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Modelling the age distribution 
of longevity leaders
Csaba Kiss 1, László Németh 2,3* & Bálint Vető 1,4

Human longevity leaders with remarkably long lifespan play a crucial role in the advancement of 
longevity research. In this paper, we propose a stochastic model to describe the evolution of the 
age of the oldest person in the world by a Markov process, in which we assume that the births of the 
individuals follow a Poisson process with increasing intensity, lifespans of individuals are independent 
and can be characterized by a gamma–Gompertz distribution with time-dependent parameters. We 
utilize a dataset of the world’s oldest person title holders since 1955, and we compute the maximum 
likelihood estimate for the parameters iteratively by numerical integration. Based on our preliminary 
estimates, the model provides a good fit to the data and shows that the age of the oldest person alive 
increases over time in the future. The estimated parameters enable us to describe the distribution of 
the age of the record holder process at a future time point.

Keywords  Human longevity, World’s oldest person, Stochastic model, Gamma–Gompertz lifespan 
distribution

Exceptionally long human lifespans are one of the cornerstones of demography and mortality research. Studying 
the group of record holders may reveal not only the underlying mortality mechanism of a population but also 
potentially shed some light on the future developments of human longevity. As life expectancy increases1 with 
deaths shifting to older ages, the distribution of deaths at the oldest-old ages2,3 gains more interest of demogra-
phers, actuaries and decision makers of numerous disciplines.

The pattern of adult human mortality has already been described4 but there is still a debate about the exact 
distribution of deaths at adult ages. More details on the necessity of a correctly specified model for the underly-
ing mortality process and its impact on further research are discussed in5,6. Numerous publications review the 
ongoing discussion on the existence of a mortality plateau7–12, and the levelling-off of adult human death rates 
at the oldest ages is supported by the findings in13–15 while others cast some doubt on this observation16–18. If 
there is a mortality plateau then the distribution of deaths at the oldest-old ages must be gamma-Gompertz and 
human lifespan can increase further without any maximum19. Further studies discuss the existence of a limit 
to human lifespan with more focus on the extreme value distribution aspect of the deaths at the oldest-old ages 
for various populations and different lifetime distributions20–24. These models can be helpful in determining the 
plausibility of longevity leaders as well.

We contribute to this discussion by proposing a stochastic model to describe the evolution of the age of the 
world’s oldest person. Based on our estimates the model provides a good fit to the titleholder data since 1955, col-
lected by the Gerontology Research Group25. With the model results, it is possible to predict the age of the oldest 
person in the world in the future. When should we expect to see the next Jeanne Calment, the supercentenarian 
with the longest human lifespan ever documented? Will her record ever be surpassed? Our results provide a 
prediction for the age distribution of the record holder in the coming decades to answer these questions.

Results
Our model describes the evolution of the age of the oldest living person under the following assumptions. We 
assume that the births of individuals follow a Poisson process with time-dependent intensity26. The lifespans of 
individuals in the population are independent and their distribution may depend on the date of birth. Then the 
age of the record holder in the population evolves in time as a Markov process with explicit transition probabili-
ties. As the first main result of this paper, we explicitly compute the distribution of the age of the record holder 
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for any given birth rate parameter and lifespan distribution. The detailed mathematical description and the 
properties of the general model are described in section "Mathematical model for the age of the oldest person".

We apply our general result to the case which approximates the human birth rate over the world and the 
human lifespan. We specify the intensity function of the Poisson process of births to have an exponential growth 
in time. The underlying force of mortality is chosen so that it follows an extension of the Gompertz mortality 
model4 and the lifespan distribution of individuals is given by the gamma–Gompertz ( ŴG ) distribution with 
time-dependent parameters. This distribution adequately captures the slowing down of senescence mortality at 
the oldest old ages. Given the growth parameters of the birth rate, we fit the model parameters to the statistics 
of the oldest person titleholder data using maximum likelihood method. The optimal parameters of the model 
fit well to the data. It shows in particular that the age of the oldest person alive increases over time, and it will 
most likely increase further in the future. We compute the expected value and a confidence interval for the age 
of the world’s oldest person using the fitted model parameters for each year between 1955 and 2019 shown by the 
green curves on Fig. 1. The detailed discussion of the model specification, likelihood calculations as well as the 
parameter fitting are given in section "Model specification and parameter fitting". Section "Methods" contains 
calculations related to the gamma–Gompertz–Makeham generalization of the gamma–Gompertz distribution.

Our results enable us to predict the age distribution of the world’s oldest person at future time points. We 
compute the probability density of the age of the world’s oldest person in different years not only in the past but 
also in the future. These densities are shown in Fig. 2. When comparing the age distribution of the oldest person 
in the world in different years to the age of Jeanne Calment at her death, we find that on Jan 1st 2060 we can 
expect that the age of the world’s oldest person will exceed her age with probability around 0.5. This also means 
that with high probability her age record will already be broken by that time.

In Fig. 1 two extreme outliers with unexpectedly long lifetimes can be observed. Jeanne Calment died at 
the age of 122.45 years in 1997, and Sarah Knauss died at the age 119.27 in 2000. In our model, the probability 

Figure 1.   Blue curve: age of the oldest person in the world since 1955 with two outliers indicated (Jeanne 
Calment: JC and Sarah Knauss: SK). Green curves: the model-estimated mean age of the oldest person (solid 
line) and the standard deviation (distance from the dashed lines) with the estimation based on the full dataset. 
Red curves: mean age and standard deviation of the oldest person estimated using the data between 1955 and 
1988.

Figure 2.   The probability densities of the age of the oldest person in the world in the following years: 1960 
(red), 1980 (green), 2000 (blue), 2020 (pink), 2040 (orange), 2060 (magenta), 2080 (yellow) and 2100 (black).
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of observing an age greater than or equal to their actual age at the time of their death is 0.000286 for Calment 
and 0.0116 for Knauss. See details in section "Computation of the oldest person’s age and of the reign length".

The fact that Calment and Knauss are outliers among the oldest old in the world became even more evident 
when we performed a backtesting of our model. We estimated the parameters based on the data on the world’s 
oldest person between 1955 and 1988 where the ending date is the time when Calment became the world’s oldest 
person. The model-estimated mean and confidence interval of the world’s oldest person using the full data and 
the partial dataset (before Calment) are shown in Fig. 1 by green and red, respectively. The estimate using the 
data until 1988 is less reliable after 2000 which is shown by the fact that the observed data is out of the confidence 
interval in the majority of the time after 2000. When we compare the two confidence intervals, we can conclude 
that, based on the data before 1988, Calment and Knauss already had extremely high ages at their deaths. Add-
ing the remaining data set, the estimated mean age of the world’s oldest person becomes lower. Hence we can 
conclude that now we can consider the ages of the two outliers between 1988 and 2000 at their death to be more 
extreme than based on the information available in 1988.

The other important observable is the reign length of a record holder. The numerical value of the expected 
reign length with our estimated model parameters is 1.195 in 1955 and it is 1.188 in 2019. The empirical value 
of the reign length is 1.008 which is not much less than the model-based estimate.

Our approach to studying the age of the oldest old is completely novel because it takes into account jointly 
the age and the time of birth of individuals. Although the age and the reign length of the world’s oldest person 
depend in a complex non-linear way on the total lifespan and the time of birth of supercentenarians, we compute 
explicitly the probability distribution of the age of the oldest person. Hence, the performance of our predictions 
cannot be directly compared to previous results in the literature because in the usual approach, the oldest per-
son in each cohort is considered separately, and it is not relevant whether this person was ever the oldest in the 
population, see e.g. the extreme value method in20. Our model contributes to the mathematical understanding of 
the evolution of the oldest individual, which is the extra benefit compared to a prediction using the trend in the 
data, e.g. in linear regression. In this way, we not only observe but also prove mathematically that the dynamics 
of the birth process and that of the lifespan distribution which we consider in this paper necessarily imply the 
increase of the expected age of the world’s oldest person.

Mathematical model for the age of the oldest person
In this section, we provide the mathematical definition of a general model for the age of the world’s oldest person, 
where the births of individuals follow a Poisson process and their lifespans are independent. Under the assump-
tions of the general model, the age of the record holder in the population evolves in time as a Markov process 
with explicit transition probabilities. In sections "Model description and two-dimensional representation"–"Exact 
distribution of the oldest person’s age process", we describe the exact distribution of the age of the record holder 
in this generality for any given birth rate parameter and lifespan distribution using the two-dimensional rep-
resentation of the age process of the oldest person. In the time-homogeneous case with constant birth rate and 
identical lifespan distributions the reign length distribution of a record holder is computed in sections "Homo-
geneous model"–"Reign length distribution". We explain the role of the entry age parameter in section "Entry 
age parameter".

Model description and two‑dimensional representation
The model is formally defined as follows. Let �(t) be the birth rate parameter which depends on time and let Ft 
and ft be a family of cumulative distribution functions and density functions corresponding to non-negative 
random variables which are also time-dependent. We assume that individuals are born according to a Poisson 
point process at rate �(t) and that the lifespan of an individual born at time t is given by Ft so that lifespans are 
independent for different individuals.

Let Yt denote the age of the oldest person in the population at time t. The process (Yt : t ∈ R) is Markovian. 
The Markov property holds because at any time t the history of the process (Ys : s ≤ t) provides information 
about the lifetime of individuals born before the current record holder while any transition of (Ys : s ≥ t) depends 
only on the lifetime of the current record holder and of those born after them.

The evolution of the Markov process Yt is the following. It has a deterministic linear growth with slope 1 due to 
the ageing of the current record holder. This happens until the death of the record holder. Additionally, given that 
Yt− = lims↑t Ys = y for some t with y > 0 , the process has a downward jump at time t at rate ft(y)/(1− Ft(y)) 
which is the hazard rate of the distribution Ft at y. This corresponds to the possibility that the record holder dies 
at time t which happens at rate ft(y)/(1− Ft(y)) . The conditional distribution of the jump is given by

for all x > 0 . The jump distribution in (1) has an absolutely continuous part supported on [0, y] with density

and a point mass at 0 with probability

(1)P(Yt < x |Yt− = y,Yt < y) = exp

(

−

∫ y

x
�(t − u)(1− Ft−u(u)) du

)

(2)jy,t(x) = exp

(

−

∫ y

x
�(t − u)(1− Ft−u(u)) du

)

�(t − x)(1− Ft−x(x))

(3)ay,t = exp

(

−

∫ y

0
�(t − u)(1− Ft−u(u)) du

)

.
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As we shall see in the relevant parameter regime the probability ay,t of the point mass at 0 is negligible. The 
transition formula in (1) can be proven using the description below.

We introduce a two-dimensional representation of the process Yt as follows. Let � = {(ti , xi) : i ∈ I} be a 
marked Poisson process in R× R+ where {ti : i ∈ I} forms a Poisson point process on R with intensity �(t) and 
xi ≥ 0 is sampled independently for each i ∈ I according to the distribution Fti . The point (ti , xi) represents an 
individual born at time ti with lifespan xi for all i ∈ I , that is, the individual i is alive in the time interval [ti , ti + xi) 
and their age at time t is t − ti if t ∈ [ti , ti + xi) . Hence the marked Poisson process � contains all relevant infor-
mation about the age statistics of the population at any time. In particular the age of the oldest person Yt can be 
expressed in terms of � as

where the indicator 1{t∈[ti ,ti+xi)} is 1 exactly if the ith person is alive at time t.
The transition distribution formula (1) can be seen using the two-dimensional representation as follows. 

Given that the current record holder dies at time t at age y the event {Yt < x} means that nobody with age between 
x and y can be alive at time t. This event can be equivalently characterized in terms of the Poisson process of 
birth at rate �(·) thinned by the probability that the person is still alive at time t. Indeed the event {Yt < x} can 
be expressed as a Poisson process of intensity at time t − u given by �(t − u)(1− Ft−u(u)) for u ∈ [x, y] not hav-
ing any point in the time interval [t − y, t − x] . This probability appears exactly on the right-hand side of (1). In 
other words, for any u ∈ [x, y] people are born at time t − u at rate �(t − u) . On the other hand, the probability 
for a person born at time t − u to be alive at time t (that is, at age u) is 1− Ft−u(u) . See Fig. 3 for illustration.

Exact distribution of the oldest person’s age process
We assume that all birth events are already sampled on (−∞, t] together with the corresponding lifespans. Then 
the distribution of Yt can be computed explicitly for all t ∈ R using the two-dimensional representation. For all 
t ∈ R the density

for all x > 0 and the point mass at 0

characterize the distribution of Yt which can be seen as follows. We mention that the point mass at 0 is negligible 
in the application.

Similarly to the proof of the transition formula in (1) the event {Yt < x} for any x > 0 is the same as the 
event that nobody with age at least x is alive at time t. We express this event in terms of the Poisson process of 
birth at rate �(·) thinned by the probability that the person is still alive at time t. The event {Yt < x} means that 
a Poisson process of intensity at time t − u given by �(t − u)(1− Ft−u(u)) for u ≥ x does not have any point in 
(−∞, t − x] yielding

(4)Yt = max
{

(t − ti)1{t∈[ti ,ti+xi)} : i ∈ I
}

.

(5)ht(x) = exp

(

−

∫ ∞

x
�(t − u)(1− Ft−u(u)) du

)

�(t − x)(1− Ft−x(x))

(6)mt = exp

(

−

∫ ∞

0
�(t − u)(1− Ft−u(u)) du

)

(7)P(Yt < x) = exp

(

−

∫ ∞

x
�(t − u)(1− Ft−u(u)) du

)

.

Figure 3.   Two-dimensional representation of the event {Yt < x} conditionally given {Yt− = y,Yt < y} : the 
marked Poisson process does not have any point in the grey region, see (1).
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In other words for any u ≥ x individuals are born at time t − u at rate �(t − u) . A person born at time t − u is 
alive at time t at age u with probability 1− Ft−u(u) . (5)–(6) follow by differentiation in (7) and by taking the 
x → 0 limit. See Fig. 4 for illustration.

Homogeneous model
The exact computation of the reign length distribution (see section "Reign length distribution") can only be 
performed in a special case of our general model described in section "Model description and two-dimensional 
representation". We introduce this special case as the homogeneous model where individuals are born at the 
times of a Poisson process of constant rate � = �(t) > 0 for all t. The lifespan of individuals are independent and 
identically distributed with a fixed density f = ft and cumulative distribution function F = Ft for all t which 
does not depend on time.

In the homogeneous model the jump distribution given in (2)–(3) simplifies to

The distribution of Yt does not depend on time in this case hence it is a stationary distribution as well. The for-
mulas for the density of Yt and point mass at 0 reduce in the homogeneous case to

where the integral 
∫∞

0 (1− F(u)) du is equal to the expected lifespan.
The equilibrium condition for the homogeneous density h can be written as

After differentiation and using the fact that

one can derive from (10) the second order differential equation

The point mass m at 0 satisfies

(8)
jy(x) = jy,t(x) = exp

(

−�

∫ y

x
(1− F(u)) du

)

�(1− F(x)),

ay = ay,t = exp

(

−�

∫ y

0
(1− F(u)) du

)

.

(9)
h(x) = exp

(

−�

∫ ∞

x
(1− F(u)) du

)

�(1− F(x)),

m = exp

(

−�

∫ ∞

0
(1− F(u)) du

)

(10)h′(x)+ h(x)
f (x)

1− F(x)
−

∫ ∞

x
h(y)

f (y)

1− F(y)
jy(x) dy = 0.

(11)
d

dx
jy(x) = jy(x)

(

�(1− F(x))−
f (x)

1− F(x)

)

(12)h′′(x)+

(

2f (x)

1− F(x)
− �(1− F(x))

)

h′(x)+

(

2f (x)2

(1− F(x))2
+

f ′(x)

1− F(x)

)

h(x) = 0.

(13)m� =

∫ ∞

0
h(y)

f (y)

1− F(y)
jy(0) dy.

Figure 4.   Two-dimensional representation of the event {Yt < x} : the marked Poisson process does not have any 
point in the grey region, see (7).
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The peaks process
In the homogeneous model the sequence of peaks in Yt forms a discrete time Markov chain. By peak we mean a 
local maximum of Yt with value being equal to the lifespan of the last record holder. Each time the oldest person 
dies the process Yt has a peak with a downward jump following it. Let Zn denote the age of record holders at which 
they die which are the values of the peaks of the process Yt . The sequence Zn forms a discrete time Markov chain. 
The Markov property follows by the fact that ages at death of previous record holders only give information on 
people born before the current record holder but transitions depend on the lifespan of the current record holder 
and that of people born after them.

The stationary density of Zn is given by

The formula can be seen as follows. To have a record holder who dies at age x there has to be a person who has 
lifespan x which gives the factor f(x) in the numerator on the right-hand side of (14). The exponential factor is 
by the two-dimensional representation equal to the probability that no people born before the record holder 
who just died can be alive at the time the record holder dies. The denominator on the right-hand side of (14) 
makes z(x) a probability density function.

The density of Zn can also be characterized by the following description. It satisfies the integral equation

which comes from the possible transitions of the peak process as follows. If the previous record holder had 
a total lifetime w ∈ [0,∞) then at the death the process Yt jumps down to some value y at rate jw(y) or to 0 
with probability aw . The density of the age at which a person dies who becomes a record holder at age y is 
f (x)/(1− F(y)) . From the integral equation in (15) one can derive the second order differential equation for 
the function g(x) = z(s)/f (x) given by

which is satisfied by g(x) = c exp
(

−�
∫∞

x (1− F(u)) du
)

 in accordance with (14).

Reign length distribution
In the homogeneous model, let Wn denote the reign length of the nth record holder, that is, the time length for 
which this person is the oldest person of the population. The density of the random reign length is given by

The density formula in (17) can be derived based on the stationary density of the peaks process given by (14) 
as follows.

It holds for the density of the reign length that

based on the decomposition with respect to the previous value of the peaks process Zn . The integral 
∫ w
0 f (z)�e−�(w−z) dz is the density of the convolution of the density f with an independent exponential distribu-

tion of parameter � . On the right-hand side of (18), one can use the definitions of the density z given by (14) 
and the homogeneous jump distribution jx and ax given by (8). Then in the numerator after the exchange of the 
order of integrations in the first term and by using the formula for the stationary distribution given by (9) one 
gets the numerator of (17). In the denominator one can use the equality

which follows by integration by parts.
Note also that the density is not equal to the remaining reign length of Yt under the stationary distribution 

because it would involve the integral 
∫∞

0 h(y)f (y + w)/(1− F(y)) dy in place of the first term in the numerator 
on the right-hand side of (17).

Entry age parameter
Next we introduce another parameter which we call the entry age and we denote it by E. As opposed to our 
original model we consider individuals as being born at age E at a modified birth rate and with a modified lifes-
pan distribution. As a result we obtain a model to the age of the world’s oldest person all values of the entry age 
parameter E ≥ 0 and we can fit the model parameters with different values of the entry age.

(14)z(x) =
f (x) exp

(

−�
∫∞

x (1− F(u)) du
)

∫∞

0 f (y) exp
(

−�
∫∞

y (1− F(u)) du
)

dy
.

(15)z(x) =

∫ ∞

0
z(w)

∫ min(x,y)

0
jw(y)

f (x)

1− F(y)
dy dw +

∫ ∞

0
z(w)awf (x) dw

(16)g ′′(x)− �(1− F(x))g ′(x)+ �f (x)g(x) = 0

(17)r(w) =

∫∞

0 h(y)f (y + w) dy +m
∫ w
0 f (z)�e−�(w−z)f (z) dz

∫∞

0 h(y)(1− F(y)) dy +m
.

(18)r(w) =

∫ ∞

0
z(x)

(
∫ x

0
jx(y)

f (y + w)

1− F(y)
dy + ax

∫ w

0
f (z)�e−�(w−z) dz

)

dx

(19)
∫ ∞

0
f (y) exp

(

−�

∫ ∞

y
(1− F(u)) du

)

dy =

∫ ∞

0
h(y)(1− F(y)) dy +m.
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For any value E ≥ 0 of the entry age we denote by �E(t) the rate at which people reach the age E at time t, 
that is,

because the new birth process of rate �E(t) is obtained by an inhomogeneous thinning of the original Poisson 
process of the birth events. The lifespan distribution of those born at time t with age E becomes the remaining 
lifetime distribution at age E. The modified cumulative distribution function and density are given by

Model specification and parameter fitting
In section "Model specification: birth rate parameter and lifespan distribution" we specify the general model 
introduced and discussed in section "Mathematical model for the age of the oldest person", that is, we assume 
that the birth rate parameter increases exponentially in time and that the lifespan distribution is given by the 
gamma–Gompertz–Makeham distribution with time-dependent parameters. We provide the details of the com-
putation of the likelihood as a function of the model parameters in section "Likelihood calculations". We show the 
way to maximize the likelihood and how the optimal parameters can be found using the Nelder–Mead method 
in section "Likelihood maximization". With these values of the parameters, the age of the world’s oldest person 
and the reign length of the record holder can be computed as described in section "Computation of the oldest 
person’s age and of the reign length".

Model specification: birth rate parameter and lifespan distribution
For the rest of the paper we specifiy our general model described in section "Mathematical model for the age of 
the oldest person" to the following choice of the birth rate parameter and of the lifespan distribution. We choose 
the value of the entry age to be E = 0, 30, 60 and we fit the model parameters for all three values of E separately.

First we specify the intensity function of the Poisson process of births with an exponential growth in time. 
For any of the three values of the entry age E we assume that the birth rate at age E is given by

where the numerical values of the parameters CE and κE are obtained by linear regression of the logarithmic 
data of newborns, people at age 30 and 60 published by the United Nations since 1950. We extrapolate the linear 
regression backwards in time and we use the numerical values shown in Table 1.

We assume that the underlying force of mortality is chosen so that the lifespan distribution of individuals 
follows the gamma–Gompertz ( ŴG ) distribution with cumulative distribution function and density

for x ≥ 0 where a, b, γ are positive parameters. We mention that the gamma–Gompertz–Makeham ( ŴGM ) distri-
bution differs from the ŴG distribution by the presence of a non-negative extrinsic mortality parameter c which 
appears as an additive term in the force of mortality. See (29) for the definition of the ŴGM distribution. In our 
model, we exclude the extrinsic mortality for the following two reasons. Since the extrinsic mortality becomes 
irrelevant at high ages and we aim to model the front-end of the death distribution at the oldest-old ages, we do 
not expect to obtain a reliable estimate on the extrinsic mortality using the data about the world’s oldest person. 
On the other hand, as explained later in section "Likelihood maximization", the likelihood maximization provides 
unrealistic lifespan distributions even for the ŴG model if one tries to optimize in all the parameters at the same 
time. In order for the algorithm to result in a distribution close to the actual human lifespan distribution, the 
number of model parameters had to be decreased.

For our model we suppose that in the ŴG lifespan distribution, parameters b = bE , the rate of aging and 
γ = γE , the magnitude of heterogeneity are constants over time and that they only depend on the value of the 
entry age parameter E. The parameter a, the initial level of mortality at the entry age for individuals born at time 
t, depends on time given by the exponentially decreasing function

(20)�E(t) = �(t − E)(1− Ft−E(E))

(21)FEt (x) =
Ft−E(x + E)− Ft−E(E)

1− Ft−E(E)
, f Et (x) =

ft−E(x + E)

1− Ft−E(E)
.

(22)�E(t) = CEe
κEt

(23)
FŴGa,b,γ (x) = 1−

(

1+
aγ

b
(ebx − 1)

)−1/γ
,

f ŴGa,b,γ (x) = aebx
(

1+
aγ

b
(ebx − 1)

)−1− 1
γ

(24)aE(t) = KEe
−αE(t−2000)

Table 1.   Birth rate parameters in (22) for different values of the entry age E.

E = 0 E = 30 E = 60

CE 6270 4.680 · 10−9 3.249 · 10−11

κE 0.004987 0.01876 0.02085
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where the exponent αE and the constant KE only depends on the entry age E. The reason for subtracting 2000 in 
(24) is only technical, the numerical values of the parameters do not become tiny with this definition.

In the model with entry age E, we assume that the birth rate �E(t) is given by (22) and we fit the gamma–Gom-
petz distribution with parameters bE , γE and aE(t) given by (24) for the modified distribution function FEt (x) 
and density f Et (x) in (21). This means that we search for the best fitting values of the parameters αE ,KE , bE , γE 
which results in an approximation of the remaining lifetime distribution at the age E.

Likelihood calculations
The aim of the maximum likelihood method is to give an estimate to the parameters αE , KE , bE and γE for 
E = 0, 30, 60 by finding those values for which the likelihood of the full sample is the largest. The sample is 
obtained from the the historical data on the world’s oldest person available in25. We transform this information 
into a list of triples of the form (ti , yi , zi) for i = 1, . . . , n where ti is the ith time in the sample when the oldest 
person dies at age yi and the new record holder has age zi at time ti . Then the data has to satisfy the consistency 
relation ti − zi = ti+1 − yi+1 since the two sides express the date of birth of the same person.

In the model with entry age E, the likelihood of the ith data point (ti , yi , zi) given the previous data point is 
equal to

for all i = 2, 3, . . . , n except for i = 1 in which case the 1− FEy1−t1+E(z0 − E) factor in the denominator is missing. 
In (25) above we use the transition probabilities of the model with entry age E given by

as a generalization of (2). The explanation of the left-hand side of (25) is that the person died at time ti at age yi 
had age E at time ti − yi + E . The previous data point ensures that this person has already reached age zi−1 hence 
we condition their lifetime distribution on this fact. The transition probabilities in (26) are obtained similarly to 
(2) with the difference that a person at age u with u ∈ [x, y] at time t had age E at time t − u+ E.

Note that when computing the likelihood of the full data by multiplying the right-hand side of (25) for dif-
ferent values of i the consistency relation of the data implies that the factor 1− Fti−zi+E(zi − E) of the ith term 
cancels with the factor 1− Fti+1−yi+1+E(zi − E) coming from the (i + 1) st term. Hence the log-likelihood of the 
full sample is given by

where we suppress the dependence of the parameters α,K , b, γ on the entry age. Note that the last two terms do 
not depend on the parameters α,K , b, γ hence we can omit these terms in the maximization of the log-likelihood.

Likelihood maximization
We implemented the calculation of the log-likelihood function l(α,K , b, γ ) given by (27) in Python. We used 
numerical integration to obtain the integrals on the right-hand side of (27). We mention that the general integral 
formula in (30) could not be used because the parameter a of the gamma–Gompertz distribution in the integrand 
depends on the integration variable on the right-hand side of (27).

In order to maximize the value of the log-likelihood function l(α,K , b, γ ) we applied the 
Nelder–Mead method27 which is already implemented in Python. We mention that initially we used the 
gamma–Gompertz–Makeham distribution as lifespan distribution, see (29) for the definition, which contains 
the extra parameter c to be fitted but it turned out that the number of model parameters has to be reduced. The 
behaviour of the optimization algorithm in the five parameters α,K , b, c, γ using the gamma–Gompretz–Make-
ham model was very similar the case of four parameters α,K , c, γ in the gamma–Gompertz model. Running the 
optimization in the full set of parameters ( α,K , b, c, γ in the gamma–Gompertz–Makeham model or α,K , b, γ in 
the gamma–Gompertz model), it turned out that after a few rounds the parameter K started to decrease dramati-
cally and reached values below 10−10 . The resulting lifespan distribution seemed very unrealistic with almost no 
mortality before the age of 100. This happened for all values of the entry age E = 0, 30, 60.

(25)

f Eti−yi+E(yi − E)

1− FEti−yi+E(zi−1 − E)
jEyi ,ti (zi)

=
f Eti−yi+E(yi − E)

1− FEti−yi+E(zi−1 − E)
exp

(

−

∫ yi

zi

�E(ti − u+ E)(1− FEti−u+E(u− E)) du

)

�E(ti − zi + E)(1− FEti−zi+E(zi − E))

(26)jEy,t(x) = exp

(

−

∫ y

x
�E(t − u+ E)(1− FEt−u+E(u− E)) du

)

�E(t − x + E)(1− FEt−x+E(x − E))

(27)

l(α,K , b, γ )

=

n
∑

i=1

(

log f Eti−yi+E(yi − E)−

∫ yi

zi

�E(ti − u+ E)(1− FEti−u+E(u− E)) du+ log �E(ti − zi + E)

)

+ log(1− FEtn−zn−E(zn + E))

=

n
∑

i=1

(

log f ŴG
Ke−α(ti−yi+E−2000) ,b,γ

(yi − E)−

∫ yi

zi

Ceκ(ti−u+E)
(

1− FŴG
Ke−α(ti−u+E−2000) ,b,γ

(u− E)
)

du

)

+ log
(

1− FŴG
Ke−α(tn−zn+E−2000) ,b,γ

(zn − E)
)

+ n logC +

n
∑

i=1

κ(ti − zi + E).
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We explain this phenomenon by the fact that historical data about the oldest person in the world only gives 
information about the behaviour of the lifespan distribution between the ages 107 and 123. The simple opti-
mization in the four parameters α,K , b, γ simultaneously yields an excellent fit for the tail decay of the lifespan 
distribution with the historical data but the result may be very far from the actual human lifespan. This would 
limit the practical relevance of our results.

The mathematical reason for the fact that the four-parameter optimization does not result in a satisfactory 
approximation to the human lifespan distribution is the following. In these cases, the optimization procedure 
diverges to those regimes of the parameter space R4

+ where the corresponding gamma–Gompertz distribution is 
degenerate. One can prevent reaching these unrealistic combinations of parameters by reducing the amount of 
freedom in the optimization. Hence we specify some of the parameters a priori and we perform the optimization 
in the remaining ones so that it provides a good fit to the data on the age of the oldest old as well as a realistic 
lifespan distribution.

We believe that the most robust of the four parameters of the ŴG model is b which is the exponent in the 
time dependence of the mortality rate. By setting the rate of aging b = 0.09 the algorithm gives the optimal triple 
α,K , γ with the best likelihood which is very stable under changing the initial values of these parameters. The 
running time is also very short.

The Nelder–Mead algorithm, being a numerical maximization method, heavily relies on the tolerance 
parameter, which determines the minimal improvement required for the algorithm to continue running. If this 
parameter is set too high, the algorithm might stop before reaching the optimum. Conversely, if set too low, the 
algorithm might take excessively long to converge. To address this, we drew inspiration from dynamic learning 
rate algorithms used in neural network training and developed the following meta-algorithm.

First, we run the Nelder–Mead optimization. Based on the improvement from the starting point, we dynami-
cally adjust the tolerance factor, similar to how learning rates are modified during neural network training. We 
then run the optimization again, recalibrating the tolerance factor based on the observed improvement, and 
repeat the process. This iterative adjustment allows us to get closer to the optimum, a hypothesis supported 
by our practical experience with this meta-algorithm. Following this meta-algorithm, only a few calls of the 
Nelder–Mead method is enough to reach the optimum. The Python codes for the likelihood calculations as well 
as the Nelder–Mead optimization implemented to this problem are available in28.

The numerical values of the resulting parameters for the three choices of the entry age are shown in Table 2. 
The survival probability functions with the parameters given in Table 2 for individuals born in 2000 correspond-
ing to the entry age E = 0, 30, 60 are shown on Fig. 5 as a function of the age. We also computed the optimal 
values of the parameters α,K , γ for other values of the rate of aging b as a sensitivity analysis. The resulting 
parameter values for the choices b = 0.11 , b = 0.13 and b = 0.15 are shown in Table 3.

We mention as an alternative approach that scaling the parameters could enhance the optimization process, 
but this requires prior knowledge of the range within which the parameters vary. This range could be determined 
through our iterative application of the Nelder–Mead algorithm.

Table 2.   The optimal parameters obtained for b = 0.09 and for various values of the entry age E = 0, 30, 60.

E = 0 E = 30 E = 60

αE 0.01277 0.01124 0.01110

KE 0.00002951 0.0005950 0.01208

b 0.09 0.09 0.09

γE 0.08596 0.08061 0.08026

l(αE ,KE , 0.09, 0, γE) -119.64 -117.68 -117.27

Figure 5.   Survival probabilities as a function of the age for different values of the entry age: E=0 in red, E=30 in 
black, E=60 in blue.
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Computation of the oldest person’s age and of the reign length
We observe that the model with the parameters in Table 2 fits well to the titleholder data. We focus on two 
statistics of the process in order to support this observation about the comparison: the age of the world’s oldest 
person and the reign length of the record holder. In the case of both statistics exact formulas are only available 
for the homogeneous model introduced in section "Homogeneous model" where the birth rate is constant as 
well as the lifespan distribution does not depend on time. Hence we apply an approximation where the error is 
negligible compared to the difference from the statistics computed using the data.

In the general model the distribution of the age of the world’s oldest person at time t is given by the density 
ht(x) in (5) and by the point mass mt at 0 in (6). For the numerical computations, we ignore the point mass mt 
which is below the round-off error in the numerical results. The difficulty in computing the mean age of the 
oldest person at time t is that parameter a of the gamma–Gompertz–Makeham distribution function Ft−u in the 
exponent of (5) also depends on the integration variable u.

In our approximation we fix the value of the parameter a of the ŴG distribution in ht(x) in (5) to a value which 
is equal to a0(t − d) in (24) with some delay d. The delay d is chosen so that the mean age of the oldest person 
computed using a0(t − d) as parameter a for all times in the ŴG distribution function in (5) is equal to the same 
value d. For a given t, this value of d can be obtained as the fixed point of the contraction map

which provides a reasonable approximation for the mean age of the world’s oldest person. For the comparison 
with the data and for the prediction, we use the model with entry age E = 0 . Hence in (28), the function � is 
given in (22) with E = 0 and Ft−d is the ŴG distribution function with parameters given by the E = 0 values in 
Table 2 and with a = a0(t − d) in (24). This approximation is reasonable because the distribution of the age of 
the oldest person is highly concentrated.

The fixed point of the map in (28) as the expected age of the world’s oldest person can be found in a few steps 
of iterations. We show the result on Fig. 1. We applied 10 iterations using the fitted model parameters for each 
year between 1955 and 2019. By computing the standard deviation of the age of the oldest person as well we 
obtain the mean and a confidence interval for the age.

The predictions for the age distribution of the world’s oldest person in the future shown on Fig. 2. We obtained 
them by using the exact age distribution formula in section "Exact distribution of the oldest person’s age process" 
along with the numerical values of the parameters C, κ ,α,K , γ given in Tables 1 and 2 for entry age E = 0.

In our model, the distribution function of the age of the world’s oldest person is given in (7) where the ŴG 
distribution function can be substituted with the estimated parameter values at any time. In this way, the prob-
ability of observing an age greater than or equal to Calment’s or Knauss’ actual age at the time of their death can 
be computed exactly. The numerical values are 0.000286 for Calment and it is 0.0116 for Knauss.

The backtesting mentioned in the Results section is performed as follows. We estimated the best param-
eter values with entry age 0 based on the reduced data on the world’s oldest person between 1955 and 1988 
where the ending date is the time when Calment became the world’s oldest person. The resulting parameters 
α = 0.01516,K = 0.00002064, γ = 0.08413 are numerically not very far from the optimal parameters in Table 2 
but the difference is more visible on Fig. 1. The figure shows the model-based mean age and confidence interval 
for the age of the world’s oldest person computed using the full data as well as the data until 1988.

(28)d  →

∫ ∞

0
xe−

∫∞
x �(t−u)(1−Ft−d(u)) du�(t − x)(1− Ft−d(x)) dx

Table 3.   The optimal parameters for b = 0.11 , b = 0.13 and b = 0.15.

E = 0 E = 30 E = 60

αE 0.01561 0.01376 0.01352

KE 3.728 · 10−6 0.0001495 0.005901

b 0.11 0.11 0.11

γE 0.1160 0.1117 0.1110

l -119.48 -117.51 -117.09

E = 0 E = 30 E = 60

αE 0.01845 0.01628 0.01596

KE 4.530 · 10−7 3.613 · 10−5 0.002784

b 0.13 0.13 0.13

γE 0.1441 0.14065 0.1399

l -119.37 -117.40 -116.98

E = 0 E = 30 E = 60

αE 0.02129 0.01880 0.01842

KE 5.362 · 10−8 8.500 · 10−6 0.001281

b 0.15 0.15 0.15

γE 0.1708 0.1681 0.1674

l -119.31 -117.34 -116.91
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For the reign length of record holders, we again used the expected age at a given time obtained as the fixed 
point of the iteration in (28). The numerical value of the expected reign length obtained from the iteration is 
1.195 in 1955 and it is 1.188 in 2019. The empirical value of the reign length is 1.008 computed from the data by 
dividing the total length of the time interval between 1955 and 2019 by the number of record holders.

Methods
In this section, we provide supplementary information related to the main result of this paper. We perform 
explicit computations with the gamma–Gompertz–Makeham model and we express the integral of the survival 
function in terms of a hypergeometric function.

The cumulative distribution function and the density of the gamma–Gompertz–Makeham ( ŴGM ) distribu-
tion are given by

for x ≥ 0 where a, b, c, γ are positive parameters. The positivity of parameters implies the finiteness of all moments 
and, in particular, the convergence of the integral of the survival function 

∫∞

x (1− FŴGMa,b,c,γ (u)) du . In the homo-
geneous model, the integral of the survival function appears in the density of the distribution of Yt in (9) and 
in the stationary density of the peaks process in (14). We show below that in the gamma–Gompertz–Makeham 
model the integral of the survival function can be computed explicitly and it is given by

where 2F1(a,b;c;z) is the hypergeometric function. See 15.1.1 in29 for the definition and properties.
We prove (30) based on the following integral representation 15.3.1 in29 of the hypergeometric function

which holds whenever Re(c) > Re(b) > 0 . First we prove an identity for complex parameters α,β , δ which satisfy 
Re(α + β) > 0 and we compute

where we applied a change of variables y = ex−u in the second equality above and we applied the hypergeometric 
identity (31) in the last equality with a = α , b = α + β , c = 1+ α + β , z = −e−x/δ together with the observation 
that with these values of the parameters the prefactor of the integral on the right-hand side of (31) simplifies to 
α + β . Note that the condition Re(c) > Re(b) > 0 for (31) to hold is satisfied by our assumption Re(α + β) > 0 
which also makes the integrals in (32) convergent.

Next we show (30) using (32) as follows. We write

where we applied the change of variables v = bu in the second equality above and we used (32) with α = 1/γ , 
β = c/b , δ = aγ /(b− aγ ) and with x replaced by bx. The right-hand side of (33) simplifies to that of (30).

Data availibility
The titleholder data are freely available at https://​grg.​org/​Adams/C.​HTM

(29)

FŴGMa,b,c,γ (x) = 1−
e−cx

(

1+ aγ
b (ebx − 1)

)1/γ
,

f ŴGMa,b,c,γ (x) =
e−cx

(

1+ aγ
b (ebx − 1)

)1+ 1
γ

c(b− aγ )+ a(b+ cγ )ebx

b

(30)
∫ ∞

x

(

1− F
ŴGM
a,b,c,γ (u)

)

du =

(

b

aγ

)1/γ
e
−(c+ b

γ
)x

b

γ
+ c

2F1

(

1

γ
,
1

γ
+

c

b
; 1+

1

γ
+

c

b
;
aγ − b

aγ
e
−bx

)

(31)2F1(a, b, c, z) =
Ŵ(c)

Ŵ(b)Ŵ(c − b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−a dt

(32)

∫ ∞

x

e−βu

(1+ δeu)α
du =

1

δα

∫ ∞

x

e−(α+β)u

(1+ e−u/δ)α
du

=
e−(α+β)x

δα

∫ 1

0
yα+β−1

(

1+ e−xy/δ
)−α

dy

=
e−(α+β)x

(α + β)δα
·2 F1

(

α,α + β; 1+ α + β;−
e−x

δ

)

(33)

∫ ∞

x

(

1− FŴGMa,b,c,γ (u)
)

du =
1

(

1− aγ
b

)1/γ

∫ ∞

x

e−cu

(

1+ aγ
b−aγ e

bu
)1/γ

du

=
1

(

1− aγ
b

)1/γ
b

∫ ∞

bx

e−cv/b

(

1+ aγ
b−aγ e

v
)1/γ

dv

=
1

(

1− aγ
b

)1/γ
b

e
−

(

1
γ
+ c

b

)

bx

(

1
γ
+ c

b

)(

aγ
b−aγ

)1/γ

2

F1

(

1

γ
,
1

γ
+

c

b
; 1+

1

γ
+

c

b
;
aγ − b

aγ
e−bx

)

https://grg.org/Adams/C.HTM
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