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Abstract

Parkinson’s disease (PD) represents a challenging condition where different therapeutic options 

have evolved over the last 50 years. The potential use of cell transplantation for cell replacement 

or gene delivery of neurotrophic factors has received a great deal of attention. Currently, 

all available treatment options are directed towards the amelioration of symptoms. A greater 

understanding of the distinctive pathology underlying PD might offer some novel therapeutic 

approaches. Transplantation of embryonic ventral mesencephalon (VM) dopaminergic neurons 

has shown promise in animal studies, but similar transplant procedures have shown limited 

success in clinical trials. One important issue may be the site of transplantation. Previous studies 

have transplanted VM into the striatum, which is the target of these neurons. With increased 

understanding of growth and guidance molecule effecting dopaminergic neurons, it may be 

feasible to place transplants in the damaged substantia nigra and direct the growth of axons 

into target regions to reconstruction midbrain dopamine circuitry. In this review, we discuss 

transplantation therapy and how selective guidance molecules could be used to reconstruction of 

nigrostriatal circuit.

Keywords

Neurotrophins; Parkinson’s disease; dopamine; transplants; netrin

2. INTRODUCTION

PD is typically characterized as a disease of the basal ganglia, with a progressive 

degeneration of dopaminergic neurons located in the substantia nigra (SN) and projecting 

to the striatum with subsequently loss of the nigrostriatal circuit. The loss of dopamine 

in striatum results in motor dysfunction, including resting tremor, muscular rigidity, 

bradykinesia and postural instability. Many strategies have attempted to reconstruct this 

circuit but failed to satisfy clinical trials. No complete therapies are yet available that 
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reverses or slows down the progression of this illness. The inhibitory environment of the 

adult brain and the long distance between the SN and the striatum make the reconstruction 

of nigrostriatal circuits difficult. The concept of restoring or repairing damaged neural 

pathways can be broadly divided into techniques that involve neurotrophic factors for 

dopaminergic neurons survival and the transplantation of dopaminergic cells for cell 

replacement. Transplantation mechanisms for repair in PD have utilized human fetal graft 

techniques in which embryonic dopaminergic cells are harvested from the developing 

midbrain. The clinical outcomes of these studies have been mixed but show very good 

transplant survival in the striatum and integration of grafted dopaminergic neurons (1, 2, 

3, 4). Some trials evaluating human fetal grafting raised significant concerns about this 

technique with a number of patients developing ‘off’-medication dyskinesia (5, 6). The other 

exciting novel therapy that has gained interest in recent decades is the use of neurotrophic 

factors (NFTs) to enhance neuronal survival. NTFs are secreted proteins that regulate 

multiple aspects of neuronal development including neuronal maintenance, survival, axonal 

growth, axonal guidance and synaptic plasticity. These properties of NTFs make them likely 

candidates for preventing neurodegeneration and promoting neuroregeneration. Thus fine 

tuning of transplantation therapy with neurotrophins may lead to novel therapeutic strategies 

for Parkinson’s disease.

3. BRIEF BACKGROUND ABOUT PD

The symptoms of PD were first described in the year 1817 by James Parkinson. He named 

the disease Paralysis agitans (shaking palsy). The French neurologist Jean-Martin Charcot 

in 1886 renamed this disorder to PD after James Parkinson. The cardinal motor symptoms 

of PD are resting tremor (tremors while at rest), rigidity (resistance to passive movement), 

bradykinesia (slowness of movement) and postural instability (poor balance).

The pathology of the disease is characterized by the accumulation of a protein called 

alpha-synuclein into inclusions called Lewy bodies in neurons, and the selective loss of 

dopaminergic neurons in the substantia nigra pars compacta (SNpc). The selective loss of 

dopaminergic neurons in SNpc subsequently causes a profound reduction of dopamine in the 

striatum. When 50–60% of the DA neurons degenerated and 70–80% of DA terminals in the 

brain have been depleted, the motor symptoms become evident (7). Overtime the level of 

dopamine will continue to decrease and the motor symptoms will continue to worsen.

Approximately 1% of the population at age 65 has PD and the incidence increases with age, 

reaching 5% at age 85 (8). Young-onset PD (below 40 years old) affects 5–10% of patients. 

The ratio of men to women is about 2:1. Ethnicity does not affect the risk of PD (9).

Several factors are involved including aging, genetic mutation and environmental factors 

(10). Aging is one of the major factors in the development of PD. After age 50, normally 

up to 6% of DA neurons in the substantia nigra are lost (11) and this number increases with 

age. Another important factor for PD development is genetic mutation. There are two major 

types of PD. One is the heritable PD, which accounts for about 10% of PD cases. Heritable 

PD is associated with mutations in a number of specific genes, including alpha-synuclein, 

LRRK2, Parkin, PINK1, DJ1, ATP13A2 and FBXO7. Mutations in these genes potentially 
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lead to autosomal dominant or autosomal recessive forms of PD (12, 13, 14, 15, 16, 17, 

18, 19, 20). Another type of PD is sporadic, which accounts for 90% of all PD cases. The 

sporadic PD is related to environmental factors. Exposure to pesticides, industrial wastes and 

neurotoxins are thought to be involved in disease progression (21). Interactions of all these 

factors likely drive the progressive loss of DA neurons within the SN. Studies have shown 

that some common factors causing DA cell death are impaired energy metabolism produced 

by mitochondrial dysfunction, selective oxidative stress in the SN and accumulation of toxic 

proteins due to inefficiency of the ubiquitin-proteasome pathway (22, 23, 24, 25, 26).

4. PHARMA THERAPY

With advances in the understanding of the etiology and molecular pathophysiology of 

PD, a variety of pharmacologic therapies have been developed, aiming to replace lost 

dopamine to alleviate motor symptoms. The most widely used type of medication is the 

dopamine precursor called L-3, 4-dihydroxyphenylalanine (levodopa, L-dopa). Levodopa 

helps to alleviate the tremors and muscle stiffness that come with the disease. However, 

long-term treatment with levodopa eventually leads to reduced clinical benefits and troubling 

motor complications known as “levodopa–induced dyskinesia”. Long-term use can also 

cause hallucinations (27, 28, 29, 30, 31). Other medications have also been used to treat 

Parkinsonian symptoms as alternative or complementary medications, such as DA agonists, 

monoamine oxidase (MAO) inhibitors cathecol-O-methyltransferase (COMT) inhibitors, 

5-HT1A agonist sarotizan, adenosine A2A antagonists, anticholinergics, amantadine and 

opioids. These medications act through different mechanisms (25, 32, 33, 34). These 

pharmacologic treatments, although having benefits at early stage of PD, are not always 

effective in treating PD over time.

5. NEUROTROPHIN THERAPY

GDNF and neurturin (NTN) are the two main members of the glial cell line-derived 

neurotrophic factor (GDNF) family ligands (GFLs) widely tested in animal models of PD 

and clinically tested in PD patients. GDNF has neuroprotective and neurorestorative effects 

on dopaminergic neurons demonstrated using adeno associated virus (AAV) in rodents (35, 

36, 37, 38), AAV in non-human primates (39, 40, 41, 42), Lentivirus (LV) in rodents (43, 

44, 45, 46), LV in non-human primates (38, 47), Adeno virus in rodents (48, 49, 50, 51) and 

Herpes Simplex Virus in rodents (52, 53). A recent study using gene delivery of GDNF in 

an aged rhesus monkey model of PD suggests that the degree of neuroprotection depends 

on GDNF levels (54). Likewise, Neurturin (NTN), the homolog of GDNF has recently 

also show effectiveness in promoting neuronal survival. NTN shares 42% protein homology 

with GDNF, uses similar signaling pathways (55), and promotes survival of dopaminergic 

neurons (56). AAV-mediated delivery of NTN in a rodent model of PD shows bioactive NTN 

is stably expressed, is neuroprotective, and shows no adverse effects (57, 58). Injections 

directly into the striatum have growth-promoting effects on dopaminergic neurons within 

the substantia nigra (59). Studies using AAV-NTN in a primate model show long-term 

expression and neuroprotection with no adverse side effects with a wide safety margin of 

dosages (59, 60, 61, 62).
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6. CLINICAL TRIALS: BENEFITS AND TRIBULATIONS

Based on the encouraging results from animal studies, the first clinical trial using GDNF in 

PD patients was initiated in 1996. Direct bolus injections of GDNF into the lateral ventricles 

were initiated for trophic factor delivery. The study was unblinded after the first 8 months 

and the results were disappointing. Patients showed no statistically significant recovery and 

several adverse events including nausea, vomiting and anorexia occurred for several days 

after GDNF administration. Patients who received higher doses of GDNF also experienced 

weight loss and symptoms of depression. Postmortem analysis of one patient from this study 

indicated that GDNF did not efficiently diffuse out of the lateral ventricles and, thus, was 

unable to elicit any effect in the striatum or the substantia nigra (63). The trial initiated by 

AMGEN was halted in September 2004 (64).

Amgen optimistically again conducted an initial Phase I open-labeled trial for intra-putamen 

injection of GDNF in five patients (65). No adverse side effects were reported after 1 

year of treatment, and in fact significant decreases were reported in both “on” and “off” 

Unified Parkinson’s Disease Rating Scale (UPDRS) scores. Postmortem analyses of one of 

the patient’s brain tissue indicated that there was a more than five-fold increase in tyrosine 

hydroxylase immunoreactivity in the right putamen (infused side) compared to left putamen 

(66). Patients received these unilateral infusions also showed increased growth-associated 

protein 43 (GAP43) staining in the right putamen. The increased TH staining in the putamen 

might either be a result of sprouting of fibers or an upregulation of the enzyme in spared 

fibers.

The intra-putamen delivery of AAV-NTN (CERE-120) was also performed in humans for 

dosing, tolerability and safety (67, 68). Phase II testing failed because there was no change 

in the primary UPDRS motor off score at 12 months (Ceregene, Press Release 11/26/2008). 

Unfortunately, Phase II clinical trials have failed for both GDNF and neurturin (CERE-120) 

in PD patients (69). Briefly, initial results of intra-putamen GDNF administration in PD 

patients were promising but a Phase II double-blinded study was halted prematurely, mainly 

because of two safety issues (64). One concern was the detection of antibodies to GDNF in 

blood samples of some patients. The other safety concern was the formation of lesions in 

the cerebellum of rhesus monkeys receiving high doses of GDNF within the putamen for a 6 

month-period.

7.1. Transplantation therapy

Transplantation therapy for PD can be divided into two types i.e intrastriatal transplantation 

and nigral transplantation. Transplantation of neuronal tissue has been extensively studied 

both in animal models and in clinical trials, in an effort to regain lost function in PD. The 

most commonly transplanted cell type in the rodent models of PD is dopaminergic neurons 

from the ventral mesencephalon (VM) of developing embryos (70, 71, 72, 73). Rodent 

striatal transplantation was done by direct injection of these cells into the striatum (5, 74, 

75, 76). In an open clinical trial, 40 patients between 34 to 75 years of age having severe 

Parkinson’s disease (mean duration, 14 years) received striatal transplants of these cells (5). 

In transplant recipients, cultured mesencephalic tissue from four embryos was implanted 

into the putamen bilaterally. In summary, human embryonic dopamine-neuron transplants 
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survive well in patients with severe Parkinson’s disease resulting in some clinical benefit for 

younger but not for older patients. The occurrence of late dystonia and dyskinesia in five of 

the patients with transplants indicates that the surgical technique needs further refinement. 

Another double blind, placebo-controlled clinical trial also failed to show significant clinical 

benefit after fetal nigral transplantation (77). In this study, transplantation was associated 

with modest improvement in more traditional motor outcomes, particularly in patients 

younger than 60 years, but approximately 15% developed a disabling form of dyskinesia. 

Thus, fetal nigral transplantation failed to provide significant clinical benefits despite having 

evidence of survival of high numbers of implanted cells. The role of nigral transplantation as 

a treatment for PD thus has not been established.

The use of human fetal tissue as a source for transplantation has always posed a number 

of ethical and practical concerns and it is possible that these could be avoided by the 

use of human embryonic stem (ES) cells or induced pluripotent stem (iPS) cells. ES cells 

could potentially provide an unlimited source of human midbrain dopaminergic neurons 

with appropriate neural precursor cell selection and culture techniques (78). Transplantation 

of these cells into animal models of PD induced partial functional recovery, although 

evidence of striatal reinnervation or in vivo dopamine release was not demonstrated. One 

major concern regarding ES cells is their underlying potential to produce tumors (79). 

Unlike ES cells, iPS cells are a potential autologous source of dopaminergic cells with 

reduced concerns for both ethical and immunological difficulties. They are derived by 

exposing a patient’s own somatic cells, such as fibroblasts (80) to genetic manipulation. The 

functionality has only been demonstrated using mouse fibroblasts in a rat model of PD (81). 

Evaluation of the potentiality of stem cell therapy has been gained through a number of 

clinical trials (82, 83, 84). The long-term success of these grafted cells is difficult to predict. 

Although they have the ability to form synaptic connections within the host, it remains 

unclear if grafted stem cells will be able to match similar levels of refinement as observed 

with fetal VM transplants. It may be possible to improve treatment efficacy by generating 

stem cells with dopaminergic characteristics that also release trophic factors like GDNF for 

therapeutic value of PD patients.

7.2. Axonal targeting in transplantation therapy of Parkinson’s disease

A few studies have attempted to reconstruct the nigrostriatal pathway by placing the 

transplants into the substantia nigra (85, 86, 87). Several studies have been done using 

“bridging” techniques to create a growth supportive conduit extending from the substantia 

nigra to the target striatum. Bridges have been created by injecting GDNF (88), dissociated 

striatal tissue (89), fibroblast growth factor (FGF)-4-secreting schwannoma cells (90), 

GDNF-secreting Schwann cells (91) and kidney tissue (92). Although these techniques 

increased the growth of tyrosine hydroxylase (TH+) fibers from the SN to the striatum and 

resulted in some improvement in motor recovery, the amount of striatal reinnervation was 

still too low to reach clinical relevant behavioral improvement such as spontaneous motor 

behavior changes.

Further improvements are still needed to reconstruct of nigrostriatal circuit after placing the 

transplant into the substantia nigra. We have established long distance directional growth 
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of dopaminergic axons from VM transplant along pathways of netrin-1 and GDNF in the 

rat brain (93). The goal of this research is to reconstruct nigrostriatal circuit by targeting 

dopaminergic axons to the striatum along the nigrostriatal pathway prepared by lentiviral 

expression of axon growth supporting molecules (GDNF, GFRα1, Netrin-1) in a 6-hydroxy 

dopamine (6-OHDA) induced rat model (Figure 1). Identifying guidance molecules involved 

in directing the growth of grafted neurons could be useful for cellular therapy in Parkinson’s 

patients, as these molecules may help direct axon growth over the long distance they have 

to travel from the substantia nigra to the striatum. We are presently using this method 

to identify dopaminergic axons growth and guidance factors for improving transplantation 

therapy.

7.3. Factors affecting growth and targeting of dopaminergic axon

Previous studies show GDNF increases survival of dopamine neurons, but was not known 

to act as a guidance factor for these neurons. It has been widely used in animal models and 

in clinical trials for Parkinson’s disease (94, 95, 96, 97). It has also been shown to increase 

differentiation, fiber outgrowth and dopamine release of fetal midbrain dopaminergic 

neurons both in vitro and in vivo (98, 99). GDNF has been used successfully to increase 

the survival of fetal dopaminergic cell transplants in the 6-OHDA-lesioned rat striatum 

(100,101). Viral mediated over-expression of GDNF within the striatum establishes a 

gradient that induces axon growth into the striatum from dopaminergic neurons within nigral 

transplant in both mouse and non-human primate models, thus acting to guide axon towards 

their target. Both studies were performed in partially lesioned animals. Complete lesions in 

the mouse model failed to show growth of transplanted axons toward the striatum, indicating 

surviving endogenous dopaminergic might act as a growth supportive scaffold. Although, 

there is little evidence supporting the role of GDNF as a chemo attractant for dopaminergic 

axons, when combined with the GPI-linked glial cell line-derived neurotrophic factor 

receptor α1 (GFRα1) there is an attractive guidance effect on other populations of GDNF-

responsive neurons (sensory and sympathetic) (102). The signaling of GDNF has been 

shown to be dependent of binding to its co-receptor GFRα1. This dimer complex binds 

to the transmembrane receptor tyrosine kinase RET, causing auto phosphorylation and 

activation of downstream signaling events (103). In another signaling pathway independent 

of cRET, NCAM acts an alternative receptor for GDNF/GFRα1. Signaling through this 

pathway activates the cytoplasmic protein tyrosine kinases Fyn and FAK in cells, thus 

stimulates axonal growth (104, 105). GDNF signaling can occur by forming dimmers with 

GFR-α1 on neurons themselves (cis mechanism), or between the neurons and substrate 

or target cells (trans) (106). In the trans configuration GFRα1 has been shown to bind 

and increase the local concentration of GDNF to enhance short or long range directional 

guidance of axons even when in a uniform concentration (102).

Another molecule which acts as a chemo attractant guidance cue is netrin-1, which has 

recently been shown to have positive directional effects on neurite outgrowth from cultured 

dopaminergic neurons (107). Netrin-1 is well-characterized member of the netrin family of 

guidance cues. It has been identified as a bi-functional guidance factor, either attracting 

or repelling extending axons during the development of the central nervous system (108, 

109, 110, 111). The attractive or repulsion actions of netrin-1 are known to depend on the 
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activation of specific receptors or receptor complexes on the cell surface: the deleted in 

colorectal cancer (DCC) or the UNC5 homologues (UNC5H, A-D), respectively (112, 113). 

Down syndrome cell adhesion molecule (DSCAM) has been identified as a novel netrin-1 

receptor involved in signaling axon guidance but the signal transduction has not been well 

understood (114, 115). Netrin-1 binds to DCC receptor and signals through downstream 

proteins that regulate cytoskeletal reorganization, thus causes growth cone extension and 

neurite growth (107, 116, 117). Netrin-1 directs the assembly and disassembly of actin 

filaments by activation of the Rho family of small GTPases (118, 119) and promotes 

actin polymerization in lamellipodia and filopodia by activation of Rac and Cdc42 (120, 

121). Deleted in colorectal cancer (DCC) receptor is widely expressed in developing brain. 

However, in adult brain DCC is only expressed in limited populations of neurons, the 

majority of them being ventral A9 dopamine neurons in the substantia nigra (122). In 

addition, there is a dramatically decrease in the ratio of DCC: UNC5H receptors expression 

in the DA neurons after puberty with UNC5H receptors predominance (123). When UNC5H 

receptors signaling predominate in the dopaminergic neurons in our adult animals, no 

endogenous dopaminergic axons growth were seen.

8. SUMMARY AND PERSPECTIVE

The original restoration of nigrostriatal dopaminergic system in PD focused predominantly 

on the transplantation therapy. Most strategies graft embryonic dopaminergic neurons 

into the striatum, with only a few studies attempt to reconstruct the entire nigrostriatal 

pathway by grafting into the substantia nigra (124, 125, 126, 127). In this review, we 

discussed transplantation studies performed over the past 10 years and summarize the 

current knowledge of cellular and molecular signals involved in mediating survival, growth 

and guidance of dopaminergic neurons. A major challenge in transplant therapies in the SN 

is to identify potential dopaminergic growth factors and assay their ability to direct axon 

growth along an appropriate pathway to reach their targets.

A definitive therapy for PD is reliant upon a complete understanding of the underlying 

neurodegenerative process, and future strategies need to be developed that are able to stop or 

reverse progression of the disease. Clarification of the molecular mechanisms of interaction 

between transplants and neurotropic factors will provide the optimal therapeutic target for 

PD and perhaps represents the only real hope for a potential cure for the disease in its 

entirety. It might be worthwhile in future studies to introduce combined manipulation of 

both the intrinsic growth properties of neurons while providing extrinsic factors to create a 

favorable local environment for axonal growth and connection. For example, a recent study 

induced denervating lesions to the striatum and used AAV encoding Akt/Rheb to transduce 

surviving dopaminergic neurons in the SN to promote recovery (128). They demonstrate that 

expression of Rheb expression promoted axons growth and reinnervation of the striatum. 

It will be easier for transplanted neurons with a higher intrinsic growth capacity to extend 

axons within the inhibitory environment of the adult brain and reinnvervate the denervated 

striatum, especially with the help of growth factors.
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Figure 1. 
Reconstruction of the nigrostriatal pathway in adult rats: A) Schematic diagram showing 

the location of transplant (T), the preformed growth supportive pathway (green), and axons 

growing along the pathway (orange lines). B) A sample sagittal section from a brain injected 

with lenti-GFP, showing GFP expression (fluorescence) all along the pathway between 

the midbrain (lower right) and the striatum (upper left), with some spread of expression 

within the corpus callosum (top). C & D) Double immunostaining showing TH+ fibers and 

netrin-1 expression along the nigrostriatal pathway. Eight weeks after transplantation, brains 
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were harvested, sliced in parasagittal sections and stained with antibodies to both tyrosine 

hydroxylase (TH) and netrin-1, then developed with DAB + Nickel enhancement (purple 

color, TH) and NovaRed (pink color, netrin-1). C) Low magnification image showing TH+ 

axon outgrowth along the preformed growth pathway extending from transplant (arrowhead) 

to striatum, scale bar = 1mm. D) Higher magnification of boxed area in A, arrow points to a 

cell with high expression of netrin-1 with a thick bundle of TH+ axons growing over it.
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