Abstract
Previous studies on the isoform composition of human ribonucleases (RNAases) have resulted in confusing and inconsistent results, presumably due to methodological problems in electrofocusing of alkaline proteins. In the present study, immobilized pH gradient (IPG) carrier ampholyte (CA) isoelectric focusing (IEF) and conventional CA-IEF have been evaluated for the analysis of the isoforms of human non-secretory RNAases purified from kidney, liver and spleen. CA-IEF proved unsuitable since the alkaline RNAase isoforms migrated into the cathode. IPG-CA-IEF, however, resolved the RNAase isoforms and marker proteins in the basic region of the gel matrix. The three RNAases had comparable isoform profiles, each with two protein bands with approximate pI values of 10.3 and 10.4. Western blotting showed that the two protein bands of each RNAase were immunoreactive (with polyclonal antibodies that recognize RNAase), indicating that the protein bands are RNAase isoforms. The present results provide reliable pI data on human RNAase isoforms and suggest that IPG-CA-IEF should be a suitable technique for analysing the isoforms of other alkaline proteins.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ardelt W., Mikulski S. M., Shogen K. Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. J Biol Chem. 1991 Jan 5;266(1):245–251. [PubMed] [Google Scholar]
- Barker R. L., Loegering D. A., Ten R. M., Hamann K. J., Pease L. R., Gleich G. J. Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases. J Immunol. 1989 Aug 1;143(3):952–955. [PubMed] [Google Scholar]
- Beintema J. J., Hofsteenge J., Iwama M., Morita T., Ohgi K., Irie M., Sugiyama R. H., Schieven G. L., Dekker C. A., Glitz D. G. Amino acid sequence of the nonsecretory ribonuclease of human urine. Biochemistry. 1988 Jun 14;27(12):4530–4538. doi: 10.1021/bi00412a046. [DOI] [PubMed] [Google Scholar]
- Bjellqvist B., Ek K., Righetti P. G., Gianazza E., Görg A., Westermeier R., Postel W. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods. 1982 Sep;6(4):317–339. doi: 10.1016/0165-022x(82)90013-6. [DOI] [PubMed] [Google Scholar]
- Cowdrey G., Gould B., Rees J., Firth G. The separation and detection of alkaline oligoclonal IgG bands in cerebrospinal fluid using immobilised pH gradients. Electrophoresis. 1990 Oct;11(10):813–818. doi: 10.1002/elps.1150111007. [DOI] [PubMed] [Google Scholar]
- Cranston J. W., Perini F., Crisp E. R., Hixson C. V. Purification and properties of ribonucleases from human urine. Biochim Biophys Acta. 1980 Dec 4;616(2):239–258. doi: 10.1016/0005-2744(80)90142-4. [DOI] [PubMed] [Google Scholar]
- D'Alessio G., Di Donato A., Parente A., Piccoli R. Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem Sci. 1991 Mar;16(3):104–106. doi: 10.1016/0968-0004(91)90042-t. [DOI] [PubMed] [Google Scholar]
- Gleich G. J., Loegering D. A., Bell M. P., Checkel J. L., Ackerman S. J., McKean D. J. Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A. 1986 May;83(10):3146–3150. doi: 10.1073/pnas.83.10.3146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurihara M., Ogawa M., Ohta T., Kurokawa E., Kitahara T., Kosaki G., Watanabe T., Wada H. Purification and immunological characterization of human pancreatic ribonuclease. Cancer Res. 1982 Nov;42(11):4836–4841. [PubMed] [Google Scholar]
- Lawrence C. W., Little P. A., Little B. W., Glushka J., van Halbeek H., Alhadeff J. A. Human non-secretory ribonucleases. II. Structural characterization of the N-glycans of the kidney, liver and spleen enzymes by NMR spectroscopy and electrospray mass spectrometry. Glycobiology. 1993 Jun;3(3):249–259. doi: 10.1093/glycob/3.3.249. [DOI] [PubMed] [Google Scholar]
- Lawrence C. W., Little P. A., Little B. W., Miller M. J., Bazel S., Alhadeff J. A. Human non-secretory ribonucleases. I. Purification, peptide mapping and lectin blotting analysis of the kidney, liver and spleen enzymes. Glycobiology. 1993 Jun;3(3):241–248. doi: 10.1093/glycob/3.3.241. [DOI] [PubMed] [Google Scholar]
- Maor D., Mardiney M. R., Jr Alteration of human serum ribonuclease activity in malignancy. CRC Crit Rev Clin Lab Sci. 1978;10(1):89–111. doi: 10.3109/10408367909149733. [DOI] [PubMed] [Google Scholar]
- Mizuta K., Yasuda T., Ikehara Y., Sato W., Kishi K. New detection method for ribonuclease 2 (RNase 2) using immunoblotting with specific antibody. Z Rechtsmed. 1990;103(5):315–322. doi: 10.1007/BF01263035. [DOI] [PubMed] [Google Scholar]
- Patestos N. P., Fauth M., Radola B. J. Fast and sensitive protein staining with colloidal acid violet 17 following isoelectric focusing in carrier ampholyte generated and immobilized pH gradients. Electrophoresis. 1988 Sep;9(9):488–496. doi: 10.1002/elps.1150090908. [DOI] [PubMed] [Google Scholar]
- Righetti P. G., Drysdale J. W. Small-scale fractionation of proteins and nucleic acids by isoelectric focusing in polyacrylamide gels. Ann N Y Acad Sci. 1973 Jun 15;209:163–186. doi: 10.1111/j.1749-6632.1973.tb47527.x. [DOI] [PubMed] [Google Scholar]
- Rybak S. M., Saxena S. K., Ackerman E. J., Youle R. J. Cytotoxic potential of ribonuclease and ribonuclease hybrid proteins. J Biol Chem. 1991 Nov 5;266(31):21202–21207. [PubMed] [Google Scholar]
- Strydom D. J., Fett J. W., Lobb R. R., Alderman E. M., Bethune J. L., Riordan J. F., Vallee B. L. Amino acid sequence of human tumor derived angiogenin. Biochemistry. 1985 Sep 24;24(20):5486–5494. doi: 10.1021/bi00341a031. [DOI] [PubMed] [Google Scholar]
- Yasuda T., Nadano D., Tanaka Y., Kishi K. Specific identification of human ribonucleases by antibodies produced against two synthetic peptides corresponding to the N- and C-terminal amino-acid sequences of human urinary secretory-type ribonuclease. Biochim Biophys Acta. 1992 Jun 24;1121(3):331–334. doi: 10.1016/0167-4838(92)90165-a. [DOI] [PubMed] [Google Scholar]
- Yasuda T., Nadano D., Tenjo E., Takeshita H., Kishi K. The zymogram method for detection of ribonucleases after isoelectric focusing: analysis of multiple forms of human, bovine, and microbial enzymes. Anal Biochem. 1992 Oct;206(1):172–177. doi: 10.1016/s0003-2697(05)80029-6. [DOI] [PubMed] [Google Scholar]


