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Abstract

Objective: We developed a few-shot learning (FSL) framework for the diagnosis of osteopenia

and osteoporosis in knee X-ray images.

Methods: Computer vision models containing deep convolutional neural networks were fine-

tuned to enable generalization from natural images (ImageNet) to chest X-ray images (normal vs.

pneumonia, base images). Then, a series of automated machine learning classifiers based on the

Euclidean distances of base images were developed to make predictions for novel images (normal

vs. osteopenia vs. osteoporosis). The performance of the FSL framework was compared with that

of junior and senior radiologists. In addition, the gradient-weighted class activation mapping

algorithm was used for visual interpretation.

Results: In Cohort #1, the mean accuracy (0.728) and sensitivity (0.774) of the FSL models were

higher than those of the radiologists (0.512 and 0.448). A diagnostic pipeline of FSL model (first)–

radiologists (second) achieved better performance (0.653 accuracy, 0.582 sensitivity, and 0.816

specificity) than radiologists alone. In Cohort #2, the diagnostic pipeline also showed improved

performance.

Conclusions: The FSL framework yielded practical performance with respect to the diagnosis of

osteopenia and osteoporosis in comparison with radiologists. This retrospective study supports

the use of promising FSL methods in computer-aided diagnosis tasks involving limited samples.
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Introduction

Osteoporosis is a public health concern that

affects populations worldwide.1 The condi-

tion is characterized by low bone mass and
microarchitectural bone tissue deteriora-

tion, resulting in increased bone fragility

and a subsequent rise in fracture risk.2

Bone mineral density (BMD) is a key diag-
nostic indicator for osteoporosis and is used

to predict fracture risk. Dual X-ray absorp-

tiometry (DXA) is the most commonly used

tool for measuring BMD in clinical prac-
tice.3 However, the cost and availability of

the BMD technique limit the application of

DXA-based BMD assessment for the clini-

cal management of osteoporosis.4,5

X-ray imaging is the most widely used

imaging technique for the diagnosis of

bone pathologies.6,7 X-rays have been in

use for over a century and are commonly
used to visualize bones in various parts of

the body, including the wrists, knees,

shoulders, pelvis, and spine. X-ray imaging

is useful for the diagnosis of fractures, joint
dislocations, bone injuries, abnormal bone

growth, arthritis, and even infections.8

Despite its widespread use, X-ray imaging

has limitations, particularly regarding the
detection of early-stage osteoporosis, i.e.,

osteopenia.9 Osteoporosis may not be visible

on X-ray imaging until a substantial amount
of bone loss has occurred, making it impor-

tant to use additional imaging modalities

and diagnostic tests for the early detection

and management of the disease.10,11

In recent years, deep learning (DL)-based

convolutional neural networks (CNNs) have

gained popularity for medical image analysis

owing to their state-of-the-art results when
detecting diseases, including brain tumors,
breast cancer, and pneumonia, from various
medical images.12–14 CNNs have demon-
strated superior performance regarding the
classification of medical images. Recently,
we published a literature review concerning
artificial intelligence (AI)-assisted radiologic
diagnosis of osteoporosis, which listed the
datasets used and proposed methods in pre-
vious studies.15 However, a major challenge
encountered when using CNN classifiers in
the medical field is the requirement for large
amounts of labeled training data.16

Insufficiently large datasets limit the use of
CNNs for the detection and diagnosis of
osteoporosis.

In response to the challenges faced by
standard DL methods that require large
datasets, few-shot learning (FSL) has
emerged as a promising alternative.17 As its
name suggests, FSL enables the rapid and
accurate completion of classification tasks
by learning using only a small number of
samples.18 In this paper, we propose an
FSL framework comprising feature extrac-
tors based on fine-tuning and Euclidean
distance-based classifiers for the diagnosis
of osteopenia and osteoporosis using knee
X-ray images in two cohorts.

Methods

Chest x-ray images: base images for
fine-tuning

As shown in Figure 1(a), chest X-ray
images acquired from the anteroposterior
view were obtained from an open-access
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database, which comprised retrospective
cohorts of pediatric patients aged 1 to
5 years from Guangzhou Women and
Children’s Medical Center, Guangzhou,
China.19 All chest X-ray images were obtained
as part of patients’ routine clinical care. Based
on their clinical evaluation, the images were
labeled normal (n¼ 1583) versus viral pneu-
monia (n¼ 1493) versus bacterial pneumonia
(n¼ 2780). A high-resolution JPEG chest
X-ray image dataset was also deposited into
the public Mendeley database (https://doi.org/
10.17632/rscbjbr9sj.3).

Knee x-ray images: novel images for the

target task

In Cohort #1 (Figure 1(b)), 52 normal knee

X-ray images, 67 images of osteopenia, and

70 images of osteoporosis were obtained from

a public database (Wani-KXR2021).20 In

addition, 30 normal, 27 osteopenia, and

45 osteoporosis knee X-ray images were

obtained from Jintan Hospital Affiliated to

Jiangsu University.
In Cohort #2, 203 normal knee X-ray

images, 203 images of osteopenia, and 203

Figure 1. Study flowchart and FSL framework. (a) Chest X-ray images: base images for fine-tuning; (b) knee
X-ray images in Cohort #1: novel images for the target task; (c) knee X-ray images in Cohort #2: novel
images for the target task and (d) FSL framework: learning and prediction parts. VP, viral pneumonia; BP,
bacterial pneumonia; OP, osteopenia; OS, osteoporosis; FSL, few-shot learning framework; DL, deep
learning; CXR, chest X-ray; KXR, knee X-ray.
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images of osteoporosis were consecutively
obtained from the First Affiliated Hospital
of Soochow University (January 2020–
December 2022), as shown in Figure 1(c).
Patient details was de-identified such that
they could not be identified in any way.

The Wani-KXR2021 images were col-
lected from the BMD camp organized by
the Unani and Panchkarma Hospital,
Srinagar, J&K, India, which were deposited
into a public Mendeley database (https://
data.mendeley.com/datasets/fxjm8fb6mw/
2).20 The characteristics of participants
could be obtained from the website. The
BMD was measured just below the knee
with the peripheral bone assessment QUS
system known as the Sunlight Omnisense
7000S (Jacksonville, FL, USA) with simu-
lation software from Pegasus Prestige
(DMS Imaging, Gallargues-le-Montueux,
France).

Participants who were evaluated at Jintan
Hospital Affiliated to Jiangsu University
and the First Affiliated Hospital of
Soochow University between January 2020
and December 2022 were included.
Participants received BMD scans of the fem-
oral neck and lumbar spine (L2-L4) using
DXA (Lunar Prodigy, General Electric
Medical Systems, Aurora, OH, USA). At
the three centers, the osteopenia and osteo-
porosis diagnoses were determined accord-
ing to the BMD levels of patients on the
basis of the T score values recommended
by the World Health Organization.21 Knee
X-ray images from the anteroposterior view
of each participant were obtained during the
same visit at which their BMD was mea-
sured. Institutional Review Board approval
was obtained from the Ethics Committee of
The First Affiliated Hospital of Soochow
University on 31 March 2022 (retrospective
study review #2022098). The reporting of
this study conforms to the Strengthening
the Reporting of Observational Studies
in Epidemiology (STROBE) guidelines.22

Written informed consent was obtained

from all participants in this study. The char-
acteristics of participants from the two cen-
ters are listed in Supplementary Table 1
(Jintan Hospital Affiliated to Jiangsu
University) and Supplementary Table 2
(First Affiliated Hospital of Soochow
University).

General design of the FSL framework

The FSL framework based on fine-tuning
and Euclidean distance is presented in
Figure 1(d).

The learning part (steps 1–5 in Figure 1
(d)) was as follows.

1. VGG, ResNet, and Xception were pre-
trained on ImageNet, and then the
three networks were fine-tuned on a ter-
nary chest X-ray image classification
task to learn X-ray features.

2. The fine-tuned DL models served as fea-
ture extractors (yellow).

3. A base three-way, three-shot set was con-
structed: three support sets (three images
randomly selected from each class, i.e.,
normal vs. viral pneumonia vs. bacterial
pneumonia) and three query sets
(150 normal vs. 150 viral pneumonia vs.
150 bacterial pneumonia). The above
chest X-ray images were transferred
into feature vectors (feature a).

4. The Euclidean distance between the fea-
ture a of each query image and three
support set images was calculated and
transformed into feature b.

5. We used the H2O automated machine
learning (AutoML) platform to develop
a series of machine learning classifiers
(blue) for the ternary classification task
concerning feature b.

The prediction part (steps 6–8 in
Figure 1(d)) was as follows.

6. A novel three-way, three-shot set was
constructed: three support sets

4 Journal of International Medical Research
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(three images randomly selected from

each class in two cohorts, i.e., normal

vs. osteopenia vs. osteoporosis) and

three query sets (Cohort #1: 79 normal

vs. 91 osteopenia vs. 112 osteoporosis;

Cohort #2: 200 normal vs. 200 osteope-

nia vs. 200 osteoporosis). The above

knee X-ray images were transferred

into feature vectors (feature a) by the

three feature extractors (yellow).
7. As in step 4, the Euclidean distance

between the feature a of each query

image and six support set images was cal-

culated and transformed into feature b.
8. The trained AutoML classifiers from step 5

(blue) were used to perform prediction for

the novel ternary classification task involv-

ing knee X-rays with respect to feature b.

Feature extractors formed by fine-tuning

Generally, DL models trained on large

datasets such as ImageNet are highly trans-

ferable to image classification and recogni-

tion tasks.23 In this study, given that the

images derived from the source dataset

ImageNet (natural images) and the target

task (X-rays) were of different types, fine-

tuning was necessary to achieve a domain

shift from a general natural view to X-ray

imaging.24 Thus, three classic DL models,

i.e., VGG, ResNet, and Xception, were first

pretrained on ImageNet, as shown in

Figure 2. Then, the three models were

fine-tuned in a base ternary chest X-ray

image classification task (normal vs. viral

pneumonia vs. bacterial pneumonia) to

update the weights of the DL models and

provide them with a better understanding

of X-ray imaging.25 After performing fine-

tuning, the three DL models were regarded

as feature extractors in the FSL framework.

For each query chest X-ray image, a 1*50

feature vector a was obtained through the

fine-tuned DL models, as well as each sup-

port set image.

Classifiers constructed using AutoML

based on Euclidean distance

Euclidean distance is one of the most

common distance metrics used to measure

the absolute distance between two points in

multidimensional space.26 It can be used to

develop an intuitive and traditional similar-

ity algorithm. Given that every image had

been transformed into a 1*50 feature vector

a, the Euclidean distance (d) from one

query image (q) to one support set image

(s) was calculated as shown in Equation 1:

d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1� s1Þ2þðq2� s2Þ2 � � �þðq50� s50Þ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX50
i¼1

qi� sið Þ2
vuut

(1)

where d is the Euclidean distance, q indi-

cates query, s is the support set, and 50 is

1*50 feature vector a.
Consequently, every query image was

transformed into a 1*9 feature vector b
based on the distance from one query to

nine support set images (three images for

each base class, i.e., normal vs. viral pneu-

monia vs. bacterial pneumonia).
H2O AutoML (https://www.h2o.ai) is a

platform for automating the machine learn-

ing workflow, including automated training

and tuning for a series of models.27 It offers

a variety of interpretation methods for varia-

bles and models. H2O AutoML supports six

common algorithms: DL, gradient boost

machines, general linear regression, eXtreme

gradient boosting (XGBoost), ensemble

models, and random forests. The code for

the AutoML training process is available at

https://osf.io/zjahc.
As shown in Figures 1(d) and 2, a series

of AutoML models were developed based

on the base ternary classification of feature

vector b.

Xie et al. 5
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Figure 2. Detailed process of the learning part. VP, viral pneumonia; BP, bacterial pneumonia; CXR, chest
X-ray; DL, deep learning; CNN, convolutional neural network; AutoML, automated machine learning; GBM,
gradient boost machine; GLM, general linear regression; XGBoost, eXtreme gradient boosting.
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Prediction procedure

In this study, the novel task was the ternary
classification of knee X-rays. In each round,
a three-way, three-shot set was constructed:
three support sets (three images randomly
selected from each class in two cohorts, i.e.,
normal vs. osteopenia vs. osteoporosis) and
three query sets (Cohort #1: 79 normal vs.
91 osteopenia vs. 112 osteoporosis; Cohort
#2: 200 normal vs. 200 osteopenia vs. 200
osteoporosis).

As shown in Figure 3, every knee X-ray
image was transferred into a feature vector
(feature a) by the DL models, i.e., the feature
extractors; then every query image was trans-
formed into a 1*9 distance vector (feature b)
based on the Euclidean distance. Finally, the
osteopenia and osteoporosis predictions were
processed by the trained classifier.

Visual interpretation

The gradient-weighted class activation
mapping (Grad-CAM) algorithm was used
to visually interpret the fine-tuned DL
model.28 Grad-CAM uses the gradients of
any target concept, flowing into the final
convolutional layer to produce a coarse
localization map highlighting important
regions in the image for predicting the con-
cept. The results of Grad-CAM are pre-
sented in the form of heatmaps.

Model training and evaluation

The Keras Python (version 3.8.0) open
access platform (Backbone: TensorFlow
version 2.8.0; Google Inc., Santa Clara,
CA, USA) was used to train the VGG16/
ResNet50/Xception models. Each image was
resized to 331� 331 pixels and loaded into
the DL models in the form of RGB chan-
nels. The random split-sample method was
used to divide the images into training and
validation datasets (8:2). The adaptive
moment estimation optimizer and categorical
cross-entropy cost function, with a learning

rate of 0.0001 and a batch size of 32, were
used to train the models with an early stop-
ping approach. The training code for the DL
models is available at https://osf.io/7aujc.

In Cohort #1, the whole FSL framework
was executed in a three-round evaluation.
The performance of the framework was
compared with that of three junior radiol-
ogists (less than 5 years of experience) and
three senior radiologists (more than 10
years of experience) who were blinded for
the data collection and model development.
In Cohort #2, the FSL framework (algo-
rithm chosen based on the best model in
Cohort #1) was applied in one round and
compared with evaluation by one senior
radiologist.

A confusion matrix was calculated using
Equation 2 and used to evaluate the perfor-
mance of the FSL model. TN, FN, TP, and
FP indicate true negatives, false negatives, true
positives, and false positives, respectively.

Confusion Matrix ¼ TN FP
FN TP

� �
(2)

Accuracy indicates the proportion of sam-
ples that were classified correctly among all
samples, as shown in Equation 3.

Accuracy ¼ TPþ TN

TPþ TNþ FNþ FP
(3)

Sensitivity indicates the proportion of
samples that were classified correctly out of
the total number of actual true samples, as
shown in Equation 4. In the study, positive
events included osteopenia and osteoporosis;
thus, the sensitivity values for these events
and the mean were calculated separately.

Sensitivity ¼ TP

TPþ FN
(4)

Specificity denotes the proportion of
samples that were completely classified

Xie et al. 7
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Figure 3. Detailed prediction process. OP, osteopenia; OS, osteoporosis; DL, deep learning; AutoML,
automated machine learning.
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correctly out of all actual false samples, as

shown in Equation 5.

Specificity ¼ TN

TNþ FP
(5)

Cohen’s Kappa score and Matthews cor-

relation coefficient (MCC) are statistical

measures used to evaluate the performance

of classification models. Cohen’s Kappa is a

measure of inter-rater agreement for quali-

tative (categorical) items. It is generally

used to compare the agreement between

two raters or classifiers. The score is nor-

malized and takes into account the possibil-

ity of the agreement occurring by chance.

The MCC, another measure of classifica-

tion, takes into account TNs, FNs, TPs,

and FPs. The MCC is generally considered

a balanced measure, which can be used even

if the classes are imbalanced.

Results

Model evaluation in three rounds in

Cohort #1

The performance of the FSL models and radi-

ologists in round #1 is summarized in Table 1.

The best FSL model (VGG16þ XGBoost)

achieved higher accuracy (0.745) and higher

mean sensitivity (0.748) than those of the

junior radiologist (0.454 and 0.372, respective-

ly) and senior radiologist (0.585 and 0.529,

respectively). However, the specificity of the

model (0.709) was equal to that of the senior

radiologist, which was still higher than that of

the junior radiologist (0.658).
In rounds #2 and #3 (Tables 2 and 3),

the best FSL model (XceptionþXGBoost)

yielded higher accuracy (0.709 and 0.730,

respectively) and mean sensitivity (0.800

and 0.775, respectively) values than those

of the two radiologists. However, the spe-

cificity of the model in theses rounds (0.456

and 0.582, respectively) was lower than

those of the two senior radiologists (0.658
and 0.709, respectively) and two junior
radiologists (0.595 and 0.646, respectively).

General model evaluation in Cohort #1

As shown in Figure 4(a), the mean accuracy
(0.728) and sensitivity (0.774) of the best
FSL models in the three rounds were
higher than those of the radiologists (0.512
and 0.448) in Cohort #1. The radiologists
(0.662) only demonstrated an advantage
over the models (0.582) in terms of the
mean specificity metric.

A diagnostic pipeline of FSL model (first)–
radiologists (second) achieved improved per-
formance (0.653 mean accuracy, 0.582 mean
sensitivity, and 0.816 mean specificity) over
that of the radiologists. The MCC was
improved from 0.387 to 0.617, and the
Cohen’s Kappa was improved from 0.430
to 0.590.

General model evaluation in Cohort #2

In Figure 4(b), the accuracy (0.703) and sensi-
tivity (0.723) of the FSL model (Xceptionþ
XGBoost) were higher than those of the
senior radiologist (0.588 and 0.495, respective-
ly) in Cohort #2. The radiologists (0.662) only
showed an advantage (0.775) in specificity.

The diagnostic pipeline of FSL model
(first)–radiologist (second) also achieved
improved performance (0.715 accuracy,
0.668 sensitivity, and 0.810 specificity) over
that of the senior radiologist. The MCC was
improved from 0.384 to 0.573, and the
Cohen’s Kappa was improved from 0.460
to 0.590.

Model interpretation

The heatmaps produced by Grad-CAM are
plotted in Figure 5. One knee X-ray image
was selected from each novel classification.
The gradient difference between the fully
connected layer and the final output of
the fine-tuned DL model (Xception) was

Xie et al. 9



calculated to plot the class activation map.

The highlighted regions in the heatmaps are

the important areas for prediction consid-

ered by the model.

Discussion

For the task of diagnosing osteopenia and

osteoporosis in knee X-ray images, we

developed an FSL framework comprising

chest X-ray-based fine-tuned feature
extractors and Euclidean distance-based
AutoML classifiers. In both cohorts, com-
pared with radiologists, the FSL model
achieved better accuracy and sensitivity in
a total of four rounds of evaluation. This
showed that the FSL model could improve
the clinical diagnosis results obtained with
the FSL model (first)–radiologist (second)
pipeline.

Table 1. Performance of few-shot learning framework and radiologists in Cohort #1, round #1.

Round #1 Confusion matrix Metrics

VGG16þXGBoost

Normal OP OS Total Accuracy 0.745

Actual Normal 56 5 18 79 Sensitivity (OP) 0.648

OP 6 59 26 91 Sensitivity (OS) 0.848

OS 8 9 95 112 Sensitivity (mean) 0.748

Total 70 73 139 282 Specificity 0.709

ResNet50þXGBoost

Normal OP OS Total Accuracy 0.610

Actual Normal 36 14 29 79 Sensitivity (OP) 0.538

OP 13 49 29 91 Sensitivity (OS) 0.777

OS 7 18 87 112 Sensitivity (mean) 0.658

Total 56 81 145 282 Specificity 0.456

XceptionþXGBoost

Normal OP OS Total Accuracy 0.716

Actual Normal 49 7 23 79 Sensitivity (OP) 0.626

OP 12 57 22 91 Sensitivity (OS) 0.857

OS 10 6 96 112 Sensitivity (mean) 0.742

Total 71 70 141 282 Specificity 0.620

Junior radiologist

Normal OP OS Total Accuracy 0.454

Actual Normal 52 9 18 79 Sensitivity (OP) 0.352

OP 33 32 26 91 Sensitivity (OS) 0.393

OS 27 41 44 112 Sensitivity (mean) 0.372

Total 112 82 88 282 Specificity 0.658

Senior radiologist

Normal OP OS Total Accuracy 0.585

Actual Normal 56 10 13 79 Sensitivity (OP) 0.451

OP 29 41 21 91 Sensitivity (OS) 0.607

OS 12 32 68 112 Sensitivity (mean) 0.529

Total 97 83 102 282 Specificity 0.709

Bold figures indicate the highest numeric values.

OP, osteopenia; OS, osteoporosis; XGBoost, eXtreme gradient boosting.
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The prevalence of osteoporosis-related
fractures is increasing in women aged 55
years and older and men aged 65 years
and older, leading to significant bone-
associated morbidity, mortality, and
health care costs.4,5 Advances in research
have enabled more precise assessments of
fracture risk and have expanded the range
of therapeutic options that are available to

prevent fractures. In clinical practice, frac-
ture risk algorithms that incorporate clini-
cal risk factors and BMD are commonly
used to identify high-risk individuals.29

Osteopenia, a precursor of osteoporosis, is
also a significant risk factor for fragility
fractures. Research has shown that most
women who experience fragility fractures
have previously been diagnosed with

Table 2. Performance of few-shot learning models and radiologists in Cohort #1, round #2.

Round #2 Confusion Matrix Metrics

VGG16þXGBoost

Normal OP OS Total Accuracy 0.688

Actual Normal 39 11 29 79 Sensitivity (OP) 0.648

OP 6 59 26 91 Sensitivity (OS) 0.857

OS 5 11 96 112 Sensitivity (mean) 0.753

Total 50 81 151 282 Specificity 0.494

ResNet50þXGBoost

Normal OP OS Total Accuracy 0.585

Actual Normal 22 24 33 79 Sensitivity (OP) 0.670

OP 5 61 25 91 Sensitivity (OS) 0.732

OS 4 26 82 112 Sensitivity (mean) 0.701

Total 31 111 140 282 Specificity 0.278

XceptionþXGBoost

Normal OP OS Total Accuracy 0.709

Actual Normal 36 18 25 79 Sensitivity (OP) 0.725

OP 3 66 22 91 Sensitivity (OS) 0.875

OS 5 9 98 112 Sensitivity (mean) 0.800

Total 44 93 145 282 Specificity 0.456

Junior radiologist

Normal OP OS Total Accuracy 0.436

Actual Normal 47 19 13 79 Sensitivity (OP) 0.330

OP 30 30 31 91 Sensitivity (OS) 0.411

OS 26 40 46 112 Sensitivity (mean) 0.370

Total 103 89 90 282 Specificity 0.595

Senior radiologist

Normal OP OS Total Accuracy 0.504

Actual Normal 52 16 11 79 Sensitivity (OP) 0.363

OP 33 33 25 91 Sensitivity (OS) 0.509

OS 14 41 57 112 Sensitivity (mean) 0.436

Total 99 90 93 282 Specificity 0.658

Bold figures indicate the highest numeric values.

OP, osteopenia; OS, osteoporosis; XGBoost, eXtreme gradient boosting.

Xie et al. 11



osteopenia.30 Unfortunately, many cases of
osteoporosis and osteopenia remain undiag-
nosed until a fracture occurs, increasing the
likelihood of complications and mortality.
Therefore, the early detection of osteoporo-
sis and osteopenia is crucial for disease pre-
vention and management, which can reduce
the incidence of osteoporotic fractures and
alleviate the burden of this disease.

It has been widely accepted that BMD is
a reliable marker for the early detection of
osteoporosis and osteopenia.31 Various
tools, e.g., DXA and quantitative ultra-
sound, have been used for BMD measure-
ment worldwide. However, their application
is limited owing to inaccessibility, a lack of
screening knowledge, and high cost, with
only a few developing countries having

Table 3. Performance of few-shot learning models and radiologists in Cohort #1, round #3.

Round #3 Confusion Matrix Metrics

VGG16þXGBoost

Normal OP OS Total Accuracy 0.660

Actual Normal 39 10 30 79 Sensitivity (OP) 0.659

OP 4 60 27 91 Sensitivity (OS) 0.777

OS 8 17 87 112 Sensitivity (mean) 0.718

Total 51 87 144 282 Specificity 0.494

ResNet50þXGBoost

Normal OP OS Total Accuracy 0.589

Actual Normal 33 21 25 79 Sensitivity (OP) 0.560

OP 10 51 30 91 Sensitivity (OS) 0.732

OS 14 16 82 112 Sensitivity (mean) 0.646

Total 57 88 137 282 Specificity 0.418

XceptionþXGBoost

Normal OP OS Total Accuracy 0.730

Actual Normal 46 11 22 79 Sensitivity (OP) 0.648

OP 7 59 25 91 Sensitivity (OS) 0.902

OS 7 4 101 112 Sensitivity (mean) 0.775

Total 60 74 148 282 Specificity 0.582

Junior radiologist

Normal OP OS Total Accuracy 0.496

Actual Normal 51 14 14 79 Sensitivity (OP) 0.418

OP 23 38 30 91 Sensitivity (OS) 0.455

OS 28 33 51 112 Sensitivity (mean) 0.436

Total 102 85 95 282 Specificity 0.646

Senior radiologist

Normal OP OS Total Accuracy 0.596

Actual Normal 56 10 13 79 Sensitivity (OP) 0.451

OP 19 41 31 91 Sensitivity (OS) 0.634

OS 9 32 71 112 Sensitivity (mean) 0.542

Total 84 83 115 282 Specificity 0.709

Bold figures indicate the highest numeric values.

OP, osteopenia; OS, osteoporosis; XGBoost, eXtreme gradient boosting.
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access to DXA and quantitative ultra-

sound.32 Moreover, DXA-based BMD

measures only account for two-dimensional

cortical and cancellous bone structures and

cannot fully explain bone geometries, sizes,

and microstructures. Thus, it is important to

explore alternative, effective, safe, and cost-

effective methods to improve this situation.
To address the limitations described

above when detecting osteopenia and oste-

oporosis, researchers have turned to recent

advancements in imaging technology and

AI algorithms to develop computer-aided

diagnostic systems.33 Using medical images

and applying advanced algorithms, these sys-

tems can provide cost-effective, readily avail-

able, and accurate means of detecting

osteopenia, osteoporosis, and other medical

conditions.34

FSL is characterized by its ability to rap-

idly generalize to new tasks with only a few

training examples, making it ideal for sce-

narios where training data are limited.35

Generally, FSL is a K-way, N-shot task,

where K represents the number of novel

classes and N is the number of support set

images for each class. In addition, K query

sets contain M images selected randomly

from the remaining data. The primary

objective of FSL is to develop the ability

to accurately classify images and extract

features from the training dataset.

Through this process, the model can learn

to recognize and generalize patterns from a

small set of examples, making it well suited

for use in situations where only a limited

number of labeled data are available. By

incorporating FSL techniques, researchers

can potentially improve the accuracy and

efficiency of image classification and fea-

ture extraction methods in a wide range of

applications.36 Thus, for various medical

datasets, FSL could be a powerful exten-

sion of standard DL and has emerged as a

promising technique for disease recognition

and classification.37

A series of previous studies have demon-

strated the application of DL algorithms for

building osteoporosis diagnosis models.34 In

2018, Naoufami and colleagues38 proposed a

DL model to detect osteoporotic vertebral

fractures based on vertebral computed

tomography (CT) images. Logical imaging

features were extracted for system building,

which achieved practical results. In 2019,

another DL study concerning CT scans of

vertebrae was reported by Krishnaraj

et al.39 to distinguish osteoporosis from

Figure 4. Performance of models, radiologists, and diagnostic pipeline in (a) Cohort #1 and (b) Cohort #2.
FSL, few-shot learning framework; MCC, Matthews correlation coefficient.
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Figure 5. Grad-CAM heatmaps. The left column presents the original images. The middle column shows
the heatmaps based on the output of the feature extractor’s last layer of CNNs. The right column shows the
Grad-CAM heatmaps covering the original images. Grad-CAM; gradient-weighted class activation mapping;
CNN, convolutional neural network.
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normal conditions. Those authors used
U-Net CNNs for the segmentation of radio-
logical images and achieved good accuracy.
In 2020, Lee et al.40 used spine X-ray images
to extract imaging features with CNN archi-
tecture and then loaded the features into a
machine learning model for classification
purposes. Using VGG as the feature extrac-
tor and a random forest as the classifier, 0.71
accuracy was achieved in the binary classifi-
cation task. Yasaka and colleagues41 devel-
oped a DL-based model to predict the BMD
of lumbar vertebrae in CT images of the
abdomen. A good correlation was observed
between the predicted BMD values and the
actual DXA BMD values. Most previous
reports have used spine images in the
AI-assisted radiological diagnosis of osteo-
porosis. He et al.42 collected anteroposterior
knee X-ray images and T scores from the
DXA scans of 361 patients. They measured
two radiographic parameters, i.e., cortical
bone thickness and distal femoral cortex,
which exhibited significant correlations
with the BMD and T score. Wani et al.20

selected four CNNs (AlexNet, VGG16,
ResNet, and VGG19) to conduct a ternary
classification task involving normal, osteo-
penia, and osteoporosis images in a set of
381 knee X-ray images. The models attained
good accuracy, even though there was no
independent test set.

Our study comprised several unique fea-
tures. First, we applied FSL to the challeng-
ing task of diagnosing osteopenia and
osteoporosis based on knee X-rays, which
are the most widely used radiographic
images. To the best of our knowledge, this
is the first report on FSL in this field.
Second, we designed a fine-tuning strategy
that enables generalization from natural
images (ImageNet) to X-ray images (pneu-
monia). In addition, a series of AutoML
classifiers based on the Euclidean distance
features derived from base images were
developed to make predictions for novel
images. The multistep FSL framework

achieved practical performance in compar-
isons with radiologists.

This study also has several limitations.
First, only knee X-ray images were used in
the study, which may limit the generalizabil-
ity of the FSL model. According to previous
studies, further investigation involving spine
X-rays or vertebral CT images are required.
Clinical baselines and laboratory data are
also valuable for disease prediction. Thus,
it is worth conducting multimodal FSL
modeling on the fusion of radiological data
and structured covariates.

Conclusions

In conclusion, we developed a three-way,
three-shot FSL framework for the diagnosis
of osteopenia and osteoporosis in knee X-ray
images. The FSL framework, based on fine-
tuned feature extractors and Euclidean
distance-based classifiers, achieved practical
performance in a three-round evaluation
when compared with radiologists. This
framework supports the development of
promising FSL methods for computer-aided
diagnoses involving limited samples.
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