Skip to main content
IUCrData logoLink to IUCrData
. 2024 Aug 13;9(Pt 8):x240776. doi: 10.1107/S2414314624007764

Di­chloridotetra­kis­(3-meth­oxy­aniline)nickel(II)

Benjamin A Mukda a, Diane A Dickie b, Mark M Turnbull a,*
Editor: M Zellerc
PMCID: PMC11375595  PMID: 39247072

The complex sits in a general position. Each NiII ion has an N4Cl2 coordination sphere. Weak hydrogen bonding exists between three of the amino groups and the chloride ions of an adjacent mol­ecule. Chains of mol­ecules, linked by the hydrogen bonding and short Cl⋯Cl contacts, are well separated by the 3-meth­oxy­aniline ligands.

Keywords: nickel chloride, 3-meth­oxy­aniline, NiN4Cl2 coordination, crystal structure

Abstract

The reaction of nickel(II) chloride with 3-meth­oxy­aniline yielded di­chlorido­tetra­kis­(3-meth­oxy­aniline)nickel(II), [NiCl2(C7H9NO)4], as yellow crystals. The NiII ion is pseudo-octa­hedral with the chloride ions trans to each other. The four 3-meth­oxy­aniline ligands differ primarily due to different conformations about the Ni—N bond, which also affect the hydrogen bonding. Inter­molecular N—H⋯ Cl hydrogen bonds and short Cl⋯Cl contacts between mol­ecules link them into chains parallel to the b axis.graphic file with name x-09-x240776-scheme1-3D1.jpg

Structure description

The structures of binary transition-metal halide complexes of aniline are varied and have been known for nearly two decades, since the report of CoCl2(aniline)2 by Burrow et al. (1997). Structures for compounds of the formula MX2(aniline)2, where M is a transition metal, are known for trans-square planar (SP) Pd (Chen et al., 2002) and Cu (Low et al., 2013), and tetra­hedral (Td) Zn (Khan et al., 2010; Ejaz et al., 2009; Rademeyer et al., 2004) and Cd (Costin-Hogan et al., 2008). Structures of first row transition-metal (FTM) complexes with the same general formula, FTMX2(sub-aniline)2 are known for substit­uents such as o-methyl (SP: Daniliuc et al., 2023), p-methyl (Td: Chellali et al., 2019), p-ethyl (Td: Govindaraj et al., 2015; Td: Harmouzi et al., 2017), p-acetyl (Td and SP: Macek et al., 2023; SP, Nemec et al., 2020), p-bromo (Td: Subashini et al., 2012a; Td, Li: 2023), p-chloro (Td: Chellali et al., 2019), p-fluoro (Td: Subashini et al., 2012b), o-meth­oxy, m-meth­oxy and p-meth­oxy (Td: Kupko et al., 2020; Td: Amani, 2018) and p-carb­oxy­lic acid (Td: Rademeyer et al., 2010; SP: Guedes et al., 2011). Only slightly less common, but particularly favored by NiII, are those structures of the formula FTMX2(sub-aniline)2(solvent)2, which include solvents such as water (Macek et al., 2023; Meehan et al., 2021) methanol (Meehan et al., 2021), ethanol (Meehan et al., 2021; Clegg & Martin, 2007) and aceto­nitrile (Fawcett et al., 2005); all are trans-pseudo­octa­hedral (Oh). A smaller number of structures have been reported with aniline and substituted aniline ligands of the formula FTMX2(sub-aniline)4, which include the trans-Oh complexes NiCl2(p-methyl­aniline)4 and NiBr2(p-methyl­aniline)4 (Meehan et al., 2021) and NiI2(p-methyl­aniline)4 (Dhital et al., 2020), again favored by six-coordinate nickel(II) complexes. In the course of our investigations of complexes of substituted aniline ligands, we have encountered one more such compound and here report the synthesis and structure of NiCl2(3-meth­oxy­aniline)4.

The mol­ecule is pseudo-octa­hedral with trans-chloride ions and all atoms lie on general crystallographic positions (Fig. 1). The Cl1—Ni1—Cl2 bond angle is nearly linear [179.8 (2)°]. The Cl—Ni—N angles range from 85.45 (5) to 93.82 (5)° while the cis N—Ni—N angles are similar in the range 84.3 (7) to 94.75 (7)° (Table 1). Taking the NiN4 atoms as the equatorial plane (mean deviation of constituent atoms = 0.0141 Å), the Ni ion lies 0 0029 Å out of the plane. One trans-pair of aniline ligands lie with their C—N bonds oriented nearly in that plane with angles of the C—N vector 2.6 (1)° (C11—N11) or 5.3 (1)° (C21—N21) out of the plane. Conversely, the alternate pair of aniline ligands have their C—N vectors tilted significantly out of the plane at 49.0 (1)° (C31—N31) and 44.0 (1)° (C41—N41). As expected, the aromatic rings are almost planar (mean deviation by ring: N11, 0.0115 Å; N21, 0.0212 Å; N31, 0.0028 Å; N41, 0.0222 Å). The meth­oxy groups lie very nearly in their respective ring planes as based on the torsion angles [torsion angle Cn7—On3—Cn3—Cn2: n = 1, −10.9 (3)°; 2, −7.8 (3)°; 3, −1.4 (3)°; 4, 179.32 (19)°]. The N41 ring is again unique; the conformations of the meth­oxy groups of the other three 3-meth­oxy­aniline mol­ecules all show the meth­oxy group directed toward the amino substituent, while for the N41 ring, it is rotated ∼180° and lies anti to the amino substituent.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary size. Only those hydrogen atoms whose positions were refined are labeled.

Table 1. Selected geometric parameters (Å, °).

Ni1—N11 2.1388 (19) Ni1—N41 2.2056 (18)
Ni1—N21 2.1544 (19) Ni1—Cl1 2.3658 (6)
Ni1—N31 2.1621 (18) Ni1—Cl2 2.4051 (6)
       
N11—Ni1—N21 178.52 (8) N11—Ni1—Cl2 89.10 (6)
N11—Ni1—N31 94.62 (7) N21—Ni1—Cl2 92.06 (6)
N21—Ni1—N31 86.39 (7) N31—Ni1—Cl2 85.45 (5)
N11—Ni1—N41 84.25 (7) N41—Ni1—Cl2 93.82 (5)
N21—Ni1—N41 94.75 (7) Cl1—Ni1—Cl2 179.86 (2)
N31—Ni1—N41 178.66 (8) C11—N11—Ni1 120.77 (14)
N11—Ni1—Cl1 90.80 (6) C21—N21—Ni1 116.21 (14)
N21—Ni1—Cl1 88.04 (6) C31—N31—Ni1 125.09 (14)
N31—Ni1—Cl1 94.66 (5) C41—N41—Ni1 123.17 (14)
N41—Ni1—Cl1 86.07 (5)    

It is also noteworthy that the conformations of the anisidine rings are such that three of the rings have their meth­oxy substituents tipped toward, and above, the Cl2 side of the NiN4 plane. The O33—C33 meth­oxy group is also tipped in that direction, but due to the orientation of the N31—C31 bond, the meth­oxy group itself lies on the opposite side of the NiN4 plane.

In the crystal, mol­ecules are linked into chains via weak N—H⋯Cl hydrogen bonds (Table 2), which results in short contacts between inversion-related chloride ions parallel to the b axis [dCl1⋯Cl1A = 3.725 (2) Å, angleNi1—Cl1⋯Cl1A = 92.4 (1)°; dCl2—Cl2B = 3.721 (2) Å, angleNi1—Cl2⋯Cl2B = 89.3 (1)°; symmetry codes: (A) = 1 − x, 1 − y, 1 − z; (B) = 1 − x, −y, 1 − z] (Fig. 2). The chains are well separated in both the b- and c-axis directions by the bulk of the 3-meth­oxy­aniline mol­ecules.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11B⋯Cl1i 0.83 (2) 2.44 (3) 3.264 (2) 168 (2)
N21—H21A⋯Cl2ii 0.86 (2) 2.62 (2) 3.468 (2) 166 (2)
N31—H31B⋯Cl2ii 0.85 (2) 2.69 (2) 3.509 (2) 160 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Chain formation via hydrogen bonding (b axis horizontal).

Synthesis and crystallization

Synthesis: 0.5035 g of 3-meth­oxy­aniline were dissolved in 18 ml of EtOH, creating a red solution. NiCl2 hexa­hydrate was dissolved in 25 ml of EtOH, creating a green solution. Both solutions were heated until they began to boil, at which point the meth­oxy­aniline solution was poured into the nickel chloride solution, resulting in a peach-colored solution that quickly became cloudy. The mixture was repeatedly deca­nted to remove the majority of the precipitate over the course of two hours and then allowed to cool. The next day, a green powdery precipitate was collected using vacuum filtration and washed using DI water. The filtrate was collected and allowed to evaporate slowly. The next day, small dark-yellow crystals were observed and collected by vacuum filtration, 0.002 g (0.2%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

Crystal data
Chemical formula [NiCl2(C7H9NO)4]
M r 622.22
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 100
a, b, c (Å) 11.4514 (5), 12.1629 (5), 12.6920 (5)
α, β, γ (°) 67.9946 (13), 67.3255 (14), 65.8759 (14)
V3) 1438.34 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.90
Crystal size (mm) 0.09 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.714, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 42960, 7138, 4852
R int 0.076
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.01
No. of reflections 7138
No. of parameters 380
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.32

Computer programs: APEX4 andSAINT (Bruker, 2022), SHELXS2014 and XP (Sheldrick 2008) and SHELXL2018/3 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S2414314624007764/zl4076sup1.cif

x-09-x240776-sup1.cif (1.2MB, cif)

CCDC reference: 2376104

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

BAM is grateful for financial support from the Bernard and Vera Kopelman Fund. Author contributions: BAM (synthesis, characterization), DAD (X-ray data), MMT (concept, writing)

full crystallographic data

Dichloridotetrakis(3-methoxyaniline)nickel(II). Crystal data

[NiCl2(C7H9NO)4] Z = 2
Mr = 622.22 F(000) = 652
Triclinic, P1 Dx = 1.437 Mg m3
a = 11.4514 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.1629 (5) Å Cell parameters from 5693 reflections
c = 12.6920 (5) Å θ = 2.9–27.2°
α = 67.9946 (13)° µ = 0.90 mm1
β = 67.3255 (14)° T = 100 K
γ = 65.8759 (14)° Plate, yellow
V = 1438.34 (11) Å3 0.09 × 0.06 × 0.04 mm

Dichloridotetrakis(3-methoxyaniline)nickel(II). Data collection

Bruker APEXII CCD diffractometer 4852 reflections with I > 2σ(I)
φ and ω scans Rint = 0.076
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 28.3°, θmin = 2.0°
Tmin = 0.714, Tmax = 0.746 h = −15→15
42960 measured reflections k = −16→16
7138 independent reflections l = −16→16

Dichloridotetrakis(3-methoxyaniline)nickel(II). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: mixed
wR(F2) = 0.089 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.4355P] where P = (Fo2 + 2Fc2)/3
7138 reflections (Δ/σ)max = 0.001
380 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.32 e Å3

Dichloridotetrakis(3-methoxyaniline)nickel(II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Data collection for compound 1 was carried out with a Bruker APEX4 v2022.10–1 CCD diffractometer employing Mo—Kα radiation (λ = 0.71073 Å). The data were collected and reduced using Bruker SMART and SAINT+ software (Bruker, 2014). Absorption corrections were performed using SADABS (Krause, 2015). The structure was solved using SHELXS2014 (Sheldrick, 2008) and refined using SHELXL2018 (Sheldrick, 2015). Hydrogen atoms bonded to carbon atoms were placed geometrically and refined with fixed isotropic thermal parameters, Uiso(H) = 1.2 (C). Hydrogen atoms bonded to nitrogen atoms were located in the difference map and their positions refined with fixed isotropic thermal parameters, Uiso(H) = 1.2 (N) (dN—H = 0.81 (2)–0.91 (2) Å). Final data collection and refinement parameters may be found in Table 2.

Dichloridotetrakis(3-methoxyaniline)nickel(II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.50342 (3) 0.25347 (2) 0.48264 (2) 0.01306 (8)
Cl1 0.64202 (5) 0.35611 (5) 0.47889 (5) 0.01674 (12)
Cl2 0.36209 (5) 0.14962 (5) 0.48636 (5) 0.01653 (12)
N11 0.3352 (2) 0.36558 (18) 0.58739 (17) 0.0166 (4)
H11A 0.275 (2) 0.378 (2) 0.558 (2) 0.020*
H11B 0.352 (2) 0.431 (2) 0.573 (2) 0.020*
C11 0.2928 (2) 0.31967 (19) 0.71270 (19) 0.0157 (4)
C12 0.2248 (2) 0.2323 (2) 0.75867 (19) 0.0164 (5)
H12 0.205531 0.205855 0.707310 0.020*
O13 0.11618 (18) 0.09999 (16) 0.93113 (14) 0.0279 (4)
C13 0.1853 (2) 0.1843 (2) 0.8798 (2) 0.0195 (5)
C14 0.2155 (2) 0.2202 (2) 0.9554 (2) 0.0222 (5)
H14 0.190108 0.185492 1.038361 0.027*
C15 0.2830 (2) 0.3071 (2) 0.9086 (2) 0.0223 (5)
H15 0.303439 0.332402 0.960012 0.027*
C16 0.3215 (2) 0.3580 (2) 0.7873 (2) 0.0185 (5)
H16 0.366913 0.418434 0.755974 0.022*
C17 0.0651 (3) 0.0796 (2) 0.8560 (2) 0.0306 (6)
H17A 0.006179 0.158736 0.820813 0.037*
H17B 0.014986 0.020045 0.902455 0.037*
H17C 0.139042 0.046029 0.793178 0.037*
N21 0.6746 (2) 0.14469 (17) 0.37458 (16) 0.0158 (4)
H21A 0.664 (2) 0.072 (2) 0.397 (2) 0.019*
H21B 0.741 (2) 0.143 (2) 0.391 (2) 0.019*
C21 0.6950 (2) 0.1932 (2) 0.24955 (18) 0.0162 (5)
O33 1.00929 (15) −0.14771 (14) 0.62401 (13) 0.0208 (4)
C22 0.6279 (2) 0.1668 (2) 0.19530 (19) 0.0170 (5)
H22 0.575639 0.112201 0.239635 0.020*
O23 0.57495 (17) 0.20291 (15) 0.01482 (13) 0.0227 (4)
C23 0.6384 (2) 0.2214 (2) 0.07549 (19) 0.0185 (5)
C24 0.7149 (3) 0.3015 (2) 0.0103 (2) 0.0261 (6)
H24 0.721742 0.338922 −0.071467 0.031*
C25 0.7802 (3) 0.3257 (2) 0.0657 (2) 0.0287 (6)
H25 0.832512 0.380328 0.021309 0.034*
C26 0.7717 (2) 0.2719 (2) 0.1858 (2) 0.0226 (5)
H26 0.817848 0.289221 0.222808 0.027*
C27 0.5077 (3) 0.1107 (2) 0.0754 (2) 0.0247 (5)
H27A 0.569940 0.031131 0.105624 0.030*
H27B 0.473733 0.100612 0.020716 0.030*
H27C 0.433351 0.137241 0.141548 0.030*
N31 0.55035 (19) 0.10066 (17) 0.63226 (16) 0.0147 (4)
H31A 0.475 (2) 0.121 (2) 0.691 (2) 0.018*
H31B 0.551 (2) 0.040 (2) 0.614 (2) 0.018*
C31 0.6663 (2) 0.06435 (19) 0.67155 (18) 0.0146 (4)
C32 0.7799 (2) −0.02535 (19) 0.62731 (18) 0.0152 (4)
H32 0.780233 −0.061587 0.572592 0.018*
C33 0.8928 (2) −0.0614 (2) 0.66390 (19) 0.0165 (5)
C34 0.8918 (2) −0.0100 (2) 0.74531 (19) 0.0200 (5)
H34 0.968644 −0.035787 0.771305 0.024*
C35 0.7780 (2) 0.0787 (2) 0.78804 (19) 0.0205 (5)
H35 0.777267 0.114153 0.843589 0.025*
C36 0.6646 (2) 0.1173 (2) 0.75138 (19) 0.0187 (5)
H36 0.587098 0.179170 0.780764 0.022*
C37 1.0107 (2) −0.2039 (2) 0.5425 (2) 0.0223 (5)
H37A 0.943022 −0.246875 0.579432 0.027*
H37B 1.098606 −0.264165 0.520807 0.027*
H37C 0.991446 −0.139306 0.471444 0.027*
N41 0.4506 (2) 0.41029 (18) 0.33230 (17) 0.0174 (4)
H41A 0.464 (2) 0.465 (2) 0.343 (2) 0.021*
H41B 0.509 (2) 0.388 (2) 0.273 (2) 0.021*
C41 0.3218 (2) 0.4570 (2) 0.31188 (19) 0.0158 (5)
C42 0.2933 (2) 0.4009 (2) 0.25224 (18) 0.0166 (5)
H42 0.360547 0.334924 0.219965 0.020*
O43 0.14760 (16) 0.38059 (15) 0.17817 (14) 0.0234 (4)
C43 0.1662 (2) 0.4410 (2) 0.23955 (19) 0.0175 (5)
C44 0.0670 (2) 0.5362 (2) 0.2874 (2) 0.0232 (5)
H44 −0.020672 0.562393 0.280350 0.028*
C45 0.0980 (3) 0.5922 (2) 0.3455 (2) 0.0285 (6)
H45 0.030717 0.658162 0.377741 0.034*
C46 0.2242 (2) 0.5547 (2) 0.3578 (2) 0.0221 (5)
H46 0.244053 0.595015 0.397112 0.027*
C47 0.0172 (2) 0.4192 (2) 0.1650 (2) 0.0251 (5)
H47A −0.046398 0.405454 0.243101 0.030*
H47B 0.016330 0.370547 0.118882 0.030*
H47C −0.007743 0.507929 0.123847 0.030*

Dichloridotetrakis(3-methoxyaniline)nickel(II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01355 (15) 0.01235 (14) 0.01499 (15) −0.00477 (11) −0.00524 (11) −0.00311 (10)
Cl1 0.0156 (3) 0.0136 (3) 0.0248 (3) −0.0050 (2) −0.0089 (2) −0.0049 (2)
Cl2 0.0178 (3) 0.0147 (3) 0.0210 (3) −0.0067 (2) −0.0081 (2) −0.0040 (2)
N11 0.0163 (10) 0.0139 (9) 0.0203 (10) −0.0064 (8) −0.0050 (8) −0.0033 (7)
C11 0.0107 (11) 0.0146 (11) 0.0188 (11) −0.0008 (9) −0.0029 (9) −0.0057 (8)
C12 0.0137 (11) 0.0171 (11) 0.0196 (11) −0.0042 (9) −0.0056 (9) −0.0056 (8)
O13 0.0374 (11) 0.0331 (10) 0.0220 (9) −0.0243 (9) −0.0084 (8) −0.0012 (7)
C13 0.0187 (12) 0.0155 (11) 0.0240 (12) −0.0070 (9) −0.0049 (10) −0.0040 (9)
C14 0.0241 (13) 0.0240 (12) 0.0173 (12) −0.0087 (10) −0.0059 (10) −0.0024 (9)
C15 0.0220 (13) 0.0238 (12) 0.0242 (13) −0.0052 (10) −0.0089 (10) −0.0089 (10)
C16 0.0166 (12) 0.0169 (11) 0.0239 (12) −0.0070 (9) −0.0058 (10) −0.0049 (9)
C17 0.0397 (17) 0.0384 (15) 0.0250 (13) −0.0279 (13) −0.0076 (12) −0.0037 (11)
N21 0.0173 (10) 0.0148 (10) 0.0178 (10) −0.0072 (8) −0.0061 (8) −0.0029 (7)
C21 0.0142 (11) 0.0167 (11) 0.0163 (11) −0.0029 (9) −0.0023 (9) −0.0067 (8)
O33 0.0160 (9) 0.0248 (9) 0.0243 (9) −0.0022 (7) −0.0067 (7) −0.0124 (7)
C22 0.0178 (12) 0.0150 (11) 0.0179 (11) −0.0064 (9) −0.0029 (9) −0.0047 (8)
O23 0.0293 (10) 0.0268 (9) 0.0178 (8) −0.0128 (8) −0.0097 (7) −0.0036 (7)
C23 0.0187 (13) 0.0201 (12) 0.0184 (12) −0.0051 (10) −0.0046 (10) −0.0083 (9)
C24 0.0325 (15) 0.0320 (14) 0.0154 (12) −0.0174 (12) −0.0047 (10) −0.0015 (10)
C25 0.0338 (16) 0.0341 (15) 0.0227 (13) −0.0236 (12) −0.0036 (11) −0.0017 (11)
C26 0.0224 (13) 0.0291 (13) 0.0226 (12) −0.0140 (11) −0.0073 (10) −0.0054 (10)
C27 0.0318 (15) 0.0255 (13) 0.0250 (13) −0.0136 (11) −0.0137 (11) −0.0038 (10)
N31 0.0132 (10) 0.0129 (9) 0.0184 (10) −0.0037 (8) −0.0042 (8) −0.0048 (7)
C31 0.0160 (11) 0.0138 (11) 0.0138 (10) −0.0069 (9) −0.0052 (9) 0.0002 (8)
C32 0.0178 (12) 0.0150 (11) 0.0143 (11) −0.0057 (9) −0.0047 (9) −0.0043 (8)
C33 0.0152 (12) 0.0156 (11) 0.0170 (11) −0.0047 (9) −0.0037 (9) −0.0034 (8)
C34 0.0181 (12) 0.0254 (12) 0.0192 (12) −0.0070 (10) −0.0080 (9) −0.0053 (9)
C35 0.0253 (13) 0.0244 (12) 0.0179 (12) −0.0086 (10) −0.0073 (10) −0.0094 (9)
C36 0.0187 (12) 0.0180 (11) 0.0181 (11) −0.0027 (9) −0.0047 (9) −0.0069 (9)
C37 0.0167 (12) 0.0255 (13) 0.0268 (13) −0.0012 (10) −0.0053 (10) −0.0155 (10)
N41 0.0183 (11) 0.0167 (10) 0.0197 (10) −0.0073 (8) −0.0075 (8) −0.0029 (8)
C41 0.0142 (11) 0.0150 (11) 0.0172 (11) −0.0058 (9) −0.0063 (9) 0.0003 (8)
C42 0.0165 (12) 0.0162 (11) 0.0163 (11) −0.0040 (9) −0.0045 (9) −0.0045 (8)
O43 0.0202 (9) 0.0271 (9) 0.0312 (9) −0.0043 (7) −0.0129 (7) −0.0136 (7)
C43 0.0224 (13) 0.0173 (11) 0.0165 (11) −0.0080 (10) −0.0092 (9) −0.0023 (8)
C44 0.0177 (13) 0.0260 (13) 0.0269 (13) −0.0004 (10) −0.0112 (10) −0.0098 (10)
C45 0.0256 (14) 0.0267 (13) 0.0359 (15) 0.0053 (11) −0.0149 (12) −0.0190 (11)
C46 0.0247 (13) 0.0210 (12) 0.0268 (13) −0.0021 (10) −0.0153 (11) −0.0095 (10)
C47 0.0238 (14) 0.0313 (14) 0.0282 (13) −0.0106 (11) −0.0132 (11) −0.0074 (10)

Dichloridotetrakis(3-methoxyaniline)nickel(II). Geometric parameters (Å, º)

Ni1—N11 2.1388 (19) C25—H25 0.9500
Ni1—N21 2.1544 (19) C26—H26 0.9500
Ni1—N31 2.1621 (18) C27—H27A 0.9800
Ni1—N41 2.2056 (18) C27—H27B 0.9800
Ni1—Cl1 2.3658 (6) C27—H27C 0.9800
Ni1—Cl2 2.4051 (6) N31—C31 1.440 (3)
N11—C11 1.428 (3) N31—H31A 0.91 (2)
N11—H11A 0.85 (2) N31—H31B 0.85 (2)
N11—H11B 0.83 (2) C31—C36 1.381 (3)
C11—C16 1.385 (3) C31—C32 1.391 (3)
C11—C12 1.392 (3) C32—C33 1.388 (3)
C12—C13 1.384 (3) C32—H32 0.9500
C12—H12 0.9500 C33—C34 1.388 (3)
O13—C13 1.367 (3) C34—C35 1.379 (3)
O13—C17 1.428 (3) C34—H34 0.9500
C13—C14 1.387 (3) C35—C36 1.388 (3)
C14—C15 1.382 (3) C35—H35 0.9500
C14—H14 0.9500 C36—H36 0.9500
C15—C16 1.390 (3) C37—H37A 0.9800
C15—H15 0.9500 C37—H37B 0.9800
C16—H16 0.9500 C37—H37C 0.9800
C17—H17A 0.9800 N41—C41 1.436 (3)
C17—H17B 0.9800 N41—H41A 0.81 (2)
C17—H17C 0.9800 N41—H41B 0.83 (2)
N21—C21 1.430 (3) C41—C42 1.381 (3)
N21—H21A 0.86 (2) C41—C46 1.390 (3)
N21—H21B 0.85 (2) C42—C43 1.387 (3)
C21—C26 1.379 (3) C42—H42 0.9500
C21—C22 1.393 (3) O43—C43 1.370 (3)
O33—C33 1.368 (3) O43—C47 1.428 (3)
O33—C37 1.431 (3) C43—C44 1.385 (3)
C22—C23 1.391 (3) C44—C45 1.383 (3)
C22—H22 0.9500 C44—H44 0.9500
O23—C23 1.366 (3) C45—C46 1.380 (3)
O23—C27 1.430 (3) C45—H45 0.9500
C23—C24 1.391 (3) C46—H46 0.9500
C24—C25 1.371 (3) C47—H47A 0.9800
C24—H24 0.9500 C47—H47B 0.9800
C25—C26 1.397 (3) C47—H47C 0.9800
N11—Ni1—N21 178.52 (8) C21—C26—H26 120.6
N11—Ni1—N31 94.62 (7) C25—C26—H26 120.6
N21—Ni1—N31 86.39 (7) O23—C27—H27A 109.5
N11—Ni1—N41 84.25 (7) O23—C27—H27B 109.5
N21—Ni1—N41 94.75 (7) H27A—C27—H27B 109.5
N31—Ni1—N41 178.66 (8) O23—C27—H27C 109.5
N11—Ni1—Cl1 90.80 (6) H27A—C27—H27C 109.5
N21—Ni1—Cl1 88.04 (6) H27B—C27—H27C 109.5
N31—Ni1—Cl1 94.66 (5) C31—N31—Ni1 125.09 (14)
N41—Ni1—Cl1 86.07 (5) C31—N31—H31A 110.5 (15)
N11—Ni1—Cl2 89.10 (6) Ni1—N31—H31A 100.9 (14)
N21—Ni1—Cl2 92.06 (6) C31—N31—H31B 109.2 (16)
N31—Ni1—Cl2 85.45 (5) Ni1—N31—H31B 101.4 (16)
N41—Ni1—Cl2 93.82 (5) H31A—N31—H31B 109 (2)
Cl1—Ni1—Cl2 179.86 (2) C36—C31—C32 120.8 (2)
C11—N11—Ni1 120.77 (14) C36—C31—N31 120.7 (2)
C11—N11—H11A 109.6 (16) C32—C31—N31 118.46 (19)
Ni1—N11—H11A 100.8 (16) C33—C32—C31 119.3 (2)
C11—N11—H11B 107.7 (16) C33—C32—H32 120.3
Ni1—N11—H11B 106.1 (17) C31—C32—H32 120.3
H11A—N11—H11B 112 (2) O33—C33—C32 123.3 (2)
C16—C11—C12 120.4 (2) O33—C33—C34 116.24 (19)
C16—C11—N11 121.1 (2) C32—C33—C34 120.4 (2)
C12—C11—N11 118.4 (2) C35—C34—C33 119.3 (2)
C13—C12—C11 119.5 (2) C35—C34—H34 120.4
C13—C12—H12 120.3 C33—C34—H34 120.4
C11—C12—H12 120.3 C34—C35—C36 121.2 (2)
C13—O13—C17 116.54 (18) C34—C35—H35 119.4
O13—C13—C12 122.6 (2) C36—C35—H35 119.4
O13—C13—C14 116.7 (2) C31—C36—C35 119.0 (2)
C12—C13—C14 120.7 (2) C31—C36—H36 120.5
C15—C14—C13 119.2 (2) C35—C36—H36 120.5
C15—C14—H14 120.4 O33—C37—H37A 109.5
C13—C14—H14 120.4 O33—C37—H37B 109.5
C14—C15—C16 121.0 (2) H37A—C37—H37B 109.5
C14—C15—H15 119.5 O33—C37—H37C 109.5
C16—C15—H15 119.5 H37A—C37—H37C 109.5
C11—C16—C15 119.2 (2) H37B—C37—H37C 109.5
C11—C16—H16 120.4 C41—N41—Ni1 123.17 (14)
C15—C16—H16 120.4 C41—N41—H41A 109.1 (18)
O13—C17—H17A 109.5 Ni1—N41—H41A 101.2 (17)
O13—C17—H17B 109.5 C41—N41—H41B 109.4 (17)
H17A—C17—H17B 109.5 Ni1—N41—H41B 104.0 (17)
O13—C17—H17C 109.5 H41A—N41—H41B 109 (2)
H17A—C17—H17C 109.5 C42—C41—C46 120.3 (2)
H17B—C17—H17C 109.5 C42—C41—N41 120.1 (2)
C21—N21—Ni1 116.21 (14) C46—C41—N41 119.6 (2)
C21—N21—H21A 109.8 (15) C41—C42—C43 119.9 (2)
Ni1—N21—H21A 105.2 (16) C41—C42—H42 120.1
C21—N21—H21B 107.8 (16) C43—C42—H42 120.1
Ni1—N21—H21B 104.7 (16) C43—O43—C47 116.84 (18)
H21A—N21—H21B 113 (2) O43—C43—C44 123.7 (2)
C26—C21—C22 120.7 (2) O43—C43—C42 115.7 (2)
C26—C21—N21 120.4 (2) C44—C43—C42 120.6 (2)
C22—C21—N21 118.6 (2) C45—C44—C43 118.7 (2)
C33—O33—C37 116.88 (17) C45—C44—H44 120.7
C23—C22—C21 119.3 (2) C43—C44—H44 120.7
C23—C22—H22 120.4 C46—C45—C44 121.7 (2)
C21—C22—H22 120.4 C46—C45—H45 119.2
C23—O23—C27 117.27 (17) C44—C45—H45 119.2
O23—C23—C24 115.8 (2) C45—C46—C41 119.0 (2)
O23—C23—C22 123.7 (2) C45—C46—H46 120.5
C24—C23—C22 120.5 (2) C41—C46—H46 120.5
C25—C24—C23 119.1 (2) O43—C47—H47A 109.5
C25—C24—H24 120.5 O43—C47—H47B 109.5
C23—C24—H24 120.5 H47A—C47—H47B 109.5
C24—C25—C26 121.6 (2) O43—C47—H47C 109.5
C24—C25—H25 119.2 H47A—C47—H47C 109.5
C26—C25—H25 119.2 H47B—C47—H47C 109.5
C21—C26—C25 118.8 (2)
Ni1—N11—C11—C16 102.6 (2) Ni1—N31—C31—C36 88.5 (2)
Ni1—N11—C11—C12 −75.6 (2) Ni1—N31—C31—C32 −91.6 (2)
C16—C11—C12—C13 0.3 (3) C36—C31—C32—C33 −0.2 (3)
N11—C11—C12—C13 178.5 (2) N31—C31—C32—C33 179.85 (19)
C17—O13—C13—C12 −10.9 (3) C37—O33—C33—C32 −1.4 (3)
C17—O13—C13—C14 169.4 (2) C37—O33—C33—C34 178.35 (19)
C11—C12—C13—O13 178.8 (2) C31—C32—C33—O33 −179.19 (19)
C11—C12—C13—C14 −1.5 (3) C31—C32—C33—C34 1.1 (3)
O13—C13—C14—C15 −178.7 (2) O33—C33—C34—C35 179.2 (2)
C12—C13—C14—C15 1.5 (4) C32—C33—C34—C35 −1.0 (3)
C13—C14—C15—C16 −0.4 (4) C33—C34—C35—C36 0.2 (3)
C12—C11—C16—C15 0.8 (3) C32—C31—C36—C35 −0.6 (3)
N11—C11—C16—C15 −177.4 (2) N31—C31—C36—C35 179.3 (2)
C14—C15—C16—C11 −0.8 (4) C34—C35—C36—C31 0.7 (3)
Ni1—N21—C21—C26 90.7 (2) Ni1—N41—C41—C42 −84.4 (2)
Ni1—N21—C21—C22 −84.6 (2) Ni1—N41—C41—C46 92.3 (2)
C26—C21—C22—C23 −0.3 (3) C46—C41—C42—C43 −0.9 (3)
N21—C21—C22—C23 174.9 (2) N41—C41—C42—C43 175.75 (19)
C27—O23—C23—C24 173.2 (2) C47—O43—C43—C44 −0.5 (3)
C27—O23—C23—C22 −7.8 (3) C47—O43—C43—C42 179.32 (19)
C21—C22—C23—O23 −179.01 (19) C41—C42—C43—O43 179.42 (19)
C21—C22—C23—C24 0.0 (3) C41—C42—C43—C44 −0.7 (3)
O23—C23—C24—C25 179.2 (2) O43—C43—C44—C45 −178.6 (2)
C22—C23—C24—C25 0.2 (4) C42—C43—C44—C45 1.5 (3)
C23—C24—C25—C26 0.0 (4) C43—C44—C45—C46 −0.7 (4)
C22—C21—C26—C25 0.5 (3) C44—C45—C46—C41 −0.9 (4)
N21—C21—C26—C25 −174.7 (2) C42—C41—C46—C45 1.7 (3)
C24—C25—C26—C21 −0.3 (4) N41—C41—C46—C45 −175.0 (2)

Dichloridotetrakis(3-methoxyaniline)nickel(II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N11—H11B···Cl1i 0.83 (2) 2.44 (3) 3.264 (2) 168 (2)
N21—H21A···Cl2ii 0.86 (2) 2.62 (2) 3.468 (2) 166 (2)
N31—H31B···Cl2ii 0.85 (2) 2.69 (2) 3.509 (2) 160 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1.

References

  1. Amani, V. (2018). J. Mol. Struct.1155, 477–483.
  2. Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burrow, R. A., Hörner, M., Lang, L. S., Neves, A. & Vencato, I. (1997). Z. Kristallogr. New Cryst. Struct.212, 41–42.
  4. Chellali, J. E., Keely, C., Bell, G., Dimanno, K. L., Tran, T., Landee, C. P., Dickie, D. A., Rademeyer, M., Turnbull, M. M. & Xiao, F. (2019). Polyhedron, 168, 1–10.
  5. Chen, Y.-B., Li, Z.-J., Qin, Y.-Y., Kang, Y., Wu, L. & Yao, Y.-G. (2002). Jiegou Huaxue, 21, 530–2.
  6. Clegg, W. & Martin, N. C. (2007). Acta Cryst. E63, m856.
  7. Costin-Hogan, C. E., Chen, C.-L., Hughes, E., Pickett, A., Valencia, R., Rath, N. P. & Beatty, A. M. (2008). CrystEngComm, 10, 1910–1915.
  8. Daniliuc, C. G., Kotov, V., Frohlich, R. & Erker, G. (2023). CSD Communication (CCDC 2308702). CCDC, Cambridge, England.
  9. Dhital, R. N., Sen, A., Sato, T., Hu, H., Ishii, R., Hashizume, D., Takaya, H., Uozumi, Y. & Yamada, Y. M. A. (2020). Org. Lett.22, 4797–4801. [DOI] [PubMed]
  10. Ejaz, Sahin, O. & Khan, I. U. (2009). Acta Cryst. E65, m1457. [DOI] [PMC free article] [PubMed]
  11. Fawcett, J., Sicilia, F. & Solan, G. A. (2005). Acta Cryst. E61, m1256–m1257.
  12. Govindaraj, J., Thirumurugan, S., Reddy, D. S., Anbalagan, K. & SubbiahPandi, A. (2015). Acta Cryst. E71, m21–m22. [DOI] [PMC free article] [PubMed]
  13. Guedes, G. P., Farias, F. F., Novak, M. A., Machado, A. & Vaz, F. L. (2011). Inorg. Chim. Acta, 378, 134–139.
  14. Harmouzi, A., Daro, N., Guionneau, P., Belaaraj, A. & Khechoubi, E. M. (2017). J. Cryst. Growth, 472, 64–70.
  15. Khan, I. U., Ejaz, Şahin, O. & Büyükgüngör, O. (2010). Acta Cryst. E66, m492. [DOI] [PMC free article] [PubMed]
  16. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  17. Kupko, N., Meehan, K. L., Witkos, F. E., Hutcheson, H., Monroe, J. C., Landee, C. P., Dickie, D. A., Turnbull, M. M. & Xiao, F. (2020). Polyhedron, 187, 1146801-13.
  18. Li, X. (2023). CSD Communication (CCDC 2223797). CCDC, Cambridge, England.
  19. Löw, S., Becker, J., Würtele, C., Miska, A., Kleeberg, C., Behrens, U., Walter, O. & Schindler, S. (2013). Chem. A Eur. J.19, 5342–5351. [DOI] [PubMed]
  20. Macek, L., Bellamy, J. C., Faber, K., Milson, C. R., Landee, C. P., Dickie, D. A. & Turnbull, M. M. (2023). Polyhedron, 229, 1162141-1162145.
  21. Meehan, K. L., Fontaine, D. F. A., Richardson, A. D., Fowles, S. M., Mukda, B., Monroe, J. C., Landee, C. P., Dickie, D. A., Turnbull, M. M., Jiang, S. & Xiao, F. (2021). Polyhedron, 200, 1150941.
  22. Nemec, V., Lisac, K., Liovic, M., Brekalo, I. & Cincic, D. (2020). Materials13, 2385. [DOI] [PMC free article] [PubMed]
  23. Rademeyer, M. (2004). Acta Cryst. E60, m871–m872. [DOI] [PubMed]
  24. Rademeyer, M., Overbeek, G. E. & Liles, D. C. (2010). Acta Cryst. E66, m1634. [DOI] [PMC free article] [PubMed]
  25. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  27. Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012a). Acta Cryst. E68, m1152. [DOI] [PMC free article] [PubMed]
  28. Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012b). CSD Communication (CCDC 894045). CCDC, Cambridge, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S2414314624007764/zl4076sup1.cif

x-09-x240776-sup1.cif (1.2MB, cif)

CCDC reference: 2376104

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES