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Abstract. A comprehensive understanding of the spatial distribution and correlates of infection are key for the plan-
ning of disease control programs and assessing the feasibility of elimination and/or eradication. In this work, we used
species distribution modeling to predict the environmental suitability of the Guinea worm (Dracunculus medinensis) and
identify important climatic and sociodemographic risk factors. Using Guinea worm surveillance data collected by the
Chad Guinea Worm Eradication Program (CGWEP) from 2010 to 2022 in combination with remotely sensed climate and
sociodemographic correlates of infection within an ensemble machine learning framework, we mapped the environmen-
tal suitability of Guinea worm infection in Chad. The same analytical framework was also used to ascertain the contribu-
tion and influence of the identified climatic risk factors. Spatial distribution maps showed predominant clustering around
the southern regions and along the Chari River. We also identified areas predicted to be environmentally suitable for
infection. Of note are districts near the western border with Cameroon and southeastern border with Central African
Republic. Key environmental correlates of infection as identified by the model were proximity to permanent rivers and
inland lakes, farmlands, land surface temperature, and precipitation. This work provides a comprehensive model of the
spatial distribution of Guinea worm infections in Chad 2010–2022 and sheds light on potential environmental correlates
of infection. As the CGWEPmoves toward elimination, the methods and results in this study will inform surveillance activ-
ities and help optimize the allocation of intervention resources.

INTRODUCTION

Dracunculiasis is one of the diseases targeted for eradication
by the World Health Organization (WHO).1 The global reduc-
tion in overall Guinea worm case numbers represents one of
the most remarkable public health achievements in history.
Soon after the inception of the Guinea Worm Eradication Pro-
gram in the 1980s, there were an estimated 3.5 million human
cases2; in 2022, just 13 human cases were reported globally3

(six in Chad, five in South Sudan, one in Ethiopia, and one in
Central African Republic).4 Despite the achievements made
toward eradication of Guinea worm, several challenges remain,
including 1) the detection of canine cases in Chad in 2012,5

2) the suggested involvement of paratenic and/or transport
hosts such as fish, frogs, or other aquatic animals in the trans-
mission cycle,6,7 3) insecurity, conflict, and civil unrest in
endemic areas, which have inhibited the efficient deployment
of surveillance and intervention measures,8 and 4) detec-
tion of cases and infections in hard-to-reach and/or border
villages, risking exportation to new geographies.3

Chad remains the country with the highest annual number
of reported Guinea worm infections in both humans and ani-
mals (mostly in domestic dogs and cats) in recent years.3

The number of infections detected in domestic dogs in Chad
increased from 27 in 2012 to 1,927 in 2019, although as of
the end of 2022, only 456 infected domestic dogs were
detected. Simultaneously, the number of villages under
active surveillance increased from 342 in 2012 to more than
2,000 in 2022. The number of reported Guinea worm infec-
tions raises questions about whether there are additional
areas within the country, besides the existing well-known

endemic areas, where environmental conditions would sup-
port Dracunculus medinensis transmission and which are
not currently under active surveillance.
Guinea worm surveillance infrastructure in extant endemic

countries involves both active surveillance and passive sur-
veillance. A community-based approach is taken when
implementing active surveillance, which involves community
members systematically searching for Guinea worm disease
or signs and symptoms thereof in human and animal hosts.
Although the scale of the Guinea worm surveillance infra-
structure in Chad is impressive, the initiation of active sur-
veillance in any given area has historically been reactive in
nature. This is because villages are only placed under active
surveillance when 1) a new Guinea worm case or animal
infection is detected, 2) the villages are near other villages
where Guinea worms have been detected, or 3) the villages
share common epidemiological risk factors such as shared
water sources, fishing sites, farmlands, or familial relation-
ships with other villages where Guinea worms have been
detected. In contrast, passive surveillance does not involve
systematic active searches; instead, it relies on reports of
suspected or rumored Guinea worm infections that are con-
veyed through the local health system, such as health cen-
ters within the villages or national reporting hotlines. It is
important to note that dracunculiasis is a reportable disease.
Furthermore, previously endemic villages remain under
active surveillance after they no longer report cases. Transi-
tioning a village to passive surveillance is done at the discre-
tion of the national program based on current epidemiology
in the zone and would follow at least 3 consecutive years
without any reported cases in that village or those adjacent.
Therefore, predictive geospatial models enable proactive
identification of potential transmission hotspots and inform
decisions about which areas to place under active and pas-
sive surveillance. In addition, geospatial models can be used
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to characterize spatially explicit habitat suitability by associat-
ing species distribution data with potential disease correlates
such as climate and environmental and sociodemographic
factors. This approach has been extensively used to describe
the geographical extents and environmental correlates of
several other neglected tropical diseases (NTDs) such as
human African trypanosomiasis, lymphatic filariasis, schisto-
somiasis, onchocerciasis, and trachoma.9–11 An understand-
ing of the possible geographical distribution of the Guinea
worm using high-resolution risk maps is key for surveillance,
control, and eradication efforts.
In this work, using Guinea worm surveillance data col-

lected by the Chad Guinea Worm Eradication Program
(CGWEP) from 2010 to 2022, we modeled the environmental
suitability for the occurrence of Guinea worm infections in
Chad. This model was then used to map the distribution of
infection, delineating areas suitable for disease transmission,
and identify climate, environmental, and sociodemographic
correlates of Guinea worm infection.

MATERIALS AND METHODS

Survey area and ecological zones.
Chad is divided into four main ecological zones12; the drier

northern region is predominantly Sahelian with mountainous
areas along the northern border with Libya, whereas the wet-
ter, greener, and more populous southern region is either
Sudanian or tropical. N’Djamena, which is the capital, is char-
acterized as urban.
Guinea worm surveillance data.
Guinea worm infections have been predominantly

detected along the Chari River basin in Chad, which runs
from Lake Chad near the western border with Cameroon to

the southeastern border with Central African Republic. Sur-
veillance data collected by the CGWEP 2010–2022 was
used for this analysis (Figure 1).
Surveillance infrastructure for the CGWEP has been described

in detail elsewhere.5 Briefly, community-based active surveil-
lance is conducted to identify Guinea worm infections. For
villages under active surveillance, village volunteers conduct
daily searches for Guinea worm, and when a suspected
Guinea worm infection or case is identified, a CGWEP super-
visor is sent to verify. If signs/symptoms are consistent with
Guinea worm, worms are extracted, and relevant program-
matic and epidemiological investigations are carried out.
Worm specimens from humans are then transported to the
CGWEP reference laboratory (U.S. Centers for Disease Con-
trol and Prevention, Atlanta, GA) for confirmation. Not all spe-
cimens from animals are sent to the reference laboratory
because of the large volume of such specimens, though they
are received by other laboratories for various analyses. Worm
specimens from animals may be transported to the reference
laboratory if the CGWEP supervisors in the field are unable to
verify the diagnosis in the field and/or if the specimens have
epidemiological significance. Owing to the small number of
human cases remaining, surveillance efforts mostly identify
infections in domestic dogs and cats. Studies of the genetic
variations of Guinea worm DNA from several hosts suggest
that the same Guinea worm parasite populations infect
various definitive host species (i.e., genetically similar
D. medinensis worms infect both humans and animals).13

Therefore, in this analysis, any villages that had reported a
case of Guinea worm between 2010 and 2022 were consid-
ered “positive,” regardless of host. This analysis was imple-
mented using data from 6,489 village-level infection data points
(6,198 dog worms, 150 cat worms, and 141 human worms).

A B

FIGURE 1. Location of villages reporting Guinea worm infection in all hosts from 2010 to 2022. (A) Subset of Chad highlighting locations of
Guinea worm endemic villages. (B) Insert is the entire map of Chad, indicating Guinea worm endemic villages.
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Ethical approval.
The process of obtaining ethical approvals, obtaining

informed consent, and arranging logistical procedures for
field surveys was handled in-country by the CGWEP, with
technical support provided by The Carter Center. Analysis of
Guinea worm surveillance data was previously reviewed by the
U.S. CDC and was determined to be nonresearch; it was con-
ducted consistent with applicable federal law and CDC policy
(e.g., see 45C.F.R. part 46, 21C.F.R. part 56; 42U.S.C. §241(d);
5U.S.C. §552a; 44U.S.C. §3501 et seq.)
Climate, environmental, and sociodemographic data.
In total, we used 15 covariates for this analysis (Table 1).

All input grid raster covariates were resampled to a common
spatial resolution of 1 3 1 km2 using the nearest-neighbor
algorithm24 and then clipped to align to the geographical
extents of Chad. Raster manipulation and processing were
done using the raster package in R.25 Values that corre-
sponded to the location of infection data points were
extracted from the stack of raster covariates.
All covariates used in this analysis were either hypothesized

or are known to be associated with Guinea worm transmission.
The use of remotely sensed climate, environmental, and socio-
demographic data in prediction has greatly increased in recent
years. These data are generated either by orbital satellites or by
extrapolation from point-level data collected through weather
stations and nationally representative surveys. Incorporating
covariates with known or hypothesized biological links to
disease transmission into geospatial modeling improves model
predictions.26

We downloaded climate data related to temperature and
precipitation from the WorldClim v. 2.1 database,14 which
provides interpolated long-term averages of climate and
global weather data obtained from �15,000 weather stations
distributed across the world. Also, data on population den-
sity, elevation, slope of terrain, nighttime light emissivity, and
Euclidean distance to surface water bodies and the edge of
nature reserves were all downloaded from the WorldPop
repository.15

Because farm-related owner occupations are a correlate of
Guinea worm infections in dogs,27 we considered covariates
that were designated as farming communities or croplands.
The Global Croplands dataset represents the proportion of

land areas used for agricultural cultivation.16 Satellite data
from Moderate Resolution Imaging Spectroradiometer and
Satellite Pour I’Observation de la Terre Image vegetation sen-
sors were combined with agricultural inventory data to build
these global datasets of croplands. Also, vegetation cover
types were extracted from the GlobCover project at the Euro-
pean Space Agency.17 Maps were derived by an automatic
and regionally tuned classification of 300-m resolution imag-
ing spectrometer sensor on the ENVISAT satellite mission.
Vegetation cover types were in keeping with the United
Nations land cover classification system.28 We considered
livestock distribution in our analysis, specifically, cattle distri-
bution. These data were downloaded from the Gridded Live-
stock of the World database.18,29

Furthermore, covariates for freshwater availability and food
insecurity hotspots were also considered. Here, the availability
of freshwater was defined as terrestrial or groundwater storage
as observed by the Gravity Recovery and Climate Experiment
satellites.22 This platform detects freshwater of different kinds,
such as groundwater, soil moisture, surface waters, and wet
biomass. In addition, the food insecurity hotspots dataset was
downloaded from the Center for International Earth Science
Information Network, Columbia University (input data were
originally processed from the database of the Famine and
Early Warning Systems Network).20,21

Finally, we generated a variable to account for conflict
events and insecurity. Previous work suggests that conflict
and civil unrest may potentially derail the program to eradi-
cate the Guinea worm and other NTDs.8,30 For this variable,
we extracted data from the Armed Conflict Location and
Event Data (ACLED) project.23 Using the geostatistical tech-
nique, ordinary kriging,31 we built interpolated layers from
the vector data of total number of fatalities due to civil
unrest, ethnic clashes, and activities of extremist groups as
recorded in the ACLED project. Hence, we created a raster
layer with values across our geographical area of interest
(i.e., Chad).
Ensemble modeling.
Using village-level worm burden records (i.e., number of

worms reported per village across species), we computed a
variogram analysis to assess the spatial correlation in the
reported Guinea worm infection data. Variograms measure the

TABLE 1
Climate, environmental, and sociodemographic covariates that were integrated into the models and their sources

Variables Source

Land Surface Temperature (�C) WorldClim14

Precipitation (mm)

Population Density (%) WorldPop15

Elevation (m)
Slope of Terrain (�)
Night Light Emissivity (W�sr21�m22)
Euclidean Distance to Permanent Water Bodies (m)
Euclidean Distance to Temporary Water Bodies (m)
Euclidean Distance to Edge of Nature Reserves (m)

Croplands/Farmlands (%) The Global Croplands Dataset16

Vegetation Cover (%) European Space Agency’s Globcover Project17

Livestock (cattle) Distribution (%) Gridded Livestock of the World (GLW3) Database18,19

Food Insecurity Hotspots (gridded scale ranging from famine to
food secure)

Famine and Early Warning Systems Network20,21

Ground/Terrestrial Water (mm) NASAs Gravity Recovery and Climate Experiment (GRACE) Project22

Conflict Events (No. of fatalities resulting from conflict events) The Armed Conflict Location & Event Data (ACLED) Project23
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variability between pairs of data points32 and are often used to
determine the distance at which clustering of infections occurs
as well as the overall range across the geographical area of
interest. Also, the existence of multicollinearity in the suite of
covariates was explored by calculating variance inflation fac-
tors (VIFs), which represent the amount of variability that is
explained by other covariates.33 Multicollinearity occurs when
two or more covariates are not statistically independent and
often leads to unstable estimates when used in statistical mod-
els.33 All covariates were retained for further analysis, as all had
a VIF score of,10.
The detection (“presence”) of Guinea worm infection was

considered for any village that reported at least one worm in
any host. To build ecological niche models that require both
presence and absence data, background (or pseudo-absence)
data points are usually generated. Although true absence data
points are the most ideal for building models, studies have
shown that background data points are a suitable substitute.34

A random selection of 1,000 background data points was gen-
erated for this analysis. True presence and background data
points were assigned similar weights.
To ensure that the best performing model was selected, we

then implemented six different model algorithms: artificial neu-
ral networks, generalized boosted models (GBMs), generalized
linear models, multivariate additive regression splines, random
forest (RF), and surface range envelope. These algorithms are
included within the Biodiversity Modeling (BIOMOD)35 frame-
work and were implemented using the biomod2 package in
R (v. 4.2.1).25 The BIOMOD provides a robust computational
framework for use in species distribution and allows for com-
paring different modeling algorithms using similar sets of
dependent and independent data points.
To evaluate model accuracy, the models were trained using

a random subset of 70% of the observed data, whereas the
held-out 30% was used to test for prediction accuracy. We fit-
ted the same set of training and evaluation data to all six model
algorithms. The biomod2 package in R offers functionality that
allows for internal cross-validation. Here, a set number of data-
splitting runs were computed whereby the model was fitted to
one subset of the dataset and tested on the held-out subset.
This internal cross-validation does not provide a measure of
predictive performance per se, but provides a measure of
internal consistency of models.36 We performed 100 model
runs for each of the six algorithms, stored the evaluation values
for each run, and then took the average for the final evaluation
records. Here, evaluation was calculated as the area under
the receiver operating characteristic (ROC) curve and the
Hanssen-Kuipers discriminant (also known as the true skill sta-
tistic [TSS]). True skill statistic scores are often used in ecology
as a metric for comparing the number of correct predictions
minus predictions attributable to random guessing,37 while
accounting for both sensitivity and specificity. A TSS score of
11 indicates a perfect score, 0 indicates random performance,
and 0.5 or higher is generally considered an acceptable score
for model performance.
The best-performing model algorithms (based on ROC

and TSS scores) were then selected for final projection. Vari-
able importance was determined by computing the percent-
age increment in mean square error by variable permutation.
In addition, marginal effects plots were generated to explore
the relationship between the suite of predictors used in the
model and observed Guinea worm surveillance data. Finally,

the predicted mean values of the probability of environmen-
tal suitability as well as uncertainty estimates were projected
at a spatial resolution of 1 km3 1km and clipped to the geo-
graphical extents of Chad. Maps were also presented as
district-level aggregated mean values.

RESULTS

Variogram analysis.
The results from the variogram analysis (Figure 2) indicate

that there is significant spatial correlation in the observed
Guinea worm infection data (empirical variogram as repre-
sented by the black dots). The range of spatial correlation is
approximately 35km, after which spatial clustering starts to
decay. The theoretical variogram (represented by the solid
black line) is representative of a perfect scenario; the surveil-
lance data used in this work generally align with the curve of
the theoretical variogram.
Model performance comparison.
The performance of the six model algorithms implemented

using the BIOMOD package are shown in Figure 3. Although
all the model algorithms performed reasonably well as mea-
sured by their ROC and TSS values, the RF model and GBM
outperformed all model algorithms. Therefore, predictions
from these two were chosen for constructing the final
ensemble model.
Identifying climate, environmental, and sociodemographic

correlates of Guineaworm infection in Chad.
Proximity to permanent and inland water bodies, areas

designated as farmland/cropland, land surface temperature,
and precipitation estimates were the five most important
correlates on Guinea worm infection (Figure 4).
Marginal effects plots of covariates.
Marginal effects plots indicate that the probability of detec-

tion of Guinea worm infection decreases with increasing dis-
tance from permanent and inland water bodies and areas
designated as nature reserves (Figure 5). These plots also sug-
gest that annual rainfall estimates of between 500 and
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FIGURE 2. Variogram plot showing spatial correlation of the Guinea
worm surveillance data. The empirical variogram is represented by
the black dots; the theoretical variogram is represented by the black
solid line.
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1,000mm are optimum for the detection of Guinea worm
infection in endemic communities in the area of Chad under
surveillance.
Risk maps of environmental suitability of Guinea worm

disease in Chad.
Predicted risk estimates of Guinea worm infection were

projected on a map of the geographical extents of Chad.
Risk predictions indicate areas that are environmentally suit-
able for Guinea worm transmission as explained by the
covariates that were included in the model. The probability
of Guinea worm infection was higher in the communities
within close proximity to the Chari River, in keeping with sur-
veillance data that were used in model development (Figure
6). The model was then used to predict the probability of
infection in areas without surveillance data. We also identi-
fied potential new areas that share similar ecological charac-
teristics with areas of known infection.

The aggregated risk map by sub-prefecture (i.e., district)
shows that districts within Moyen-Chari and Mandol regions to
the east and Mayo-Kebbi Est and Chari-Baguirmi regions to
the west have the highest risk of Guinea worm infection (Figure 7).
Also, of note are districts within the Salamat region, particularly
in areas bordering Central African Republic.
To highlight the newly identified high-risk areas, the loca-

tions of the infection data from 2010 to 2022 used to train
the models (Figure 8A) and the villages under surveillance in
2022 have been overlaid onto the map showing the mean
predicted probability of infection.

DISCUSSION

Our model predicts environmental suitability for the detec-
tion of Guinea worm infections beyond the areas that have
reported Guinea worm infections as well as beyond areas
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that are currently under active surveillance. Unlike other
NTDs, there is a dearth of geospatial prediction maps of
Guinea worm. A recent review by Schluth et al.38 highlighted
the lack of geospatial data for D. medinensis.
This work shows that communities at higher risk of Guinea

worm infection in Chad are located near the border with
Cameroon, close to permanent rivers, inland waterbodies,
and nature reserves, as well as areas where the average
annual rainfall estimates are between 500 and 1,000mm. In
addition to building pixel-level continuous maps at 1 km2

resolution, we aggregated estimates at the district level.
Although maps that depict gridded continuous surfaces are
important to highlight intra-district heterogeneities in risk
estimates, presenting these estimates at the district level
might be more useful to guide programmatic decisions,
including deployment of relevant intervention measures and
resources.
Our maps accurately captured the known spatial distribu-

tion of known Guinea worm infections in Chad. Infections
are predominantly localized in the southern regions, cluster-
ing along the Chari River from the west (near N’Djamena) to
the Moyen-Chari region, close to the border with Central
Africa Republic. In addition, we have identified several new
areas that are classified as being ecologically suitable for
Guinea worm transmission. Results from this study grant the
CGWEP a unique opportunity to get ahead of Guinea worm

surveillance in the final, challenging phases of the campaign.
Typically, the geographic expansion of active surveillance
has been reactionary in nature, where villages are added to
the active surveillance system only after the discovery of
new infections in humans or in animals. Here, we identified
several new areas where the program might consider pre-
emptively initiating active surveillance, carrying out spot
check case/infection sweeps, ramping up health education
measures, and/or distributing cloth/pipe filters. These inter-
vention measures when deployed alone or in combination
can contribute to faster outbreak response and prevent out-
breaks, especially in districts that are only currently being
passively monitored for cases or infections.
In order to illustrate the newly predicted high-risk areas, we

have plotted location of the infection data used in the model-
ing and locations of villages under active surveillance in 2022
over the mean predicted probability of infection. Several dis-
tricts that did not report any cases or infections from 2010
to December 2022 and are not covered under the active sur-
veillance system have been predicted to have ecological
characteristics suitable for Guinea worm transmission (see
Figure 8B). Of course, Guinea worm transmission is not a
spontaneous event; rather, transmission only occurs when an
uncontained infection has been introduced or imported into a
village. Interestingly, in March 2023, several infections in
dogs were reported for the first time in the district of Fianga,
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FIGURE 5. (A–G) Marginal effects plots for covariates included in the ensemble. The y axis is the response (i.e., probability of detection of Guinea
worm infection), and the x axis is the full range of covariate values. The black lines represent the mean marginal effects, and the grey shading indi-
cates the 95% bootstrap CIs.
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along the border with Cameroon. We note that this district
did not have observed infection data that was used in the ini-
tial model building, but that our models predicted Fianga to
be at high risk for Guinea worm transmission. This is a clas-
sic example of the usefulness of predictive models, and in
some ways, serves as a validation or ground-truthing of our
model predictions in that area. At the time of writing (March
2023), necessary intervention measures had been deployed

to Fianga as well as neighboring districts on both the Chad
and Cameroon sides of the border.
The clustering of infections as indicated by the predicted

risk maps presented in this work is corroborated by the
semi-variogram analysis that indicated a spatial range of
infection of approximately 30 km. A previous spatiotemporal
study that analyzed genomic and surveillance data in Chad
found that the median range of genetic relatedness between

FIGURE 7. (A) Mean predicted probability of Guinea worm infection stratified by district. (B and C) Lower and upper confident limits,
respectively.

FIGURE 6. (A) Mean predicted probability of Guinea worm infection at 1km 3 1km resolution. (B and C) Lower and upper confident limits,
respectively.
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pairs of infections was between 18 and 50km.39 Although
these results suggest that Guinea worm infections are rather
focal in space, the possibility of importation of cases or
infection from areas outside of this range must not be disre-
garded, as this has been recently observed in an outbreak in
Salamat region.40 To this end, CGWEP, through a vast network
of program staff, conducts narrative case investigations that
retrospectively record travel history during the estimated
period of infection for every confirmed Guinea worm infec-
tion. In future analyses, we aim to explore the potential of
including these travel history data or other indicators of
migration as a covariate in our models.
Although target product profiles for Guinea worm diagnos-

tic tools are still in draft form, when they are finalized, they
will provide recommendations for sensitivity and specificity
requirements for reliable diagnostic tools to enable 1) the
detection of early or pre-patent infection in animals and 2) the
detection of D. medinensis in environmental media such as
water and/or in aquatic animal transport hosts.41,42 However,
field validation is required before widespread usage of any
newly identified diagnostic tools. Moreover, knowledge of
varying endemicity levels or risk distribution across vast spa-
tial extents is necessary to test diagnostic tools under varying
endemicity scenarios. Therefore, maps presented in this
work provide a valuable tool for assessing risk levels and
may serve as a guide for selection of diagnostic testing sites.
We considered several climate, environmental, and socio-

demographic variables as predictors in our model. Proximity
to surface water (i.e., permanent and inland water bodies)
was the most important variable in the model. Although it is
plausible to assume that the route of infection for humans
and animals was by drinking water contaminated with
infected copepods, it is also possible that proximity to these
water bodies may be indicative of fishing villages and commu-
nities. This assumption possibly holds true given that infection
counts in dogs far surpassed infections in other species that
were used to build our model. Also, it is highly likely that
domesticated and wild animal hosts acquired infection by eat-
ing raw or undercooked fish and fish entrails6,7 due to
increased access to these food types in fishing villages. This
mode of exposure is suspected to be the most predominant

route associated with acquiring Guinea worm infection in areas
classified as fishing villages, as corroborated by Richards
et al.43 This association might have been clearer if we were
able to account for villages explicitly devoted to fishing.
We included groundwater-level/terrestrial water as a predic-

tor of Guinea worm infection in our model. This was considered
as a proxy for water wells or boreholes around primary resi-
dences (i.e., areas with an abundance of groundwater were
more likely to have water wells, thus not having to depend on
ponds and lakes for their drinking water). This hypothesis is in
keeping with Hunter’s study in Ghana.44 Perhaps the lack of
clear spatial correlation between groundwater-level/terrestrial
water and Guinea worm infection here may be another
indication that the predominant mode of transmission is
associated with eating aquatic animals, not by drinking con-
taminated water.
A previous case-control study that was conducted in

Chad aimed to identify potential human risk factors after the
program began reporting cases after a 10-year absence.
This study found that secondary water sources were a more
significant risk factor than primary water sources.45 This may
imply that infection was more likely to be acquired outside of
areas of primary residence, such as in farmland or crop fields
where access to safe water is limited and people and ani-
mals are more likely to use unsafe surface water sources.
Perhaps, this explains why the covariate used to classify
areas used for farming activities was an important predictor
of Guinea worm infection in our model. It is worth noting that
most inhabitants of Guinea worm–endemic villages are farm-
ers (either for subsistence or commercial purposes)27; there-
fore, it is thought that infection was also more likely to be
acquired in crop fields because of the unavailability of clean
drinking water sources in these fields.
Guinea worm infection follows a clear seasonal pattern in

Chad, with peak transmission occurring in the rainy season
from the months of April to July. This is indicative of the
prominence of our rainfall covariate, which emerged as an
important correlate of infection. Adequate rainfall will trans-
late to the formation of more temporary water ponds, which
may serve as seasonal water sources within the villages;

A B

FIGURE 8. Maps of mean predicted probability of Guinea worm infection. (A) Gridded 1km3 1km resolution maps overlaid with location of vil-
lages reporting Guinea worm infection in all hosts from 2010 to 2022. (B) Maps stratified by district overlaid with location of villages under surveil-
lance in 2022. Note the arrow pointing to an area that was predicted as high risk that subsequently began reporting new infections in March 2023.
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however, annual rainfall estimates .1,000mm may result in
flooding, thus washing off breeding sites of copepods.
Moreover, it is critical to note that the seasonal peak of
Guinea worm cases and infection also corresponds with
mass fishing events along the Chari River during the rainy
season.
Furthermore, we considered land surface temperature in

our model as opposed to air temperature. Although air tem-
perature may also highlight seasonal trends in transmission
to some extent, studies have shown that the influence of
land surface temperature on the ecology, survival, and
fecundity of copepod populations is significant, especially
on the ability to transmit Guinea worm infection. Food inse-
curity and conflict events were not found to be important
correlates of Guinea worm infection in Chad. It will be inter-
esting to assess the effects of these covariates in other
Guinea worm endemic countries such as Mali and South
Sudan, which have had more frequent occurrences of con-
flict events, civil unrest, internally displaced populations, and
disruption in commodity supplies, often resulting in acute
food shortages.
We acknowledge some caveats and limitations in this

work. First and foremost, the prediction of environmental
suitability alone does not guarantee the occurrence of
Guinea worm transmission. Also, there are other factors,
such as individual and community-level cultural and behav-
ioral factors, that species distribution models do not capture.
These factors might help identify geographical areas with
suitable environmental conditions that may be at even
greater risk for the occurrence of Guinea worm infection. In
addition, the dependent variable that was used to build the
model was village-level presence of Guinea worm infection
derived from surveillance data. Therefore, the reliability of
this dependent variable rests upon the sensitivity of the sur-
veillance system. Although we are confident in the system’s
ability to detect human cases,46 detecting canine cases is
more challenging,47 especially in insecure areas, villages
close to country borders, and within nomadic populations.
Finally, we have not accounted for intervention in our mod-
els. The purpose of this work was to demonstrate the overall
distribution of Guinea worm infection in Chad, but in future
work we intend to evaluate the effectiveness of intervention
and build temporal maps that describe the change in infec-
tion distribution over many years.

CONCLUSION

Overall, this work presents a unique resource and provides
the most comprehensive maps for Guinea worm distribution
and for prediction of environmental suitability in Chad.
Improved knowledge of the distribution of infections is useful
for the extension of surveillance and other necessary inter-
vention measures to newly identified areas and intensified
intervention efforts in previously known endemic areas. As
the CGWEP moves toward elimination, the methods and
results in this study will inform surveillance activities and
help optimize the allocation of intervention resources.
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