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A B S T R A C T

Background: Lactylation, a newly discovered PTM involving lactic acid, is linked to solid tumor proliferation and
metastasis. Lymphoma patients exhibit high lactic acid levels, yet lactylation’s role in lymphoma is underex-
plored. This study aimed to identify lactylation-related genes in lymphoma using tumor databases and assess
their predictive value in patient prognosis through cell experiments and clinical specimens.
Methods: Using TCGA and GEO datasets, we analyzed the expression levels of lactylation-related genes in diffuse
large B-cell lymphoma patients. We also evaluated the prognostic significance of lactylation gene risk scores,
exploring their impact on drug sensitivity and tumor immune function. Key lactylation-affecting genes were
identified and functionally validated through cell experiments and mouse in vivo experiments. Additionally, the
relationship between lactylation and lymphoma prognosis was examined in clinical specimens.
Results: We identified 70 genes linked to diffuse large B-cell lymphoma prognosis from the lactylation-related
gene set. Using clinical data and a COX regression algorithm, we developed an optimized lactylation Risk-
score model. This model significantly correlated with prognosis and showed differences in immune cell infil-
tration, particularly macrophages. High-risk patients showed resistance to chemotherapy drugs but responded
well to immunotherapy. HNRNPH1, a lactylation-related gene, influenced patient prognosis, apoptosis, cell cycle
distribution in lymphoma cells, and tumor volume in mice. In lymphoma specimens, lactylation levels correlated
with Bcl-2, C-myc, and P53 levels.
Conclusions: Lactylation impacts diffuse large B-cell lymphoma prognosis, tumor immune function, and drug
resistance. Our lactylation-based Riskscore model aids in patient stratification and treatment selection.
HNRNPH1 regulates lactylation, thereby affecting patient prognosis.

Background

Lactylation is a newly discovered type of post-translational modifi-
cation of proteins in recent years. It is a protein modification process
where lactoyl groups covalently couple with protein lysine residues,
thereby promoting gene regulation. Therefore, it is also known as lysine

lactylation (Kla) [1]. In 2019, Professor Zhao from the University of
Chicago discovered that histones within human and mouse cells can
undergo lactylation, and that histone lactylation can affect chromatin
gene expression regulation. This discovery opened a new chapter in the
study of lactylation and pointed out a new direction for
metabolism-epigenetic research [2].
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The level of lactylation can be influenced by various factors. Pro-
fessor Zhao found that lactylation is derived from lactic acid, and the
level of lysine lactylation increases with the elevation of intracellular
lactic acid concentration. Promoting cellular glycolysis can increase
lactic acid content and histone lactylation levels [2]. Lactate dehydro-
genase (LDH) is one of the important enzymes in glycolysis, capable of
converting pyruvate into lactic acid. The level of LDH is closely related
to lactic acid concentration and lactylation.

Lymphoma is a malignancy derived from lymphatic tissue, mainly
including Hodgkin’s lymphoma and non-Hodgkin’s lymphoma, with
non-Hodgkin’s lymphoma accounting for the majority. Most non-
Hodgkin’s lymphomas are of the B-cell type, accounting for approxi-
mately 90% of the total [3]. LDH values are involved in the IPI prog-
nostic scoring system for non-Hodgkin’s lymphoma [4]. At the same
time, it is not uncommon for lymphoma patients to have high lactic acid
levels in clinical practice. lactylation may participate in the lymphoma
process and affect the prognosis of lymphoma. However, there are very

few studies on the relationship between lactylation and lymphoma, and
the connection and underlying mechanisms between them remain to be
further explored. This study selected diffuse large B-cell lymphoma, the
most common type of non-Hodgkin’s lymphoma, and screened
lactylation-related genes through machine analysis of multiple clinical
datasets. Combined with cell and animal experiments, we analyzed the
role of lactylation in the progression of diffuse large B-cell lymphoma.

Methods

Data sources and preprocessing

The gene expression level data (FPKM expression level data) and
clinical follow-up data of TCGA-DLBC were downloaded from the TCGA
database (http://gdc.cancer.gov). The preprocessing of the data was as
follows: (1) Samples with missing survival time or survival time of
0 were excluded, and only samples with prognostic information from

Fig. 1. A. Distribution of LASSO coefficients. B. Likelihood deviation of LASSO coefficient distribution. The two vertical dashed lines represent lambda.min (left line)
and lambda.1se (right black line), respectively. C. Multivariate COX regression forest plot for the seven model genes.
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TCGA patients were retained. (2) Genes with missing values or unex-
pressed genes exceeding 50% of the total sequenced genes were
excluded. (3) Samples and genes with more than 50% of non-expressed
genes were excluded. (4) All expression values were logarithmically
transformed using log2(X+ 1). Finally, 47 TCGA samples were retained.
Additionally, clinical information-rich datasets with accession numbers
GSE87371 (sequencing platform: GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array) and GSE32918 (sequencing
platform: GPL8432 Illumina HumanRef-8 WG-DASL v3.0) were down-
loaded from the NCBI GEO database (https://www.ncbi.nlm.nih.gov/).
After excluding samples with overall survival time of 0 or missing sur-
vival time, 221 and 244 samples of diffuse large B-cell lymphoma were
retained, respectively. Due to the limited number of TCGA data samples
and the availability of clinical information such as staging in GSE87371,
this dataset was selected as the subsequent analysis training set (main
analysis data). The original data has been uploaded to Materials 1–3.

Acquisition of prognostic lactylation genes

The lactylation gene set in this study was obtained from previous
research(Materials 4) [5]. Univariate Cox regression analysis was then

performed using the survival package Version 2.41–1 (http://biocond
uctor.org/packages/survivalr/) in R language [6]. A threshold of p <

0.05 was selected to screen for specific genes significantly associated
with survival prognosis in terms of expression levels for subsequent
analysis. Subsequently, the expression correlation between prognostic
genes was calculated using Pearson correlation. The STRING database
(Version: 11.0, http://string-db.org/) was used to search for interactions
between protein products related to prognostic lactylation genes, and an
interaction network was constructed.

Construction of a prognostic risk prediction model

Survival regression analysis using the LASSO–COX algorithm from
the glmnet package (https://cran.r-project.org/web/packages/glmnet/i
ndex.html) Version 1.2 in R language was performed. The penalty pa-
rameters were adjusted through 10-fold cross-validation [7] by selecting
the lambda value that yielded the simplest model within a minimum
variance range, and 1se provided a model with excellent performance
and the minimum number of independent variables, where the non-zero
coefficient gene variables were selected as key genes. The Risk score
(risk prediction model) was constructed using stepwise Cox regression

Fig. 2. A. Distribution of Riskscore (upper panel) and survival time status (lower panel) in the training set. B. KM curve showing the correlation between Riskscore
prediction model and prognosis. C. PCA plot. D. ROC curves for 1-year, 3-year, and 5-year prognoses based on gene prognostic features. E. Distribution of Riskscore
(upper panel) and survival time status (lower panel) in the TCGA validation set. F. KM curve based on Riskscore prediction model and prognosis. G. PCA plot. H. ROC
curves for 1-year, 3-year, and 5-year prognoses based on gene prognostic features. I. Distribution of Riskscore (upper panel) and survival time status (lower panel) in
the GEO validation set. J. KM curve based on Riskscore prediction model and prognosis. K. PCA plot. L. ROC curves for 1-year, 3-year, and 5-year prognoses based on
gene prognostic features. M-O. Forest plots of univariate and multivariate Cox regression for clinical information.
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analysis from the survminer package (https://cran.rstudio.com/web/
packages/survminer/index.html) Version 0.4.9. The Risk score for-
mula was established based on the regression coefficients of each gene
and the expression levels of the model genes, as follows

Riskscore=h(t,X)= h0(t)∗exp(β1X1+ β2X2+ ...+βnXn)

Note: In this formula, β represents the regression coefficient, ho(t) is
the baseline hazard rate, and h(t,X) is the hazard rate associated with
covariate X at time t.

Using the Risk score calculation formula, we separately computed
the Risk score value for each sample in both the training set and the
validation set. Subsequently, the samples were divided into two groups:
High (with Risk scores higher than the median Risk score) and Low (with
Risk scores lower than or equal to the median Risk score), using the
median Risk score as the cutoff. The Kaplan–Meier curve method from
the survival package was then employed to evaluate the correlation
between the High and Low groupings and the actual survival prognosis
information.

Analysis of prognostic independence

By integrating clinical information data on diffuse large B-cell lym-
phoma, the correlation between Risk score and clinical factors (age and
staging) was analyzed. To further investigate the prognostic indepen-
dence between clinical prognostic factors and Risk score, clinical factors
and Risk score from the diffuse large B-cell lymphoma data were
included in both univariate and multivariate COX regression models.
Using a threshold of p < 0.05, independent prognostic factors were
screened.

Enrichment analysis

Using the R package limma (https://bioconductor.org/packages/rel
ease/bioc/html/limma.html) Version 3.34.7 [8], differentially
expressed genes between the two groups defined by Risk score were
identified based on the criteria of FDR < 0.05 and |log2 FC|≥1. Subse-
quently, GO functional and KEGG pathway enrichment analyses were
conducted using the R package ’clusterProfiler’ (http://bioconductor.or
g/packages/release/bioc/html/clusterProfiler.html, version 4.0.5) to
explore the functional pathway entries involved by key genes [9].
Multiple testing corrections were applied using the Benjamini & Hoch-
berg method to obtain adjusted p-values (adj.P.Value). Using an adj.P.
Value threshold of less than 0.05 and a count threshold of greater than 2,
the top 10 most significant enrichments were selected for presentation.

Gene Set Enrichment Analysis (GSEA) was used to assess the
enrichment of glycolysis pathways [10]. Complete gene expression data
for both high-risk and low-risk groups were obtained from previous
procedures. The glycolysis gene set was retrieved from the GSEA algo-
rithm at https://www.gsea-msigdb.org/gsea/. The number of permu-
tations was set to 1000.

Comparison of immune microenvironments

Quantitative analysis of the enrichment of immune pathways in
tumor samples was conducted using CIBERSORT (https://cibersort.sta
nford.edu/index.php) and single-sample gene set enrichment analysis
(ssGSEA) (http://www.bioconductor.org/packages/release/bioc/h
tml/ssGSEA.html) [11-12]. The abundance level of immune cell infil-
tration was assessed using enrichment scores calculated based on
normalized gene expression levels and empirical cumulative

Fig. 3. A. Box plots of differences in 28 immune cells in the training set, TCGA, and GEO validation sets, showing a significant increase in Macrophage in high-risk
patients. B. High-risk patients exhibited an increase in IC50 for Methotrexate and Lenalidomide, but a decrease in IC50 for Cisplatin and Etoposide. C. High-risk
patients showed a significant decrease in the responsiveness to immunotherapy, represented by TIDE, and a significant increase in the activation level of the
interferon-γ (IFN-γ) signaling pathway, represented by IFNG.
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Fig. 4. A. Comparison of prognostic features based on gene expression in diffuse large B-cell lymphoma in published literature. (B-C). The expression levels of
macrophage markers CD68 and CD163, as well as the expression of prognostic-related markers C-myc, Ki67, and P53, in patients with different groupings. D. KM
curve diagram of macrophage prognosis-related factors in the dataset.
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distribution functions.

Evaluation of therapeutic response

The evaluation of therapeutic response encompassed the analysis of
drug sensitivity and immunotherapy efficacy. Drug sensitivity analysis
was quantified using the R package pRRophetic (v.0.5) (https://github.
com/paulgeeleher/pRRophetic) [13]. A statistical model was built using
gene expression data obtained from a large number of cancer cell lines
and then applied to the gene expression data of target samples to
calculate IC50 values for each therapeutic agent in both groups. The
differences in IC50 between different risk groups for 138 chemotherapy
drugs were compared using theWilcoxon test and displayed in box plots.
Commonly used drugs for lymphoma were selected for graphical
representation.

The immune dysfunction and exclusion (TIDE) score was calculated
on the website (http://tide.dfci.harvard.edu/). Differences in TIDE
scores between different risk groups were compared using the Wilcoxon
test.

Single-Gene survival analysis and clinical correlation analysis

Using the R packages "survival" and "survminer," patients in the
training set cohort were divided into two subgroups based on the
expression level of a single gene. Subsequently, the correlation between
clinical features and the expression level of the target gene was analyzed
using the R package "ggpubr" (v0.4.0), and the results were displayed in
a violin plot.

Cell culture

The diffuse large B-cell lymphoma cell line HBL-1 was donated by the
Non-coding RNA Laboratory at Yangzhou University. Cells were
cultured in a cell incubator at 37 ◦C with 5% carbon dioxide in a culture
medium consisting of RMPI 1640, 10% fetal bovine serum, and 1%
penicillin-streptomycin antibiotics.

Plasmid transfection

Log-phase growing cells were seeded into a 24-well plate. Plasmids
and Lipofectamine 2000 (Thermo Fisher Scientific) were added to each
well. The plate was then centrifuged horizontally at 30 ◦C and 2000 rpm
for 4 h for infection. After centrifugation, 500 μl of medium was added,
and the cells were allowed to continue growing. Seventy-two hours after
infection, the fluorescence intensity was observed under a fluorescence
microscope.

Cell apoptosis and cell cycle analysis

Log-phase growing cells were selected, and a cell suspension was
collected. After centrifugation, the supernatant was discarded, and the
cell pellet was resuspended in binding buffer. APC-ANNEXIN-V and
Percp-7AAD were added, and the cells were incubated in the dark for 20
min before apoptosis was detected using a flow cytometer (BD, VERSE).
For cell cycle analysis, log-phase growing cells were centrifuged, and the
supernatant was discarded. The cell pellet was fixed with 75% ethanol at
− 20 ◦C for one week. After centrifugation and removal of the

Fig. 5. A. Correlation between OS and HNRNPH1 expression level in the training cohort. (B-D) Correlation between clinical information such as patient age, gender,
staging, and HNRNPH1 expression level. E. Differences in immune cells between the high and low expression subgroups of HNRNPH1.
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supernatant, the cells were washed twice with PBS and then stained with
PI in the dark for 30 min. The cell cycle was then detected using a flow
cytometer (BD, VERSE).

Detection of lactate content

The standard substances in the lactate detection kit (L-Lactic Acid
Colorimetric Assay Kit, Elabscience, E-BC-K044-M) were diluted, and 5
μl of each was added to the corresponding wells. Similarly, 5 μl of the
samples to be tested were added to the designated wells. Next, 100 μl of
enzyme working solution and 20 μl of color reagent were added to each
well. After incubation at 37 ◦C for 10 min, 180 μl of stop solution was
added to each well. After shaking for 5 s, the OD values were measured
using a microplate reader at 530 nm. A standard curve was plotted to
quantify the lactate content in the samples.

Western blot

Cells were lysed, and the protein extracted and quantified. The
protein samples were mixed with loading buffer, heated for denatur-
ation, and then loaded onto an SDS-PAGE gel for electrophoresis. After
electrophoresis, the proteins were transferred from the gel to a mem-
brane through an electric field. The membrane was then blocked to
prevent non-specific binding, and incubated overnight at 4 ◦C with
primary antibodies (Bcl-2, BAX, Cleaved-caspase-3, and Bcl-xL were
purchased from Cell Signaling Technology, pan Kla was purchased from
PTM Biolabs Inc., and HNRNPH1 was purchased from ABclonal Tech-
nology). After washing, the membrane was incubated with secondary

antibodies for two hours at room temperature. After further washing, a
luminescent solution was applied, and the membrane was imaged using
chemical luminescence (BIO RAD GelDoc XR). The resulting images
were analyzed using ImageJ software to quantify the grayscale values
and generate graphs.

Experimental animal keeping

Nude mice were purchased from the Comparative Medicine Center of
Yangzhou University. Six-week-old nude mice were allowed to adapt in
an SPF-grade animal facility for one week before being subcutaneously
inoculated with tumor cells. HBL-1 cells in log-phase growth were sus-
pended and injected subcutaneously into the nude mice at a concen-
tration of 2 × 106 cells per 200 μl. We adhered to the guidelines of the
Ethics Committee for Animal Research (NIH publication #85–23).

Immunohistochemical staining

Tissue sections were sliced and dried, followed by antigen retrieval
through heating. The sections were then blocked with fetal bovine serum
to prevent non-specific binding. Diluted specific primary antibodies
were applied to the tissue sections, and the sections were incubated in a
wet chamber at room temperature in the dark for 1 hour to allow the
formation of antigen-antibody complexes. After washing, labeled sec-
ondary antibodies were applied to the tissue sections, and the sections
were incubated in the wet chamber for 30 min. The secondary anti-
bodies bind to the primary antibodies, and a chromogenic substrate was
added for visualization. The distribution and expression of the target

Fig. 6. A. Knockdown of HNRNPH1 in diffuse large B-cell lymphoma HBL-1 cells. B. Compared with the control group, the lactate level in the supernatant of HBL-1
cells in the HNRNPH1 knockdown group significantly increased. C. Compared with the control group, the total Lactylation level in HBL-1 cells in the HNRNPH1
knockdown group significantly rose. D. The S phase of HBL-1 cells in the HNRNPH1 knockdown group significantly increased. E. In the HNRNPH1 knockdown group,
the expression of apoptosis-inhibiting proteins Bcl-2 and Bcl-xL was upregulated, while the expression of apoptosis-promoting proteins BAX and Cleaved-caspase3
was downregulated. F. The apoptosis rate of HBL-1 cells in the HNRNPH1 knockdown group decreased.
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antigen in the tissue were observed under a microscope. This study has
been approved by the Ethics Committee of the Clinical Medical College
of Yangzhou University (Approval Number: 2023ky180).

Statistical analysis

All statistical analyses were performed using R software version 4.1.2
and GraphPad Prism 9. The t-test was used for comparisons between
groups, and statistical significance was indicated by asterisks (*). A two-
sided p-value of less than 0.05 was considered statistically significant (p
< 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

Result

Establishment of lactate-related riskscore model

Using the univariate Cox regression analysis in the survival package,
we screened 70 genes significantly associated with prognosis by setting
the threshold of p < 0.05. The results are shown in Supplementary
Figure 1A, and the patient list is detailed in the Supplementary Table.
Supplementary Figure 1B presents the results of gene correlation anal-
ysis. The PPI network in Supplementary Figure 1C indicates that most of
the proteins encoded by these genes are intricately connected in a
complex manner. Thirteen key genes were then selected using the
LASSO algorithm, as shown in Fig. 1A and 1B. Subsequently, the optimal
gene combination was obtained using the stepwise COX regression al-
gorithm, as presented in Table Fig. 1C, resulting in a final set of seven
model genes. Finally, a Riskscore model was constructed based on the
regression coefficients of the seven model genes and their expression
levels in the training dataset.

Validation of the lactate-related Riskscore model efficacy

The Riskscore for each patient in the dataset was calculated, and the
samples in the training set, TCGA, and GEO validation sets were divided
into High (Riskscore higher than the median Riskscore) and Low

(Riskscore equal to or lower than the median Riskscore) groups,
respectively. The distribution of Riskscore values and survival time for
each group are shown in Fig. 2A, E, and I. The KM curves for each
dataset are presented in Fig. 2B, F, and J, respectively. The prognostic
model was evaluated from multiple dimensions using principal
component analysis (PCA), as shown in Fig. 2C, G, and K. The ROC
curves for 1-year, 3-year, and 5-year prognoses based on gene prognostic
features are presented in Fig. 2D, H, and L. The results showed that in the
training set, TCGA, and GEO validation sets, there was a significant
correlation between the different risk groups obtained by Riskscore
model prediction and the actual prognosis. The age threshold was set at
65 years. Univariate Cox regression analysis was performed on the
clinical indicators and RiskScore of the samples, and factors with P <

0.05 were selected for multivariate Cox regression to determine signif-
icant independent prognostic factors. The results are shown in Fig. 2M,
N, and O.

Functional annotation of the lactate-related Riskscore model

We conducted GO annotation and KEGG analysis in the training set
and validation set GSE32918 data, as shown in Supplementary Figure 2.
The results suggest a significant enrichment of glycolytic pathways in
the tissues of high-risk patients compared to low-risk patients. Given
that the enrichment analysis revealed the presence of many tumor im-
mune microenvironment-related pathways, we performed ssGSEA to
assess immune cell infiltration and immune function in the training and
validation sets. Fig. 3A demonstrates that most immune-related cells are
upregulated in the high-risk group, particularly macrophages, which
showed a significant increase across all three datasets.

To explore whether the lactate-related prognostic model can be used
to guide the treatment of patients with diffuse large B-cell lymphoma,
we analyzed a large number of chemical and targeted drugs. We
compared the differences in IC50 levels of 138 chemotherapy drugs, and
Fig. 3B showcases four drugs. High-risk patients exhibited increased
resistance to two commonly used drugs, Methotrexate and Lenalido-
mide. Additionally, compared to the low-risk group, the high-risk group

Fig. 7. A. Tumor and spleen images of tumor-bearing mice with diffuse large B-cell lymphoma in the HNRNPH1 knockdown group and the control group. B. The
tumor size in the knockdown group was significantly larger than that in the control group. C. There was no significant difference in spleen size between the
knockdown group and the control group. D. Compared with the control group, the body weight of the tumor-bearing mice in the knockdown group increased, but
there was no significant difference. E. Compared with the control group, the tumor volume of the tumor-bearing mice in the knockdown group was significantly
larger, with statistically significant differences.
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showed a significantly lower TIDE score for immunotherapy respon-
siveness and a significantly higher activation level of the interferon-γ
(IFN-γ) signaling pathway, as indicated by IFNG (Fig. 3C).

Efficacy of lactate-related Riskscore model and prognosis of lymphoma

We compared the C-index of RiskScore with the features in other
article models. Notably, RiskScore performed well in the training dataset
and a few external datasets, but its performance was relatively weak in
the TCGA dataset (Fig. 4A). We scored 71 lymphoma patient samples
collected from the sample bank of Subei People’s Hospital and found
that patients in the high-risk group had a higher positive rate of
macrophage phenotypes CD68 and CD163, as well as high expression of
C-myc and P53(Fig. 4B-C). In evaluating the correlation between

macrophage grouping in the dataset and the actual prognosis informa-
tion of patients, we found that a high macrophage score was closely
related to significantly poor prognosis (Fig. 4D).

Impact of lactate-related gene HNRNPH1 on the progression of diffuse
large B-cell lymphoma

HNRNPH1, a prognostic gene associated with lactate metabolism, is
a component of the genetic marker. Based on its expression level, pa-
tients in the training set GSE87371 cohort were divided into a high-risk
group (N = 110) and a low-risk group (N = 111) (Fig. 5A), indicating
that low expression of HNRNPH1 is associated with a poorer prognosis.
The expression of HNRNPH1 was found to be unrelated to patient age
(with a threshold of 65 years), gender, and staging (Fig. 5B-D). Analysis

Fig. 8. A. Patients with low HNRNPH1 expression exhibited an increased level of Pan Kla, accompanied by high expressions of Bcl-2, Bcl-6, C-myc, Ki-67, and P53. B.
In patients with high HNRNPH1 expression, the level of Pan Kla decreased, along with decreased expressions of Bcl-2, Bcl-6, C-myc, Ki-67, and P53. C. The 20
patients were divided into high and low Pan Kla groups. The serum LDH levels and SUVmax of tumor lymph nodes in PET-CT were significantly elevated in the high
lactate modification group. D. In the high lactate modification group, the positive expression rates of Bcl-2, C-myc, and P53 in the tumors increased, but there were no
significant differences in the positive expression rates of HNRNPH1, Bcl-6, and Ki-67.

M. Zhu et al.
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of immune cell infiltration also revealed differences in macrophages and
regulatory T cells between the high and low expression subgroups of
HNRNPH1 (Fig. 5E).

Impact of lactate-related gene HNRNPH1 on diffuse large B-cell lymphoma
cells

In addition to demonstrating the function of HNRNPH1 in the
dataset, we also conducted relevant research in vitro cell experiments.
We knocked down the HNRNPH1 gene in the diffuse large B-cell lym-
phoma HBL-1 cell line (Fig. 6A). The lymphoma cells with knockdown
exhibited robust proliferation, and the lactate level in the cell superna-
tant significantly increased (Fig. 6B). Collecting the cells, we found that
the total Lactylation level in the knockdown cells significantly rose
(Fig. 6C). The cell cycle distribution of the knockdown cells was
abnormal, mainly reflected in the increase of the S phase, indicating
active cell division (Fig. 6D). The expression of apoptosis-inhibiting
proteins Bcl-2 and Bcl-xL was upregulated in the knockdown lym-
phoma cells, while the expression of apoptosis-promoting proteins BAX
and Cleaved-caspase3 was downregulated. Correspondingly, ANNEXIN-
V/7AAD apoptosis staining also suggested reduced apoptosis in the
knockdown lymphoma cells (Fig. 6E-F).

Impact of lactate-related gene HNRNPH1 on tumor-bearing mice with
diffuse large B-cell lymphoma

To validate the function of HNRNPH1 in vivo, we inoculated HBL-1
cells with knocked down HNRNPH1 gene in the subcutaneous tissue of
nude mice during the logarithmic growth phase. The tumor volume and
weight in the knockdown group were significantly greater than those in
the control group, but there was no significant difference in spleen
weight (Fig. 7A-C). After tumor formation, the body weight and tumor
volume of the tumor-bearing mice were regularly monitored. Although
the body weight of the tumor-bearing mice in the knockdown group
showed an upward trend, there was no significant difference compared
with the control group. However, the tumor volume of the tumor-
bearing mice in the knockdown group was significantly higher than
that in the control group (Fig. 7D-E).

Expression of lactate-related gene HNRNPH1 in tumor tissues of
lymphoma patients

To validate the function of lactate modification and HNRNPH1 in
lymphoma patients using clinical specimens, we retrieved 20 cases of
diffuse large B-cell lymphoma specimens from our center and performed
immunohistochemical staining for pan Kla and HNRNPH1 on their tis-
sues. Detailed patient information is provided in the supplementary
table. Immunohistochemical staining for pan Kla and HNRNPH1 was
performed on the 20 patient specimens. Patients with high HNRNPH1
expression had low pan Kla levels, accompanied by low expression of
Bcl-2, Bcl-6, C-myc, Ki-67, and P53 (Fig. 8A-B). The 20 patients were
divided into a high lactate modification group and a low lactate modi-
fication group based on their pan Kla expression levels. The serum LDH
levels and SUVmax of tumor lymph nodes in PET-CT were significantly
elevated in the high lactate modification group (Fig. 8C). Additionally,
patients in the high lactate modification group had higher positive ex-
pressions of Bcl-2, C-myc, and P53 in their tumors. However, unex-
pectedly, there was no significant difference in HNRNPH1 expression
between the two groups, possibly due to the small sample size and large
numerical deviations (Fig. 8D). There were no significant differences in
Bcl-6, Ki-67 expression, patient age, blood routine values, tumor staging,
and grouping between the two groups (Supplementary Figure 3).

Discussion

The classic Warburg theory demonstrates that tumor cells absorb

glucose more efficiently than other cells, preferring glycolysis even
under non-hypoxic conditions, releasing lactate during glucose absorp-
tion [14-15]. A large amount of lactate is produced in the bodies of
cancer patients, but it was previously considered a metabolic waste until
the theory of lactylation was proposed. Lactylation can influence tumor
progression, such as promoting tumor angiogenesis [16-17], and lactate
can suppress the killing function of immune cells in the tumor micro-
environment [18-20]. Lactate can also act as a signaling molecule
mediating intracellular or intercellular communication [21-22]. This
study explored the role of lactylation in lymphoma progression. lacty-
lation affects the lymphoma process, and we can use the level of lacty-
lation to score the prognosis of lymphoma and assess its prognsis early.

The TCGA and GEO databases provide rich genomic and gene
expression data. We screened the lactylation-related gene sets in these
datasets and identified seven prognostic lactylation-related genes
through the LASSO algorithm and stepwise COX regression: CHERP,
DHX9, EMG1, HNRNPH1, LCP1, RPS11, and UBE2E1. The lactylation
Riskscore model constructed based on the expression levels of these
genes was proven to have predictive value for lymphoma prognosis
through comparison with clinical data. In the immune cell infiltration
analysis, we found an interesting link between lactylation modification
and macrophage levels in lymphoma patients. In Professor Zhao’s
research, he discovered that macrophage genomic histones undergo
lactylation modification under the influence of lactate, promoting the
transformation of macrophages from the proinflammatory and anti-
cancer M1 type to the anti-inflammatory and cancer-promotingM2 type.
Lymphoma lactylation may have similar macrophage changes. Through
the analysis of lymphoma samples from our hospital, we found that
patients in the high-risk group indeed had higher expression of macro-
phages. Many previous studies have demonstrated that macrophage
infiltration in diffuse large B-cell lymphoma is associated with poor
prognosis[23-24]. But which gene in macrophages undergoes lactyla-
tion modification, what changes have occurred in its function, and
whether it has a synergistic effect with tumor cells are all issues that
needs to address in future experiments. The alteration of macrophages
may affect the immunotherapy response in lymphoma patients, so we
evaluated the TIDE scores of lymphoma patients with different lactyla-
tion modifications. The TIDE score is associated with tumor immune
dysfunction and used to assess the possibility of tumor immune evasion
in the gene expression profile of tumor samples. It can predict the
response to immune checkpoint blockade therapy, and a higher TIDE
score is generally associated with poorer immunotherapy outcomes
[25-26]. The IFNG score is a scoring system related to interferon-gamma
(IFNG), a protein with various biological activities. The IFNG score may
be associated with patient prognosis, and a higher IFNG score may
indicate a better prognosis [27-28]. Lymphoma patients with high-risk
lactylation modification who have low TIDE scores and high IFNG
scores are predicted to have better immunotherapy outcomes, which
may be related to abnormally expressed macrophages. This suggests that
immunotherapy may be a viable first-line treatment option for such
patients.

In addition to predicting prognosis, the lactylation risk score can also
guide the choice of medication for lymphoma patients. We analyzed the
IC50 levels of 138 commonly used chemotherapy drugs and found pa-
tients with high-risk lactylation lymphoma may not be suitable for
chemotherapy regimens containing methotrexate and lenalidomide as
first-line treatment. However, the sensitivity to Cisplatin and Etoposide
increased, indicating that these patients may be more suitable for the
ESHAP protocol (Etoposide + Methylprednisolone + High-dose Cytar-
abine + Cisplatin). We have analyzed the correlation between R-IPI and
RiskScore in our dataset. Unfortunately, while there is a trend, the dif-
ferences in RiskScore across different R-IPI categories are not very sig-
nificant(Supplementary Figure 4). To further clarify the diagnostic role
of the lactylation risk score gene set, we randomly selected the key gene
HNRNPH1 from the gene set. HNRNPH1 is a member of the widely
expressed heterogeneous nuclear ribonucleoprotein (hnRNPs)
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subfamily, and its expression level has been observed to increase in
various cancers and tumors [29-30]. For example, the expression level of
HNRNPH1 is significantly higher in glioblastoma tissues compared to
normal tissues [31-32]. In diffuse large B-cell lymphoma, our analysis of
the data revealed that patients with high HNRNPH1 expression had a
better prognosis, and there was no significant correlation between
HNRNPH1 expression and patient gender, age, or stage. Additionally,
HNRNPH1 expression was associated with the number of various im-
mune cells.

We found that knockdown of HNRNPH1 in diffuse large B-cell lym-
phoma cells led to increased lactate production and a corresponding rise
in lactylation levels. Additionally, the S-phase distribution of cells
increased, indicating robust cell proliferation and reduced apoptosis.
Using a tumor-bearing mouse model constructed with the HNRNPH1
knockdown cell line, we observed a significant increase in tumor vol-
ume, suggesting that HNRNPH1 may inhibit the proliferation of diffuse
large B-cell lymphoma cells. Based on this, we analyzed 20 tissue sam-
ples from patients with diffuse large B-cell lymphoma and found that
patients with low HNRNPH1 expression had elevated Pan Kla levels,
accompanied by high expression of classical disease progression and
prognostic indicators such as Bcl-2, Bcl-6, C-myc, Ki-67, and P53. This
suggests that HNRNPH1 may affect cell proliferation by regulating the
expression of cell cycle regulatory factors, growth factor receptors,
signal transduction molecules, and other genes. HNRNPH1 binds to the
mRNA of these genes and regulates their expression levels by affecting
their splicing or stability.

Finally, we divided the 20 patients into high and low Pan-Kla
expression groups. By comparing clinical indicators between the two
groups, we found that patients in the high lactylation group had
significantly elevated serum LDH levels and SUVmax values in PET-CT
for tumor lymph nodes, indicating a close correlation between lactyla-
tion levels and glucose metabolism in lymphoma patients. Additionally,
the positive expression rates of Bcl-2, C-myc, and P53 were increased in
the tumors of patients in the high lactylation group, confirming that
lactylation is involved in the tumorigenesis of lymphoma. However, the
malignancy of diffuse large B-cell lymphoma is high, and Ki-67 levels are
generally elevated, whichmay explain the lack of significant differences.
The high dispersion of HNRNPH1 data may have contributed to the lack
of significant differences observed. Future studies with increased sample
sizes are needed for further analysis.

Conclusion

In summary, we have investigated the role of lactylation in patients
with diffuse large B-cell lymphoma, screening for genes that exhibit
differences in lactylation levels. Based on these genes, we have con-
structed a lactylation gene risk score, which has been validated through
three datasets to confirm its predictive power. Our findings have clari-
fied that lactylation affects macrophage immune infiltration in diffuse
large B-cell lymphoma and reduces sensitivity to commonly used drugs
such as Methotrexate and Lenalidomide. Additionally, both in vitro and
in vivo experiments, combined with patient tissue biopsies, have
demonstrated that HNRNPH1 can regulate lactylation to promote lym-
phoma cell proliferation.
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P. Sonveaux, Lactate stimulates angiogenesis and accelerates the healing of
superficial and ischemic wounds in mice, Angiogenesis. 15 (4) (2012 Dec)
581–592, https://doi.org/10.1007/s10456-012-9282-0. Epub 2012 Jun 3. PMID:
22660894.
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