Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Nov 1;303(Pt 3):795–802. doi: 10.1042/bj3030795

Characterization of platelet-activating factor binding to human airway epithelial cells: modulation by fatty acids and ion-channel blockers.

J X Kang 1, S F Man 1, A J Hirsh 1, M T Clandinin 1
PMCID: PMC1137617  PMID: 7526847

Abstract

Radioligand-binding studies were performed in primary cultured human airway epithelial cells with [3H]PAF to determine whether these cells express platelet-activating factor (PAF) receptors. Scatchard analysis of PAF binding data revealed a single class of PAF binding sites with Kd 1.8 +/- 0.2 nM and Bmax. 21.0 +/- 2.1 fmol/10(6) cells (13,000 receptors/cell). PAF binding increased the intracellular free Ca2+ concentration ([Ca2+]i), indicating functional PAF receptors. Palmitate (C16:0), linoleic acid (C18:2 omega 6) or eicosapentaenoic acid (C20:5 omega 3) was incubated with the cells to test the effect on PAF binding. Incorporation of each fatty acid into cellular phospholipid occurred. [3H]PAF (1 nM) binding decreased in cells supplemented with C20:5 omega 3, but increased in the cells supplemented with C16:0. Scatchard analysis revealed that the inhibition of PAF binding by supplementation with C20:5 omega 3 was due to a decrease in both affinity and number of PAF receptors. PAF-stimulated increase in [Ca2+]i was also decreased by 60% in cells supplemented with C20:5 omega 3. Verapamil, a Ca(2+)-channel blocker, and amiloride, a Na(+)-channel blocker, inhibited specific binding of [3H]PAF to the cells, with IC50 4-5 microM and 0.2 mM respectively. Diphenylamine-2-carboxylate (DPC), a Cl(-)-channel blocker, dramatically increased PAF binding to the cell in a dose-dependent manner. Scatchard analysis revealed that verapamil and amiloride decreased both binding affinity and number of PAF receptors, whereas DPC increased PAF binding sites without affecting binding affinity. These results demonstrate that human airway epithelial cells have a functional receptor for PAF and that PAF receptor binding can be modulated by exogenous fatty acids and by ion-channel blockers.

Full text

PDF
795

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bankey P. E., Billiar T. R., Wang W. Y., Carlson A., Holman R. T., Cerra F. B. Modulation of Kupffer cell membrane phospholipid function by n-3 polyunsaturated fatty acids. J Surg Res. 1989 May;46(5):439–444. doi: 10.1016/0022-4804(89)90157-1. [DOI] [PubMed] [Google Scholar]
  2. Braquet P., Touqui L., Shen T. Y., Vargaftig B. B. Perspectives in platelet-activating factor research. Pharmacol Rev. 1987 Jun;39(2):97–145. [PubMed] [Google Scholar]
  3. Chao W., Olson M. S. Platelet-activating factor: receptors and signal transduction. Biochem J. 1993 Jun 15;292(Pt 3):617–629. doi: 10.1042/bj2920617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Collins F. S. Cystic fibrosis: molecular biology and therapeutic implications. Science. 1992 May 8;256(5058):774–779. doi: 10.1126/science.1375392. [DOI] [PubMed] [Google Scholar]
  5. Domingo M. T., Spinnewyn B., Chabrier P. E., Braquet P. Presence of specific binding sites for platelet-activating factor (PAF) in brain. Biochem Biophys Res Commun. 1988 Mar 15;151(2):730–736. doi: 10.1016/s0006-291x(88)80341-3. [DOI] [PubMed] [Google Scholar]
  6. Filep J. G., Földes-Filep E. Inhibition by calcium channel blockers of the binding of platelet-activating factor to human neutrophil granulocytes. Eur J Pharmacol. 1990 Nov 6;190(1-2):67–73. doi: 10.1016/0014-2999(90)94113-c. [DOI] [PubMed] [Google Scholar]
  7. Hargreaves K. M., Clandinin M. T. Phosphatidylethanolamine methyltransferase: evidence for influence of diet fat on selectivity of substrate for methylation in rat brain synaptic plasma membranes. Biochim Biophys Acta. 1987 Apr 3;918(2):97–105. doi: 10.1016/0005-2760(87)90183-4. [DOI] [PubMed] [Google Scholar]
  8. Holtzman M. J. Arachidonic acid metabolism in airway epithelial cells. Annu Rev Physiol. 1992;54:303–329. doi: 10.1146/annurev.ph.54.030192.001511. [DOI] [PubMed] [Google Scholar]
  9. Holtzman M. J., Ferdman B., Bohrer A., Turk J. Synthesis of the 1-O-hexadecyl molecular species of platelet-activating factor by airway epithelial and vascular endothelial cells. Biochem Biophys Res Commun. 1991 May 31;177(1):357–364. doi: 10.1016/0006-291x(91)91991-k. [DOI] [PubMed] [Google Scholar]
  10. Honda Z., Nakamura M., Miki I., Minami M., Watanabe T., Seyama Y., Okado H., Toh H., Ito K., Miyamoto T. Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature. 1991 Jan 24;349(6307):342–346. doi: 10.1038/349342a0. [DOI] [PubMed] [Google Scholar]
  11. Hwang S. B. Competitive inhibition of tritium-labeled platelet-activating factor binding to rabbit platelet membranes by amiloride and amiloride analogs. Biochem Biophys Res Commun. 1989 Aug 30;163(1):165–171. doi: 10.1016/0006-291x(89)92115-3. [DOI] [PubMed] [Google Scholar]
  12. Hwang S. B. Identification of a second putative receptor of platelet-activating factor from human polymorphonuclear leukocytes. J Biol Chem. 1988 Mar 5;263(7):3225–3233. [PubMed] [Google Scholar]
  13. Hwang S. B., Lam M. H., Pong S. S. Ionic and GTP regulation of binding of platelet-activating factor to receptors and platelet-activating factor-induced activation of GTPase in rabbit platelet membranes. J Biol Chem. 1986 Jan 15;261(2):532–537. [PubMed] [Google Scholar]
  14. Hwang S. B., Lam M. H., Shen T. Y. Specific binding sites for platelet activating factor in human lung tissues. Biochem Biophys Res Commun. 1985 Apr 30;128(2):972–979. doi: 10.1016/0006-291x(85)90142-1. [DOI] [PubMed] [Google Scholar]
  15. Hwang S. B., Lee C. S., Cheah M. J., Shen T. Y. Specific receptor sites for 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) on rabbit platelet and guinea pig smooth muscle membranes. Biochemistry. 1983 Sep 27;22(20):4756–4763. doi: 10.1021/bi00289a022. [DOI] [PubMed] [Google Scholar]
  16. Hwang S. B. Specific receptor sites for platelet activating factor on rat liver plasma membranes. Arch Biochem Biophys. 1987 Sep;257(2):339–344. doi: 10.1016/0003-9861(87)90574-1. [DOI] [PubMed] [Google Scholar]
  17. Hwang S. B. Specific receptors of platelet-activating factor, receptor heterogeneity, and signal transduction mechanisms. J Lipid Mediat. 1990 May-Jul;2(3-4):123–158. [PubMed] [Google Scholar]
  18. Kang J. X., Man S. F., Brown N. E., Labrecque P. A., Garg M. L., Clandinin M. T. Essential fatty acid metabolism in cultured human airway epithelial cells. Biochim Biophys Acta. 1992 Oct 30;1128(2-3):267–274. doi: 10.1016/0005-2760(92)90317-o. [DOI] [PubMed] [Google Scholar]
  19. Korth R., Middeke M. Long time incubation of monocytic U 937 cells with LDL increases specific paf-acether binding and the cellular acetylhydrolase activity. Chem Phys Lipids. 1991 Oct;59(3):207–213. doi: 10.1016/0009-3084(91)90020-c. [DOI] [PubMed] [Google Scholar]
  20. Kremer J. M. Clinical studies of omega-3 fatty acid supplementation in patients who have rheumatoid arthritis. Rheum Dis Clin North Am. 1991 May;17(2):391–402. [PubMed] [Google Scholar]
  21. Kuruvilla A., Putcha G., Shearer W. T. High-level expression of functional platelet-activating factor receptors on a human B lymphoblastoid cell line. Biochem Biophys Res Commun. 1991 Nov 14;180(3):1318–1324. doi: 10.1016/s0006-291x(05)81339-7. [DOI] [PubMed] [Google Scholar]
  22. Merritt J. E., McCarthy S. A., Davies M. P., Moores K. E. Use of fluo-3 to measure cytosolic Ca2+ in platelets and neutrophils. Loading cells with the dye, calibration of traces, measurements in the presence of plasma, and buffering of cytosolic Ca2+. Biochem J. 1990 Jul 15;269(2):513–519. doi: 10.1042/bj2690513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ng D. S., Wong K. Specific binding of platelet-activating factor (PAF) by human peripheral blood mononuclear leukocytes. Biochem Biophys Res Commun. 1988 Aug 30;155(1):311–316. doi: 10.1016/s0006-291x(88)81086-6. [DOI] [PubMed] [Google Scholar]
  24. Nunez E. A. Free fatty acids as modulators of the steroid hormone message. Prostaglandins Leukot Essent Fatty Acids. 1993 Jan;48(1):63–70. doi: 10.1016/0952-3278(93)90011-k. [DOI] [PubMed] [Google Scholar]
  25. O'Flaherty J. T., Surles J. R., Redman J., Jacobson D., Piantadosi C., Wykle R. L. Binding and metabolism of platelet-activating factor by human neutrophils. J Clin Invest. 1986 Aug;78(2):381–388. doi: 10.1172/JCI112588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Quinton P. M. Chloride impermeability in cystic fibrosis. Nature. 1983 Feb 3;301(5899):421–422. doi: 10.1038/301421a0. [DOI] [PubMed] [Google Scholar]
  27. Saito I., Saito H., Tamura Y., Yoshida S. Eicosapentaenoic acid inhibits cholesteryl ester accumulation in rat peritoneal macrophages by decreasing the number of specific binding sites of acetyl LDL. Clin Biochem. 1992 Oct;25(5):351–355. doi: 10.1016/0009-9120(92)80015-9. [DOI] [PubMed] [Google Scholar]
  28. Shukla S. D. Platelet-activating factor receptor and signal transduction mechanisms. FASEB J. 1992 Mar;6(6):2296–2301. doi: 10.1096/fasebj.6.6.1312046. [DOI] [PubMed] [Google Scholar]
  29. Simopoulos A. P. Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr. 1991 Sep;54(3):438–463. doi: 10.1093/ajcn/54.3.438. [DOI] [PubMed] [Google Scholar]
  30. Snyder F. Biochemistry of platelet-activating factor: a unique class of biologically active phospholipids. Proc Soc Exp Biol Med. 1989 Feb;190(2):125–135. doi: 10.3181/00379727-190-42839. [DOI] [PubMed] [Google Scholar]
  31. Sperling R. I., Benincaso A. I., Knoell C. T., Larkin J. K., Austen K. F., Robinson D. R. Dietary omega-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils. J Clin Invest. 1993 Feb;91(2):651–660. doi: 10.1172/JCI116245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sperling R. I. Dietary omega-3 fatty acids: effects on lipid mediators of inflammation and rheumatoid arthritis. Rheum Dis Clin North Am. 1991 May;17(2):373–389. [PubMed] [Google Scholar]
  33. Strader C. D., Sigal I. S., Dixon R. A. Genetic approaches to the determination of structure-function relationships of G protein-coupled receptors. Trends Pharmacol Sci. 1989 Dec;Suppl:26–30. [PubMed] [Google Scholar]
  34. Sumida C., Graber R., Nunez E. Role of fatty acids in signal transduction: modulators and messengers. Prostaglandins Leukot Essent Fatty Acids. 1993 Jan;48(1):117–122. doi: 10.1016/0952-3278(93)90019-s. [DOI] [PubMed] [Google Scholar]
  35. Swann P. G., Venton D. L., Le Breton G. C. Eicosapentaenoic acid and docosahexaenoic acid are antagonists at the thromboxane A2/prostaglandin H2 receptor in human platelets. FEBS Lett. 1989 Jan 30;243(2):244–246. doi: 10.1016/0014-5793(89)80137-1. [DOI] [PubMed] [Google Scholar]
  36. Tomkiewicz R. P., App E. M., Zayas J. G., Ramirez O., Church N., Boucher R. C., Knowles M. R., King M. Amiloride inhalation therapy in cystic fibrosis. Influence on ion content, hydration, and rheology of sputum. Am Rev Respir Dis. 1993 Oct;148(4 Pt 1):1002–1007. doi: 10.1164/ajrccm/148.4_Pt_1.1002. [DOI] [PubMed] [Google Scholar]
  37. Travers J. B., Li Q., Kniss D. A., Fertel R. H. Identification of functional platelet-activating factor receptors in Raji lymphoblasts. J Immunol. 1989 Dec 1;143(11):3708–3713. [PubMed] [Google Scholar]
  38. Ullian M. E. Fatty acid inhibition of angiotensin II-stimulated inositol phosphates in smooth muscle cells. Am J Physiol. 1993 Feb;264(2 Pt 2):H595–H603. doi: 10.1152/ajpheart.1993.264.2.H595. [DOI] [PubMed] [Google Scholar]
  39. Valone F. H., Coles E., Reinhold V. R., Goetzl E. J. Specific binding of phospholipid platelet-activating factor by human platelets. J Immunol. 1982 Oct;129(4):1637–1641. [PubMed] [Google Scholar]
  40. Valone F. H. Identification of platelet-activating factor receptors in P388D1 murine macrophages. J Immunol. 1988 Apr 1;140(7):2389–2394. [PubMed] [Google Scholar]
  41. Valone F. H. Inhibition of platelet-activating factor binding to human platelets by calcium channel blockers. Thromb Res. 1987 Mar 1;45(5):427–435. doi: 10.1016/0049-3848(87)90306-9. [DOI] [PubMed] [Google Scholar]
  42. Vanderhoek J. Y., Ekborg S. L., Bailey J. M. Nonsteroidal anti-inflammatory drugs stimulate 15-lipoxygenase/leukotriene pathway in human polymorphonuclear leukocytes. J Allergy Clin Immunol. 1984 Sep;74(3 Pt 2):412–417. doi: 10.1016/0091-6749(84)90140-4. [DOI] [PubMed] [Google Scholar]
  43. Wade P. J., Lunt D. O., Lad N., Tuffin D. P., McCullagh K. G. Effect of calcium and calcium antagonists on [3H]-Paf-acether binding to washed human platelets. Thromb Res. 1986 Jan 15;41(2):251–262. doi: 10.1016/0049-3848(86)90233-1. [DOI] [PubMed] [Google Scholar]
  44. Weber C., Aepfelbacher M., Lux I., Zimmer B., Weber P. C. Docosahexaenoic acid inhibits PAF and LTD4 stimulated [Ca2+]i-increase in differentiated monocytic U937 cells. Biochim Biophys Acta. 1991 Dec 3;1133(1):38–45. doi: 10.1016/0167-4889(91)90239-t. [DOI] [PubMed] [Google Scholar]
  45. Welsh M. J. An apical-membrane chloride channel in human tracheal epithelium. Science. 1986 Jun 27;232(4758):1648–1650. doi: 10.1126/science.2424085. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES