfolio of sustainable environment21.

Literature survey
A novel framework is introduced in22 for the optimal energy management in MGs in which the spatial temporal 
of energy exchange between EVs is considered. Moreover, with the aid of V2G technology, the charging price 
and dispatch are optimized using the chance constrained optimizer along with the deep Q-learning network. 
Utilizing the principles of electricity time of use in addition to real time pricing in23 are beneficial in the demand 
side management of MG with different types of RESs. A combination of batteries and SCs is exploited in24 to 
regulate the voltage in DC MG regardless of the intermittent nature of RESs or load variations. Excess electricity 
problem or the unused surplus power in hybrid renewable off-grid networks is investigated in25 using various 
approaches which aid in the development of this MG configuration. It is worth noting that technical, economic, 
environmental, and social constraints are incorporated in the optimization framework addressed in26 for energy 
dispatch in HRMG supplying residential and telecommunication loads.

The investigated methodology in27 deals with stand-alone HRMG network comprising thermal energy stor-
age systems (ESSs). The obtained results manifest the superiority of implementing recover exhaust heat system 
over the baseline scenario without any thermal energy storage. In addition, a generalized model based on the 
demand response program is employed in28 for minimizing the MG operating cost and CO2 emissions. After-
wards, employing data driven programming with multilayer perceptron in restoring the non-linearity feature 
in energy conversion components is explored. The proposed methodology in29 with the aid of load forecasting 
techniques enhances the sustainability of the HRMG system by determining the accurate capacities of DGs. 
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Figure 1.   Architecture of Microgrids.
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Fuzzy-based forecasting followed by multi-criteria decision approach is utilized in ranking the optimal solutions 
considering diverse performance indicators.

Multi-objective optimization algorithms are interrogated in30 for optimal allocation and sizing of DGs with 
battery storage system (BSS) to reinforce the voltage stability and lessen the yearly expenses. In31, the formulation 
of configuration optimization model is proposed to reduce the investment cost using multiple forms of ESDs. 
In32, various optimizers are discussed for optimal designing of HRMG considering technical, environmental, 
and economical objectives. In this context, the net present cost (NPC) , loss of power supply probability (LPSP), 
and greenhouse gas (GHG) emissions are deemed as the main aspects in this multi-objective optimization frame-
work. Smart energy management approach in HRMG with BSS is presented in33 using the modified frog leaping 
optimizer for different cases. Furthermore, the performance Chameleon Swarm Optimizer (CSO) is examined 
in34 for optimally design and sizing of stand-alone HRMG minimizing the NPC along with attaining the reli-
ability constraint in terms of LPSP. In this regard, HOMER software is employed in35 investigating technical, 
economical, and social constraints.

Uncertainty in weather conditions have been tackled in36 for optimal sizing of grid connected HRMG fulfill-
ing power quality requirements in terms of harmonics mitigation and power factor correction. In this context, 
particle swarm optimizer (PSO) is utilized in37 for voltage enhancement besides power losses alleviation in radial 
rural electric power grid. In addition, unmet load fraction 

(

UMLf
)

 constraint is addressed in38 using HOMER 
software achieving the lowest NPC and GHG emissions using various combinations of RESs. Synergy of these 
forms of RESs is investigated in39 for optimal operation strategy of HRMG participating in energy markets: 
electricity and hydrogen markets. In40, diverse control strategies such as load following (LF), cycle charging (CC) 
are examined to decide the selection between fuel cell (FC) and BSS at each time step to minimize the total NPC.

Biological inspired optimizer (BIO) is implemented and compared with various algorithms in41 for optimal 
design of an off-grid wind turbine (WT) comprising hydrogen energy storage (HES) systems. This optimization 
framework is analyzed with sensitivity analysis based on two objectives namely system cost and load losses. 
In42, a novel energy management strategy with deploying onsite electrolysers and HES systems equipped with 
photovoltaic (PV) panels is interrogated for supplying FC EVs, while43 presents a comprehensive review of the 
techniques implemented in the proposed dilemma. The optimal design of electric vehicle charging station in44 
along with techno economic assessment of HRMG in Egypt in45 represent gateways in the preparation of this 
paper. Additionally, components and specifications of FCSs are summarized in46 to augment the literature survey 
of this research.

Research gap, paper organization, and contribution
Most of the literature deals with the conventional HRMG comprising PV, WTs, and BSS supplying residential, 
commercial, or industrial loads. In addition, this optimization dilemma is solved using various metaheuristic-
based optimizers considering various operational scenarios. In this context, Table 1 announces a brief compari-
son between various HRMG configurations discussed previously in the literature. It can be highlighted that the 
MG topology comprises PV, WT, BSS, HES, FC, or diesel generators for typical installed buildings or regions. 
However, implementation of ESDs such as SCs and flywheels for electrified transportation loads in the energy 
management dilemma still acquires more attention. Moreover, deep learning-based tools have not been utilized 
so far in these optimization processes to alleviate the larger computational time of optimization algorithms. 
Therefore, the contribution of this research can be summarized as follows:

Table 1.   Summary of HRMG projects discussed in the literature. *HSO harmony search optimizer, GPO 
gradient pelican optimizer, AVO african vultures optimizer.

Reference Year MG topology Optimizer Application Location Remarks
34 2023 PV/WT/Tidal/BSS/HES CSO Rural region in Fuxin China Economic and reliability constraints are addressed
37 2022 PV/WT/BSS PSO Rural grid of Guissia Cameroon BSS aids in power factor correction

38 2023 PV/WT/CHP/ESS HOMER Oakland university United States Results demonstrate the economical effectiveness of WT and 
CHP in off-grid mode

40 2022 PV/FC/BSS HOMER Students services center building United States Interference with MATLAB for control strategy optimization
41 2023 WT/HES BIO Residential load China Various designs of WTs are included
44 2022 PV/Diesel/BSS SSO Northwest region in Delhi India Design of electric vehicle charging station

45 2022 PV/WT/BSS/Diesel HOMER National research center farm Egypt Demand side management participates in peak shaving which in 
turns the oversizing is avoided

47 2021 PV/WT/BSS GWO Ras-Shaitan in Sinai Egypt Reliability is evaluated using LPSP index
48 2024 PV/WT/HES/BSS HOMER General - Sensitivity analysis of excess electricity
49 2024 PV/WT/HES/FC BIO Residential building China Sensitivity analysis of wind speed and interest rate
50 2024 PV/WT/BSS CPLEX Chinese Yuan China Battery lifetime model is incorporated
51 2024 WT/BSS HSO Typical power system China Various technologies of batteries
52 2024 PV/biomass/Diesel/BSS GPO New Tiba City Egypt Optimal configuration is cropped
53 2024 PV/WT/FC/BSS/HES AVO Marsa Matrouh Egypt V2G technology is considered
54 2024 PV/WT/BSS/Diesel HOMER Uttara University Bangladesh Various aspects have been investigated



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:20571  | https://doi.org/10.1038/s41598-024-70063-9

www.nature.com/scientificreports/

✔	 Explore the performance of the HRMG in feeding new pattern of loads represented in EVs and electric 
buses(EBs).

✔	 Investigate the HRMG operation in public transportation networks acting as a FCS.
✔	 Incorporate various forms of ESDs such as BSS, SCs, and flywheels to earn the fast-charging feature to 

the HRMG.
✔	 Optimizing the HRMG configuration besides the component’s installed capacity in normal and fast charg-

ing operation modes.
✔	 Examine the quality of the optimized architecture in terms of different forms of technical and economical key 

performance indicators (KPIs).
✔	 Investigate the effect of uncertainties in renewables resources on the optimized solutions.
✔	 Utilizing a novel deep learning radial basis network in determining the operational capacity of the HRMG in 

online applications.

The organization of current research is summarized as follows; Section “Research Methodology” presents the 
research methodology for the technical and economic study and analysis, including the configuration, modeling 
and optimization. Section “Modelling of the HRMG” discusses the system modeling and mathematical repre-
sentation for the problem statement. Section “Objective Function, Associated Constraints, and KPIs” focuses on 
the optimization process and formulation, where the fitness function with related constraints and performance 
indicators are structured. Afterwards, Section “Simulation Results and Discussions” consolidates the numerical 
analysis with operational results and scenarios. Finally, Section “Conclusions” concludes the work with some 
highlighting of the simulation results.
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Figure 3.   Research Methodology in Steps.
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Research methodology
Techno-economic evaluation of HRMGs goes through dedicated steps starting from data collection till results 
extraction as shown in Fig. 3. These steps can be summarized as follows:

Resources and load assessments
Assessments of renewable resources availability such as solar irradiation and wind speed are on-site measure-
ments that depend on the project location. For sizing these RESs, load calculations are carried out for diverse 
categories like AC loads, DC loads, residential, commercial, industrial, and so on.

MG configuration
Based on the project location, nature, and resources availability, a combination of renewable and non-renewable 
DGs along with ESDs is implemented for a specific configuration of HRMG. The architecture of HRMG may 
be classified into three main categories; AC, DC, or hybrid configuration while it may be worked in on-grid or 
off-grid operating modes.

Mathematical modelling of HRMG
The power for each unit in the HRMG configuration is mathematically represented and estimated at each simu-
lated time slot. Afterwards, these governing equations are incorporated into the optimization framework based 
on the selected sizing methodology.

Design parameters of HRMG
The chosen design parameters are crucial for a more reliable and effective solution. UMLf  , LPSP , equivalent loss 
factor, and excess electricity portion (EEP) are considered as technical constraints. Economical constraints may 
take various forms such as NPC , annualized system cost (ASC) , and cost of energy (CoE) while GHG represent 
the widespread environmental factor.

Sizing methodologies of HRMG
Optimization or artificial intelligence techniques are implemented for optimal sizing and dispatching the gen-
erating and storage units. Moreover, multi-objective approach is exploited for this dilemma using pareto or 
fuzzy decision tools. In addition, commercial software is also employed like HOMER, HYBRIDS, and TRNSYS.

Energy management in HRMG
Proper energy management is substantial either in load or supply side for reliable and cost-effective operation 
of HRMG. Load side management comprises different forms like peak shaving, peak shifting, valley filling, 
and flexible load curve. On the other hand, some rules nominated as dispatch strategies are used to control the 
operation of generator and ESDs such as LF, CC, generator order, predictive strategy, and combined dispatch.

LF dispatch method operates the generator for load supplying when needed while RESs charge the storage 
bank. In this context, charging process of ESDs is the least priority in generator’s operation while RESs take over 
this mission. CC dispatch method enforces the diesel generator to run at its rated capacity regardless of the load 
value. Therefore, the surplus power is used to charge the storage batteries until they reach the maximum state 
of charge (SoC) level. CC dispatch technique is the best candidate whenever the resources of renewables are not 
adequate.

Modelling of the HRMG
Solar PV modelling
Generally, the PV is modelled by the equivalent circuit shown in Fig. 4 which consists of the photo-generated 
current 

(

Iph
)

 represented by a current source, diode (D) , series resistance (Rs) , and shunt resistance (Rsh) . In this 
regard, PV cell performance is evaluated by (current–voltage) and (power-voltage) characteristics as depicted 
in Fig. 5 with three governing points: open circuit voltage (Voc) , short circuit current (Isc) , and maximum power 
point 

(

Vmpp, Impp

)

 . These three points are stamped in the PV datasheet and nameplate which dominate the PV 
performance under various temperature and solar irradiation. The PV output current (IPV ) may be estimated 
from (1) by calculating the shunt resistance current (Ish) and diode current (ID) from (2) and (3) respectively.

Iph

RsID

Rsh

Ish

D

IPV

VPV

Figure 4.   Simplified equivalent circuit of PV model.
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where Irs denotes the diode reverse saturation current, n symbolizes the diode ideality factor, VT designates the 
thermal voltage that is assessed from (4) where K is the Boltzman constant = 1.3806503× 10−23 , q is the electron 
charge = 1.602× 10−19C , and Tc is the cell temperature.

The clearness index (CI) of the studied zone is estimated from (5) which depends on the portion of horizontal 
extra-terrestrial solar irradiation (Gh,av) and monthly available solar irradiation (Gav) . The instantaneous cell 
temperature (Tc(t)) is computed from (6) where NOCT stands for normal operating cell temperature while 
(Tamb(t),G(t)) are the instantaneous ambient temperature and solar irradiation in 

(

W/m2
)

 respectively. In this 
context, the instantaneous PV output power (PPV (t)) is calculated from (7) while the total output power (PTPV (t)) 
is calculated from (8) where (NPV ) is the number of PV modules.

where FPV is the cell derating factor and kp is the maximum power temperature coefficient, and PPV@STC , T@STC , 
G@STC denote the PV output power, cell temperature, and solar irradiation at Standard test conditions STC (25 0C, 
and 1000 W/m2).

Wind turbine modelling
Each  WT has a typical power output curve as depicted in Fig. 6 which describes the relation between the output 
power and average wind speed. First, the measured wind speed by the anemometer shall be corrected to the hub 
height location as illustrated in (9).

where Van denotes the measured wind speed at the anemometer height while Vh is the calculated wind speed at 
the hub height, han and hh are the anemometer and hub height respectively, γ is the Hellmann coefficient or the 
roughness factor that ranges from 0.1 to 0.25 based on the investigated zone.

(1)IPV = Iph − ID − Ish

(2)Ish =
VPV + IPVRs

Rsh

(3)ID = Irs

(

e
VPV+IPV Rs

nVT − 1

)

(4)VT =
KTc

q

(5)CI =
Gav

Gh,av

(6)Tc(t) = Tamb(t)+

(

NOCT − 20

800

)

× G(t)

(7)PPV (t) = VPV (t)× IPV (t) = PPV@STC

[

1+ kp(Tc(t)− T@STC)
]

.FPV .

(

G(t)

G@STC

)

(8)PTPV (t) = PPV (t)× NPV

(9)Vh = Van ×

(

hh

han

)γ

(a) (b)

Figure 5.   PV cell characteristics. (a) Current v.s Voltage and (b) Power v.s Voltage.
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The generic equation that correlates the instantaneous WT output power (PWT (t)) with the instantaneous 
wind speed at hub height (Vh(t)) is given in (10). However, as declared in (11) and Fig. 6, the WT output power 
can be estimated according to the wind speed for three different operating regions. The output power equals zero 
when the wind speed is below the cut-in speed (vci) or excesses the cut-out speed (vco) . Contrarily, the WT power 
remains constant at the rated power (Pr) between the rated speed (vr) and vco while it varies with the cubicle of 
wind speed in the region between vci and vr . Furthermore, the total output power (PTWT (t)) from (NWT ) units 
is calculated from (12).

where ρa is the air density 
(

kg/m3
)

 , A is the rotor blades swept area, Cp is the WT power coefficient that varies 
between 0.3 to 0.5, ηo is the electro-mechanical conversion efficiency, and NWT is the number of WT units.

Batteries modelling
The charging process of the batteries bank is done through the surplus energy which comes from the increment 
of PV-WT generation at any time t during the simulation process as explained in (13), while in (14), the discharg-
ing process of the batteries bank occurs.

where Ebatt(t),Ebatt(t − 1) are the stored energy of battery at time slot t and t-1 respectively, while σ denotes the 
self-discharge rate of the battery. Pexcess is the surplus power generated from RESs over the demand, while Pdef  
is the deferrable power in which the demand exceeds the generated power from RESs, and ηcharge , andηdischarge 
are charging and discharging efficiencies of the battery, respectively.

Afterwards, the minimum number of storage batteries (Nbatt) can be evaluated from (15) for more reliable 
HRMG operation.

where AHC is the required ampere hour capacity for the reliable operation which evaluated from (16) while 
AHCr is the rated capacity of the selected batteries model.

where Eload denotes the load daily average energy (kWh) , ndays denotes the number of days in which the batteries 
bank is energized, DoD is the maximum depth of discharge, VB is the battery voltage, and ηs is the battery-inverter 
system efficiency. Furthermore, the battery autonomy is computed from (17) which is the ratio between the 
capacity of the batteries bank and the average daily electric load.

(10)PWT (t) = 0.5ρaAVh(t)
3Cpηo

(11)PWT (t) =











0 v(t) ≤ vci , v(t) ≥ vco

Pr

�

v3(t)−v
3
ci

v3r−v3ci

�

vci < v(t) < vr

Pr vr < v(t) < vco











(12)PTWT (t) = PWT (t)× NWT

(13)Ebatt(t) = Ebatt(t − 1)(1− σ)+
(

Pexcess × ηcharge
)

(14)Ebatt(t) = Ebatt(t − 1)(1− σ)−

(

Pdef

ηdischarge

)

(15)Nbatt =
AHC

AHCr

(16)AHC =
Eload × ndays

DoD × VB × ηs

Figure 6.   WT power-speed curve.
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The battery lifetime throughput (Ebatt,life) is the amount of stored energy in kWh that the battery is expected to 
supply during its life time which can be calculated from (18). Therefore, the storage batteries need to be replaced 
after a specific number of failure cycles (Ncycles,f ) as marked in the datasheet (Number of charging and discharging 
cycles that can be completed before losing performance).

Flywheels modelling
The kinetic energy stored in the rotating mass of the flywheel depends on the angular speed of rotation and 
moment of inertia as revealed in (19). As described in (20), the stored kinetic energy can be boosted by optimiz-
ing the rotor mass and shape in terms of rotor radius (R) and thickness (t) . Also, the required number of flywheel 
strings (NFW ) for a stable operation is computed from (21).

where Efw is the required and rated stored kinetic energy in the flywheel (Joule) , wfw denotes the rotational angular 
speed (rad/s) while J designates the moment of inertia 

(

kg .m2
)

 , ρr is the rotor mass density 
(

kg/m3
)

.

Super capacitors modelling
SCs are characterized by high charging/discharging rates compared to storage batteries. The stored energy in SCs 
(ESC) depends on the capacitance value and applied voltage as revealed in (22). Hereinafter, the power required 
(PSC) of SCs is computed from (23) according to the discharging time (tdis). Also, the required number of SCs 
strings (NSC) for a stable operation is computed from (24).

where C is the capacitance value of SC, VSC is the applied voltage across the SC terminals, and PSCr defines the 
rated power of the selected SC model.

Power converter modelling
As it is well known, the generated power from the WT is AC while it is DC from the PV. Moreover, storage 
batteries are connected through the DC bus while loads may be connected through AC or DC bus. Therefore, 
bi-directional power converter is used to link between AC and DC buses to execute the rectification or inver-
sion process according to the MG configuration. In this context, the power converter is sized according to (25) 
knowing the peak load value and converter efficiency.

where Pconv(t) denotes the required converter power at time t, Pmax(t) signifies the load peak power at time t, 
and ηconv is the converter efficiency.

Objective function, associated constraints, and KPIs
HO@MER optimizer [HOMER Pro 3.14.2 https://​homer​energy.​com/] deploys a modified grid search methodol-
ogy along with multi-criteria decision analysis to attain the best solution among a set of candidate solutions. It 
extracts the superior solution with the minimum value of net present cost (NPC) or CoE , i.e., optimization of 
configuration and number of renewables/storage units. Independent constraints (NPV ,NWT ,Nbatt) in addition 
to the dependent constraints (EEP) and capacity shortage factor (CSf ) are also fulfilled.

(17)Tbatt,aut =
AHC × VB × (1− SoCmin)

Eload × 1000

(18)Ebatt,life =
Ncycles,f × DoD × AHCr × VB

1000

(19)Efw =
1

2
Jw2

fw

(20)Efw =
π

4
ρrR

4w2
fwt

(21)NFW =
Efw

Efwr

(22)ESC =
1

2
CVSC

2

(23)PSC =
ESC

tdis

(24)NSC =
PSC

PSCr

(25)Pconv(t) =
Pmax(t)

ηconv

https://homerenergy.com/
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Objective function
The purpose of the optimization process is to minimize the CoE as explained in (26) by minimizing the ASC 
which is splitted into three terms as declared in (27).

where ACC signifies the annual capital cost, ARC denotes the annual replacement cost, AOMC designates the 
annual operation & maintenance cost, SC is a salvage value, while TASL is the total annual supplied load by the 
HRMG system.

In this context, ACC is calculated from (28) based on the project initial capital cost (ICC) and capital recovery 
factor (CRF(i,ny)) which evaluates the money worth as per (29).

It is worth mentioning that CRF depends on the real interest rate (i) and the project life time in years (ny) . 
The real annual interest rate is calculated form (30) based on the nominal interest rate (ii) and annual inflation 
rate (f ). On the other hand, ARC is calculated from (31) depending on the replacement cost (RC) in addition 
to the CRF. Moreover, SC is computed from (32) which represents the residual value of the component in the 
HRMG at the end of project life time.

where tR denotes the replacement time in years, nR is a counter for the number of replacements occurred dur-
ing the project life time, RLT is the component remaining life at the end of the project life span, and CLT is the 
component life time in years. Since NPC is a cost-effective measure, HRMG configurations may be ranked based 
on their NPC values as declared in (33). It is calculated from the annual cost saving ACS which is the variance 
between ASC of the base system and ASC of the proposed HRMG system.

Deep look to Eqs. (34), (35), and (36), various forms of cost functions utilized in ASC calculation can be 
computed based on the set of decision variables. Accordingly, the OF is reformulated comprising the rating of 
each individual component inside the FCS.

It is worth noting that the optimized variables of DGs are the total output power while they are number of 
strings in the case of ESDs.

Problem constraints
Set of inequality constraints are fulfilled to attain feasible solutions as indicated in (37)–(42). All optimized 
decision variables are bounded between lower and upper limits which are deemed as inputs to the optimizer. 
Moreover, the ESD SoC at any time during charging or discharging processes shall also be between minimum 
and maximum operating limits to prolong its life time as indicated in (43).

(26)OF = Min{CoE} = Min

{

ASC

TASL

}

(27)ASC = ACC + ARC + AOMC − SC

(28)ACC = ICC × CRF(i,ny)

(29)CRF(i,ny) =
i(1+ i)ny

(1+ i)ny − 1

(30)i =
ii − f

1+ f

(31)ARC = CRF(i,ny) ×
∑

nR

RC

(1+ i)tR

(32)SC = RC ×
RLT

CLT

(33)NPC =
ACS

CRF(i,ny)

(34)
ICC = ICCWT × PTWT + ICCPV × PTPV + ICCbatt × Nbatt + ICCSC × NSC + ICCFW × NFW + ICCconv × Pconv

(35)
RC = RCWT × PTWT + RCPV × PTPV + RCbatt × Nbatt + RCSC × NSC + RCFW × NFW + RCconv × Pconv

(36)AOMC = AOMCWT × PTWT + AOMCbatt × Nbatt + AOMCSC × NSC + AOMCFW × NFW

(37)PTPVmin ≤ PTPV ≤ PTPVmax

(38)PTWTmin ≤ PTWT ≤ PTWTmax
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where PTPVmin, PTPVmax , PTWTmin, PTWTmax , Pconvmin, and Pconvmax represent the minimum and maxi-
mum values of the total output power from PV modules, WT modules, and converter respectively. 
Nbattmin,Nbattmax ,NSCmin,NSCmax ,NFWmin, and NFWmax represent the lower and upper limits of battery strings, 
SC strings, and flywheel strings, respectively.

Key performance indicators
Optimal solutions are also evaluated by KPIs which are classified into technical and economical indices that 
quantify the quality of the solution. Among these technical indicators is the UMLf  which is calculated from 
(44) that expresses the total amount of demand that are not be supplied during the year. Furthermore, EEP is 
calculated through (45) which expresses the excess energy that shall be dumped to a thermal load as it cannot 
be employed to supply the original load or even charge the ESDs.

where EUML,Esurplus , and Eproduction are the total un-met load, excess electric load, and production energy 
throughout the year, respectively in kWh/yr.

Certainly, Edemand is the total demand power that shall be provided by the HRMG to the load (Eload) and 
the deferrable energy (Edef ) . Moreover, the capacity shortage factor (CSf ) is determined through (46) from the 
yearly energy capacity shortage (ECS) between the required and actual operating capacities. It is worth mention-
ing that there may be excess electricity on a bus and a capacity shortage on another bus if there is an undersized 
converter at any time slot.

As a measure of RESs effectiveness, the renewable fraction 
(

Rf
)

 is evaluated through (47) which indicates 
the energy fraction generated from RESs delivered to the load. In this context, the renewable penetration factor 
(

Rpen
)

 which is calculated through (48) refers to the ratio between the generated power from RESs (Pren) and the 
load power (Pload) at each time slot.

where Enon−ren, and Hnon−ren symbolize the non-renewable electrical and thermal production, respectively, while 
Hserved is the thermal load served by the year.

Among the various economic indicators, present worth (Pw) in ($) is assessed from (49) which aids in estimat-
ing the cash flow current value or a future payment. Afterwards, the annual worth (Aw) in 

(

$/yr
)

 is calculated 
from (50) which is the product of Pw and CRF(i,ny).

where Fw is the future worth, and Np is the number of periods.
Another attribute of evaluating the investment’s profitability is the return on investment (RoI) which gives 

the ratio between the net income and investment as demonstrated in (51).

(39)Nbattmin ≤ Nbatt ≤ Nbattmax

(40)NSCmin ≤ NSC ≤ NSCmax

(41)NFWmin ≤ NFW ≤ NFWmax

(42)Pconvmin ≤ Pconv ≤ Pconvmax

(43)SoCmin ≤ SoC(t) ≤ SoCmax

(44)UMLf =
EUML

Edemand
,Edemand = Eload + Edef

(45)EEP =
Esurplus

Eproduction

(46)CSf =
ECS

Edemand

(47)Rf = 1−
Enon−ren +Hnon−ren

Eload +Hserved

(48)Rpen =
Pren

Pload

(49)Pw = Fw

(

1

1+ i

)Np

(50)Aw = Pw × CRF(i,ny)
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(51)RoI =

∑

n

(

ACFref − ACFcur
)

n
(

ACCcur − ACCref

)

Start

Input meteorological data metrices; solar irradiation, wind speed, 
temperature  

Define operational parameters of the MG components; technical and 
economical

Calculate metrices of PPV(t), PWT(t), Pload(t)

End

Input hourly load data; average EVs and EBs fleet load  

Define lower and upper boundaries of the decision variables 

t < 525,600 ?

Set t=1 minute

Design the HRMG architecture

Select the type of DG (PV or WT or both) Select the type of ESD (BSS or SC or Flywheel)

Set ID=1

Update the values of NPV, NWT, Nbatt, NFW , NSC based on the designed 

architecture

Calculate the OF (NPC, CoE) and the associated constraints 

Set iter=1

iter < itermax ?

Crop the optimal OF and best solutions (PTPV, PTWT, Nbatt, NFW , NSC)

Evaluate technical and economical KPIs (UMLf, EEP, CSf, Rf, Pw, Aw, 
ROI) 

ID < IDmax ?

Yes

No

Yes

No

Yes

No

Operation Strategy

Sizing Methodology

525,600 minutes over the year

9 possible configurations

1000 iterations

Figure 7.   Flowchart of the proposed optimizer.
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where ACFref , and ACFcur are the annual cash flow of the reference and current system respectively, while 
ACCcur , and ACCref  are the annual capital cost of the current and reference system respectively. Eventually, the 
general flow chart of the proposed mathematical model using HO@MER optimizer is demonstrated in Fig. 7. This 
flowchart illustrates the optimizer’s procedure regarding the operation strategy along with sizing methodology 
till cropping the final results.

Simulation results and discussions
Project portfolio
BRT (Bus Rapid Transit) is a national project organized by the government in Egypt located in the Great Cairo’s 
Ring Road through 113 km highways. BRT will serve both EBs and EVs fleet across the Ring Road through the 
expansion from 4 to 7 lanes in each direction55. The scope of this research is to design a HRMG comprising PV, 
WT, BSS, SCs, and flywheel form techno-economic prospective in off-grid configuration. Four dispensers have 
been dedicated for simultaneous charging of EBs; two of them with rated power of 60 kW and two are 120 kW. 
Therefore, this research aims at developing a FCS feeding EBs fleet in addition to EVs along the Ring Road to 
encourage the drivers of private cars to replace their conventional gasoline cars with EVs.

Meteorological data
The site information (3005.5’N, 31011.8’E) regarding solar irradiation, wind speed, and temperature is obtained 
from NASA prediction of worldwide energy resources. The average values of solar irradiation, wind speed, and 
temperature are 5.35 kWh

m2 /day , 5.56m/s , and 21.73◦C respectively in August 2023 based on the selected zone. 
Moreover, the detailed monthly meteorological data is clarified in Fig. 8.

EVs and EBs fleet data
Due to the spatial–temporal distribution of EVs, their load data is gathered from a survey of the Cairo’s Ring 
Road on a typical weekday56,57. Cairo’s Ring Road records about 213,000 cars passing through it every day; 80 of 
them are EVs with various capacities such as 24, 30, and 40 kWh58 recorded in 2023. However, EVs fleet data are 
expected to be doubled in 2040 as reported in59 which counts about 500,000 cars with 160 EVs that are included 
in this research and investigated as the load pattern. Accordingly, the optimized planned model is designed to 

(a) (b)

(c) (d)

Figure 8.   Site monthly meteorological data. (a) Temperature, (b)  Solar irradiation, (c) Clearness index and (d)  
Wind speed.
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serve Cairo’s Ring Road during the next 20 years. Moreover, the time congestion effect is considered as shown 
in Fig. 9a which indicates the peak traffic flow occurs between 2 and 6 pm and other time periods according to 
the lifestyle in Egypt60. Furthermore, the EBs fleet load data is shown in Fig. 9b which demonstrates that the 
charging process of the EBs fleet occurs between 1 and 8 am58,59.

For accurate modelling of fleet load data, random variability factors shall be considered in time step variation 
and day-to-day variation. ktv defines the time step random variability factor, while kdv defines the day-to-day 
random variability factor. By this way, loading profiles of both EVs and EBs will be precisely modelled during 
the whole year. Based on the nature of the load and studied area, ktv = 20% , and kdv = 20% . As it is shown in 
Fig. 9, the daily peak load of the EVs fleet is about 422.653 kW, average load is about 321.86 kW, and the aver-
age energy consumption (Eload) per a day is 7724.7 kWh. On the other side, the daily peak load of the EBs fleet 
is about 360 kW, average load is about 72.5 kW, and the average energy consumption (Eload) per a day is 1740 
kWh. However, and due to the randomness in time step and daily load variability, the yearly peak load of the 
EVs fleet is corrected to 792.82 kW while it is about 707.28 kW for the EBs fleet inside the HO@MER optimizer.

HRMG components specifications
The integration between PV and WT enhances the system performance rather than using only one source in 
order to cover the shortage in solar irradiation or wind speed. Moreover, and due to the intermittent nature 

(b)

Figure 9.   Daily load curve of EVs and EBs fleets across the Ring Road. (a) EVs fleet and (b) EBs fleet.

Table 2.   WT and PV specifications. Significants values are in bold.

WT PV

Manufacturer Eocycle Manufacture Trina Solar Isc 9.1A

Pr 10kW Type Polycrystalline ICC 450$/kW

vr 6m/s NOCT 44◦C RC 450$/kW

vci 2.75m/s Efficiency @STC 16.2% AOMC Neglected

vco 20m/s Pmpp@STC 265W Life time 25 years

Prmax 11.5kW Temperature coefficient of Pmpp −0.41%/◦C

hh 16m Number of cells 60 Project Specs

ICC 5,050 $/unit FPV 88% ny 20 years

RC 5,050 $/unit Vmpp 30.8V i 6%

AOMC 10 $/unit Impp 8.61A f 2%

Life time 20 years Voc 38.3V
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in RESs, ESDs represented in BSSs, flywheels and SCs are investigated. It is worth mentioning that when the 
generated renewable energy exceeds the load and ESSs are fully charged, the excess energy is used as a dumped 
load like water heaters. Utilizing fast chargers such as CHAdeMO in addition to flywheels and SCs grant the 
fast-charging capability to the HRMG due to its deployment in public transportation networks.

Table 2 lists the technical and economical specifications of PV and WT units as mentioned in47 while Fig. 10 
displays the actual power-speed curve of the selected WT model. On the other side, Table 3 lists the ESDs speci-
fications including BSSs47, flywheels61, and SCs62. It is worth mentioning that this project has been planned for 
over 20 years with an annual interest rate of 6% and inflation rate of 2%. Figure 11 demonstrates the HRMG 
configuration acts as FCS supplying fleets of EVs and EBs with bi-directional power converter connecting AC 
with DC bus.

Results of basic model
It is worth mentioning that one minute is considered as the time step in the iteration process that results in total 
time steps per year of 525,600. Consequently, the problem complexity intensifies, however, it is necessary for 
the accurate simulation of fast charging/discharging rates of flywheels and SCs. Moreover, the maximum value 
of CSf (%) during the year is 20% which represents a feasible value in this study to imitate V2G and vehicle to 
vehicle (V2V) technologies. The optimizer is executed 1000 times with the specified lower and upper boundaries 
of decision variables as announced in Table 4. The FCS comprises two DGs i.e., PV and WT in addition to three 
ESDs i.e., BSSs, SCs, and flywheels with the bidirectional power converter. The sizing of various FCS configura-
tions listed in Table 5 results in nine architectures ranked in ascending order regarding the OF and cost values 
as listed in Table 6. It is worth noting that the optimum values of PV and WT units are reported in kW (total 
output power) while the optimum values of ESDs are reported in number of units.

As it is clear that architecture no. 1 is the best candidate architecture which attains NPC of 893,347.43 $ and 
CoE of 0.02243 $/kWh . This architecture includes WT of 870 kW, converter of 692 kW, and 11 strings of the 
selected battery model. However, this architecture is accepted only in normal charging mode that lasts for few 
hours as it doesn’t contain SC or flywheel which simulate the fast-charging process. Therefore, architecture no. 

Figure 10.   Eocycle 10 kW WT power-speed curve.

Table 3.   Storage elements and converter specifications.

Batteries Flywheels Super Capacitors

Manufacturer Hoppecke Manufacturer ABB C 3000F

Type Lead acid Charge/discharge capacity 100kW VSC 3V

AHCr 1000AH Energy content 25kWh ESC 3.75Wh

VB 2V ICC 80,000 $/unit ICC 500 $/unit

DoD 80% RC 40,000 $/unit RC 500 $/unit

Ebatt,life 3,438kWh AOMC 1600 $/unit AOMC 50 $/unit

ηcharge , ηdischarge 86% Life time 20 years Life time 14 years

SoCmin 20% String size 100

ICC 50 $/unit Converter

RC 50 $/unit ηconv 85%

AOMC 5 $/unit ICC 110$/kW

Life time 5 years RC 110$/kW

String size 150 Life time 20 years
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4 is the nominated one in fast charging operation which comprises WT of 4330 kW, converter of 672 kW, and 
14 strings of the flywheel selected model (1400 kW). Although there are other fast charging architectures such 
as no. 5, no. 7, and no. 8, the winner is no. 4 which achieves the lowest cost values i.e., NPC of 3,746,405 $ and 
CoE of 0.09543 $/kWh . It can be concluded that the fast-charging architecture is about 4 times costly compared 
to the normal charging architecture which serves about 2,868,735 kWh/yr.

Afterwards, technical and economical KPIs are evaluated for each scenario and tabulated in Table 7 and 
Table 8 respectively. As it is observed, architecture no. 1 accomplishes UMLf  of 15.8% and EEP of 30.8% while 
the elected fast charging architecture accomplishes UMLf  of 17% and EEP of 86.6%. on the other side, it attains 
a Pw of 2,853,058 $, Aw of 208,478 $/yr, and RoI of − 5.2%. Furthermore, technical and economical KPIs are 
estimated also for the other architectures, however, the selected architectures are the optimal from economic 

AC
DC

AC Bus DC Bus

WT
10kW

Flywheel
100kW

PV
265W

BSS
1000AH

SC
3000F

EVs Fleet
7724.7kWh

EBs Fleet
1740kWh

300 V220 V

Figure 11.   Configuration of the HRMG.

Table 4.   Lower and upper limits of the optimized variables.

PV WT Converter BSS SC Flywheel

PTPVmin PTPVmax PTWTmin PTWTmax Pconvmin Pconvmax Nbattmin Nbattmax NSCmin NSCmax NFWmin NFWmax

0 6000 kW 0 17,000 kW 0 1500 kW 0 25 0 5 0 30

Table 5.   Various optimized configurations of the HRMG. Significant values are in bold.

Configuration

ID

Architecture Sizing

PV WT BSS SC Flywheel Converter PV (kW) WT (kW) BSS (#) SC (#) Flywheel (#) Converter (kW)

1 ✔ ✔ ✔ 870 11 692

2 ✔ ✔ 2,031 22

3 ✔ ✔ ✔ ✔ 2,005 70 22 469

4 ✔ ✔ ✔ 4330 14 672

5 ✔ ✔ ✔ ✔ 3,403 6040 1 937

6 ✔ ✔ ✔ 4,037 5950 941

7 ✔ ✔ ✔ ✔ 2,891 7230 1 786

8 ✔ ✔ ✔ 14,330 5 1275

9 ✔ ✔ 17,040 1076
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perspective. In this context, capital, replacement, operation & maintenance (O&M), and total costs of the system 
components in addition to the whole architecture are depicted in Fig. 12 for normal and fast charging techniques.

Results with resources uncertainty
Hereinafter, the optimization problem gets more sophisticated by introducing uncertainties in renewable 
resources such as solar irradiation, wind speed, and ambient temperature. The uncertainty range is bounded 
between − 10% and + 10% of the measured resources as indicated Fig. 8 which results in 27 probable study cases. 
HO@MER optimizer follows the spider graph approach for modelling the uncertainties in performing the sensitiv-
ity analysis. In this context, only the winning configurations are mentioned in Table 9 either in normal or fast 
charging operation to avoid the lengthening of the paper. Accordingly, and irrespective of the uncertainty values, 
the winner configuration is the normal charging is WT/BSS/converter while the winner one in fast charging 
mode is PV/WT/flywheel/converter with some cases in which the PV is not included in the solution. As it is 
observed in the results, some uncertainty conditions have negligible effect on the FCS architecture such as study 
case no. 2, 5, 8, 11, and more.

Table 6.   OF and cost values for various configurations. Significants values are in bold.

Configuration ID ICC($) RC($) O&M($) SC($) NPC($) CoE($/kWh) AOMC($/yr)

1 597,986.36 170,552.03 124,809.04 0 893,347.430 0.02243 21,582.52

2 1,079,062.5 341,104.06 225,805.83 84,701.68 1,561,271 0.03911 35,235.74

3 1,103,209.38 341,104.06 226,763.79 83,615.76 1,587.462 0.03969 35,385.09

4 3,380,599.78 0 365,805.44 0 3,746,405 0.09543 26,730.00

5 4,734,750.38 29,180.34 151,084.63 155,150.98 4,759,864 0.11670 1835.12

6 4,924,876.41 0 81,426.95 168,335.34 4,837,968 0.11850 6350.54

7 5,118,441.67 0 120,840.33 120,537 5,118,745 0.12500 22.16

8 7,626,892.63 145,901.68 538,238.98 66,189.35 8,244,844 0.21030 45,154.71

9 8,723,600.54 0 233,195.84 0 8,956,796 0.22800 17,040.00

Table 7.   Technical KPIs for various configurations. Significants values are in bold.

Configuration ID UMLf (%) EEP(%) CSf (%) Rf (%) Rpen(%)

1 15.8 30.8 19.8 100 175

2 15.6 11 20.1 100 121

3 15.4 19.1 19.9 100 134

4 17 86.6 20.1 100 866

5 13.7 92.2 20.1 100 1388

6 13.6 92.3 20.1 100 1406

7 13.4 93.1 18.5 100 1586

8 17.1 96 20.1 100 2936

9 16.9 96.6 20.1 100 3483

Table 8.   Economical KPIs for various configurations. Significants values are in bold.

Configuration ID Pw($) Aw($/yr) RoI(%)

1 0 0 0

2 667,923 48,806 − 7.2

3 694,114 50,720 − 7.1

4 2,853,058 208,478 − 5.2

5 3,866,517 282,533 − 4.4

6 3,944,621 288,240 − 4.2

7 4,225,398 308,757 − 4.4

8 7,351,497 537,186 − 5.3

9 8,063,449 589,209 − 4.9
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Figure 13 depicts the hourly power analysis of a random day for fast charging operation. Obviously, the total 
electrical demand is always met by the WT power or the storage power inside the flywheel. This curve demon-
strates the feasibility of the nominated configuration during fast charging due to the low energy density of the 
flywheel. It can be noticed that when the renewable output power is zero at 13:00 and 14:00, the flywheel can be 
utilized to charge the EVs loads in quick mode before its energy is fully dissipated. Consequently, the high-power 
density of the flywheel is exploited in fast charging operation while there is no obstacle regarding the low energy 
density in continuing the charging operation.

(a) (b)
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$200,000.00

$400,000.00

$600,000.00

$800,000.00

$1,000,000.00

Cost details

WT Converter Battery System

$-

$1,000,000.00

$2,000,000.00

$3,000,000.00

$4,000,000.00

Cost details

WT Converter Flywheel System

Figure 12.   Components cost details for winner architectures. (a) Normal charging and (b) Fast charging.

Table 9.   Winner configurations considering resources uncertainty.

Study case

Resources uncertainty

Architecture

Normal Fast charging

Gav Tamb Van WT (kW) BSS (#) Converter (kW) PV (kW) WT (kW) Flywheel (#) Converter (kW)

1 − 10% − 10% − 10% 1020 15 722 - 5220 27 849

2 − 10% − 10% 0 870 11 692 - 4330 14 672

3 − 10% − 10%  + 10% 750 8 768 2321 2260 2 985

4 − 10% 0 − 10% 1020 15 722 - 5220 27 849

5 − 10% 0 0 870 11 692 - 4330 14 672

6 − 10% 0  + 10% 750 8 768 2317 2270 2 979

7 − 10%  + 10% − 10% 1020 15 722 - 5220 27 849

8 − 10%  + 10% 0 870 11 692 - 4330 14 672

9 − 10%  + 10%  + 10% 750 8 768 2412 2260 2 990

10 0 − 10% − 10% 1020 15 722 - 5220 27 849

11 0 − 10% 0 870 11 692 - 4330 14 672

12 0 − 10%  + 10% 750 8 768 1116 2300 3 986

13 0 0 − 10% 1020 15 722 - 5220 27 849

14 0 0 0 870 11 692 - 4330 14 672

15 0 0  + 10% 750 8 768 816 2250 4 1096

16 0  + 10% − 10% 1020 15 722 5650 3030 6 787

17 0  + 10% 0 870 11 692 - 4330 14 672

18 0  + 10%  + 10% 750 8 768 807 2260 4 1095

19  + 10% − 10% − 10% 1020 15 722 - 5220 27 849

20  + 10% − 10% 0 870 11 692 - 4330 14 672

21  + 10% − 10%  + 10% 750 8 768 1577 1700 4 930

22  + 10% 0 − 10% 1020 15 722 - 5220 27 849

23  + 10% 0 0 870 11 692 1951 2380 5 757

24  + 10% 0  + 10% 750 8 768 1339 1790 4 1058

25  + 10%  + 10% − 10% 1020 15 722 - 5220 27 849

26  + 10%  + 10% 0 870 11 692 1979 2340 5 818

27  + 10%  + 10%  + 10% 750 8 768 1343 1790 4 1055
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However, some study cases involve huge variations to the original FCS configuration like case no.3 which 
comprises PV of 2321 kW, WT of 2260 kW, 2 strings of flywheels, and 985 kW converter. Nevertheless, this 
architecture requires NPC of 2,432,078 $ and CoE of 0.06003 $/kWh as indicated in Table 10 which achieves a 
notable reduction compared to the original configuration of 35% and 37% in NPC and CoE respectively. It is 
worth mentioning that this huge divergence results from eminent decrement in solar irradiance and temperature 
by 10% and increment in wind speed by 10% also. When solar irradiation and wind speed increase by 10%, the 
outcome solution engenders the most economic configuration fulfilling NPC of 1,999,018 $ as demonstrated in 
case no. 24. This is an anticipated conclusion as by increasing solar and wind resources, the required installed 

Figure 13.   Hourly power analysis of a random day for fast charging mode.

Table 10.   Performance assessments of fast charging mode considering resources uncertainty.

Case NPC($) CoE($/kWh) AOMC($/yr) UMLf (%) EEP(%) CSf (%) Pw($) Aw($/yr) RoI(%)

1 5,552,096 0.142 48,420 17.3 87.5 20.1 4,444,562 324,771 − 5.5

2 3,746,405 0.09543 26,730 17.0 86.6 20.1 2,853,058 208,478 − 5.2

3 2,432,078 0.06003 1612 14.3 82.2 20.1 1,692,385 123,665 − 3.9

4 5,552,096 0.14200 48,420 17.3 87.5 20.1 4,444,562 324,771 − 5.5

5 3,746,405 0.09543 26,730 17.0 86.6 20.1 2,853,058 208,478 − 5.2

6 2,434,917 0.06010 1589 14.3 82.2 20.1 1,695,224 123,873 − 3.9

7 5,552,096 0.14200 48,420 17.3 87.5 20.1 4,444,562 324,771 − 5.5

8 3,746,405 0.09543 26,730 17.0 86.6 20.1 2,853,058 208,478 − 5.2

9 2,469,825 0.06095 1890 14.3 82.3 20.1 1,730,133 126,424 − 3.9

10 5,552,096 0.14200 48,420 17.3 87.5 20.1 4,444,562 324,771 − 5.5

11 3,746,405 0.09543 26,730 17.0 86.6 20.1 2,853,058 208,478 − 5.2

12 2,062,804 0.05122 3699 14.8 80.6 20.1 1,323,111 96,682 − 4.1

13 5,552,096 0.14200 48,420 17.3 87.5 20.1 4,444,562 324,771 − 5.5

14 3,746,405 0.09543 26,730 17.0 86.6 20.1 2,853,058 208,478 − 5.2

15 2,028,338 0.05059 6164 15.2 79.5 20.1 1,288,646 94,163 − 4.2

16 4,576,540 0.11580 4586 16.4 87.8 20.1 3,469,005 253,486 − 3.9

17 3,746,405 0.09543 26,730 17.0 86.6 20.1 2,853,058 208,478 − 5.2

18 2,029,598 0.05064 6202 15.2 79.5 20.1 1,289,905 94.255 − 4.2

19 5,552,096 0.14200 48,420 17.3 87.5 20.1 4,444,562 324,771 − 5.5

20 3,746,405 0.09543 26,730 17.0 86.6 20.1 2,853,058 208,478 − 5.2

21 2,035,415 0.05081 3295 15.3 77.0 20.1 1,295,723 94,681 − 4

22 5,552,096 0.14200 48,420 17.3 87.5 20.1 4,444,562 324,771 − 5.5

23 2,623,701 0.06591 4436 15.8 82.1 20.1 1,730,353 126,440 − 4

24 1,999,018 0.04989 4111 15.3 77.1 20.1 1,259,326 92,021 − 4

25 5,552,096 0.14200 48,420 17.3 87.5 20.1 4,444,562 324,771 − 5.5

26 2,621,304 0.06588 4309 15.8 81.8 20.1 1,727,957 126,265 − 4

27 2,000,455 0.04994 4097 15.3 77.1 20.1 1,260,762 92,126 − 4
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components will be minified as well. Last but not least, Fig. 14 shows the sizing of the FCS installed capacity 
of arbitrary selected architectures. Outspokenly, this optimization process requires about 25 h of PC operation 
which entices the attraction for implementing the methodology discussed in the next section.

Deep learning radial basis network
Initiation
The computational time of HO@MER optimizer is about 50 min for each individual run which is logic due to the 
high complexity in the optimization process. This is due to the fact of utilizing 525,600-time steps per year to 
emulate the ultra-discharging performance of flywheels and SCs. However, outcome results from the optimiza-
tion model are crucial for the training purposes of the upcoming methodology.

In this subsection, one of deep learning toolboxes in MATLAB environment called radial basis network (RBN) 
is implemented. Deep learning RBN differs from the traditional feed forward neural network in that it requires 
more neurons and can be designed and trained in a fraction of time. In this paper, RBN is exploited for predict-
ing the optimal sizing of FCS components with variations in resources availability, fleet loading, in addition to 
technical and economical KPIs. Moreover, it can be used as online energy management strategy inside the FCS 
as it takes only few seconds compared to the HO@MER optimizer. The RBN passes through 4 stages as follows:

Step 1: RBN design
The RBN can be designed as indicated in (52) using the newrb command by defining the input vector P and 
output vector T . Furthermore, the targeted mean square error (MSE) is also defined in the parameter goal , while 
spread designates for the spread in radial basis function, MN denotes the maximum number of neurons, and DF 
denotes the number of neurons to be added between displays. It is worth mentioning that the larger the spread 
is, the smoother the function approximation. However, too many neurons are required for this purpose for fast 
charging function to create a generalized RBN.

Figure 15 demonstrates the architecture of RBN with the corresponding adjusting parameters. It can be 
observed that the multiple inputs pass through MUX to unify them to a single input matrix to the RBN. Moreover, 
the output vector is split into the targeted output values through the DEMUX.

In this context, the specified values of the design parameters for an accurate design are: goal = 0 , 
spread = 30,000 , MN = 1,000, and DF = 1,000. It is worth mentioning that the selection of these values are 
determined after diverse trials till the least error is attained. However, these values may be changed in different 
problems.

(52)net = newrb
(

P,T , goal, spread,MN ,DF
)

0.00

1,000.00

2,000.00

3,000.00

4,000.00
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Figure 14.   Components sizing for fast charging mode considering uncertainty.
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Figure 15.   RBN architecture with adjusting parameters.



20

Vol:.(1234567890)

Scientific Reports |        (2024) 14:20571  | https://doi.org/10.1038/s41598-024-70063-9

www.nature.com/scientificreports/

Step 2: RBN training
The RBN is trained using the obtained optimized solutions considering resources uncertainty form the previous 
section. In this regard, 25 set of data comprising 6 input vectors as follows:

Gav , Tamb , Van , served load, UMLf , and RoI , and 4 output vectors as follows: PV, WT, flywheel, and converter 
sizing are considered. Thus, the dimension of P and T matrices are 6 × 25 and 4 × 25 respectively.

Table 11.   Validation assessment of the RBN for study case no. 26.

Unit Actual output Simulated output Error (PU)

PV (kW) 1979 1977 0.001

WT (kW) 2340 2489 0.064

Flywheel (#) 5 5 0.011

Converter (kW) 818 736 0.101

Table 12.   Validation assessment of the RBN for study case no. 27.

Unit Actual output Simulated output Error (PU)

PV (kW) 1343 1324 0.014

WT (kW) 1790 1788 0.0009

Flywheel (#) 4 4 0

Converter (kW) 1055 1039 0.015

Figure 16.   RBN validation using study case no. 26.

Figure 17.   RBN validation using study case no. 27.
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Step 3: RBN validation
In this stage, RBN performance is validated using two study cases from Table 9 in which the simulated output 
is compared to the actual output for each study case. In addition, errors in per unit (PU) are calculated for each 
output as demonstrated in Table 11 and Table 12 for study case no. 26 and no. 27 respectively. Furthermore, 
Fig. 16 depicts the deviations between actual and simulated output using RBN for case no. 26 while Fig. 17 shows 
the deviations for case no. 27. Consequently, mean absolute error (MAE) and MSE are computed for each study 
case as follows:

Study case no. 26: MAE = 0.0441, MSE = 0.003600.
Study case no. 27: MAE = 0.0077, MSE = 0.000106.

Step 4: RBN operation
Eventually, the RBN is used for an online energy dispatch strategy to find the optimal output power from each 
component inside the FCS as explained in Table 13. Various operational scenarios along with altering in geo-
graphical conditions are established to determine the optimal solution. It can be noted that when + 5% increase 
in solar irradiance, temperature, and wind speed, while the served load increased by 2%, the FCS comprises 1829 
kW PV, 1813 kW WT, and 4 flywheels. Furthermore, when the temperature decreases by 5% and wind speed 
increases by 5%, the online dispatch controller manages the charging power between PV and WT at 1679 kW 
and 5587 kW respectively with 14 strings of flywheels.

KPIs effect is tackled through enforcing UMLf  and RoI to be 0% which in turns grants the dominance to the 
PV units with rated power of 10,068 kW or 9398 kW based on the operation scenario mentioned in Table 13. 
Moreover, 3 strings of flywheels are required to achieve this condition.

In fact, RBN harvests the optimal result in about 3 s which is very lower than the computational time of the 
optimizer. Despite the technical benefits of the proposed methodology, there are some issues and limitations 
that have to be mentioned. First, LPSP index is not included into the optimizer’s mechanism, however, it can be 
compensated by other factors such as UMLf  and CSf  . Additionally, the RBN parameters shall be well-tuned to 
guarantee the result’s accuracy.

Conclusions
With the help of deep learning RBN, this study is a fresh attempt at an online energy management dispatch 
approach for FCS. Along Cairo’s Ring Road, initial loads of both EV and EB fleets are defined, along with an 
evaluation of renewable resources. Then, with relation to the NPC and CoE, all feasible FCS configurations are 
rated in ascending order. It has been determined that the charging station’s ideal architecture depends on whether 
it will function in standard or rapid charging mode. Therefore, it has been established that choosing the PV/WT/
flywheel/converter design is the ideal setup for quick charging operation. The winning charging architecture costs 
nearly four times as much as the standard charging architecture and consists of a WT of 4330 kW, a converter of 
672 kW, and 14 strings of the flywheel. As a result, there are several variables related to renewable resources, such 
as sun irradiance, temperature, and wind speed, that can affect how well this ideal design performs. Finally, the 
RBN is put into use for the online energy management strategy, validated with the optimal outcomes attained, 
and executed using different operating situations. This research area is still being looked into, though, because 
the FCS operation in on-grid mode necessitates greater attention from a techno-economic standpoint.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to intellectual 
property rights but are available from the corresponding author on reasonable request.

Table 13.   Energy management of FCS components using RBN.

Gav Tamb Van Served load UMLf (%) RoI(%) PV (kW) WT (kW) Flywheel (#) Converter (kW)

 + 5%  + 5%  + 5%  + 2% 15.3 − 4 1829 1813 4 1294

 + 6%  + 6%  + 4% 0 10 − 4 1033 4782 14 1421

 + 2%  + 3%  + 3%  + 1% 3 − 3 1244 6165 6 1437

 + 7%  + 6% − 2%  + 1% 15.3 − 4 3067 3318 6 489

− 2% 0 0  + 1% 5 − 3 2304 5426 6 1465

0 − 5%  + 5% 0 3 − 3 1679 5587 14 2216

0  + 4% − 4%  + 1% 15.3 − 4 3265 3348 6 613

− 3% − 4% 0 0 15.3 − 4 3434 2835 13 1297

 + 2% − 8% − 5%  + 2% 0 0 10,068 418 3 4123

− 2% 0  + 2%  + 2% 0 0 9398 512 3 3922
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