Skip to main content
. 2024 Sep 3;52(9):03000605241274576. doi: 10.1177/03000605241274576

Table 3.

Performance of few-shot learning models and radiologists in Cohort #1, round #3.

Round #3 Confusion Matrix Metrics

VGG16+XGBoost
Normal OP OS Total Accuracy 0.660
Actual Normal 39 10 30 79 Sensitivity (OP) 0.659
OP 4 60 27 91 Sensitivity (OS) 0.777
OS 8 17 87 112 Sensitivity (mean) 0.718
Total 51 87 144 282 Specificity 0.494

ResNet50+XGBoost
Normal OP OS Total Accuracy 0.589
Actual Normal 33 21 25 79 Sensitivity (OP) 0.560
OP 10 51 30 91 Sensitivity (OS) 0.732
OS 14 16 82 112 Sensitivity (mean) 0.646
Total 57 88 137 282 Specificity 0.418

Xception+XGBoost
Normal OP OS Total Accuracy 0.730
Actual Normal 46 11 22 79 Sensitivity (OP) 0.648
OP 7 59 25 91 Sensitivity (OS) 0.902
OS 7 4 101 112 Sensitivity (mean) 0.775
Total 60 74 148 282 Specificity 0.582

Junior radiologist
Normal OP OS Total Accuracy 0.496
Actual Normal 51 14 14 79 Sensitivity (OP) 0.418
OP 23 38 30 91 Sensitivity (OS) 0.455
OS 28 33 51 112 Sensitivity (mean) 0.436
Total 102 85 95 282 Specificity 0.646

Senior radiologist
Normal OP OS Total Accuracy 0.596
Actual Normal 56 10 13 79 Sensitivity (OP) 0.451
OP 19 41 31 91 Sensitivity (OS) 0.634
OS 9 32 71 112 Sensitivity (mean) 0.542
Total 84 83 115 282 Specificity 0.709

Bold figures indicate the highest numeric values.

OP, osteopenia; OS, osteoporosis; XGBoost, eXtreme gradient boosting.