Skip to main content
. 2024 Sep 3;52(9):03000605241274576. doi: 10.1177/03000605241274576

Table 2.

Performance of few-shot learning models and radiologists in Cohort #1, round #2.

Round #2 Confusion Matrix Metrics

VGG16+XGBoost
Normal OP OS Total Accuracy 0.688
Actual Normal 39 11 29 79 Sensitivity (OP) 0.648
OP 6 59 26 91 Sensitivity (OS) 0.857
OS 5 11 96 112 Sensitivity (mean) 0.753
Total 50 81 151 282 Specificity 0.494

ResNet50+XGBoost
Normal OP OS Total Accuracy 0.585
Actual Normal 22 24 33 79 Sensitivity (OP) 0.670
OP 5 61 25 91 Sensitivity (OS) 0.732
OS 4 26 82 112 Sensitivity (mean) 0.701
Total 31 111 140 282 Specificity 0.278

Xception+XGBoost
Normal OP OS Total Accuracy 0.709
Actual Normal 36 18 25 79 Sensitivity (OP) 0.725
OP 3 66 22 91 Sensitivity (OS) 0.875
OS 5 9 98 112 Sensitivity (mean) 0.800
Total 44 93 145 282 Specificity 0.456

Junior radiologist
Normal OP OS Total Accuracy 0.436
Actual Normal 47 19 13 79 Sensitivity (OP) 0.330
OP 30 30 31 91 Sensitivity (OS) 0.411
OS 26 40 46 112 Sensitivity (mean) 0.370
Total 103 89 90 282 Specificity 0.595

Senior radiologist
Normal OP OS Total Accuracy 0.504
Actual Normal 52 16 11 79 Sensitivity (OP) 0.363
OP 33 33 25 91 Sensitivity (OS) 0.509
OS 14 41 57 112 Sensitivity (mean) 0.436
Total 99 90 93 282 Specificity 0.658

Bold figures indicate the highest numeric values.

OP, osteopenia; OS, osteoporosis; XGBoost, eXtreme gradient boosting.