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Abstract
Background  Increasing evidence indicates a higher prevalence of polyneuropathy (PNP) in Parkinson’s disease (PD). How-
ever, the involvement of large fiber neuropathy in PD still remains poorly understood. Given the lack of longitudinal data, 
we investigated the course of PNP associated with PD.
Methods  In total, 41 PD patients underwent comprehensive clinical evaluation including motor and non-motor assessments 
as well as nerve conduction studies at baseline and at 2 years of follow-up. The definition of PNP was based on electrophysi-
ological standard criteria. Common causes of PNP were excluded.
Results  At baseline, PNP was diagnosed in 65.85% of PD patients via electroneurography. Patients with PNP presented with 
higher age (p = 0.019) and PD motor symptom severity (UPDRS III; p < 0.001). Over the course of 2 years, PNP deteriorated 
in 21.95% of cases, and 26.83% remained without PNP. Deterioration of nerve amplitude was most prevalent in the median 
sensory nerve affecting 57.58% of all PD cases with an overall reduction of median sensory nerve amplitude of 45.0%. With 
regard to PD phenotype, PNP progression was observed in 33.33% of the tremor dominant and 23.81% of the postural insta-
bility/gait difficulties subtype. Decrease of sural nerve amplitude correlated with lower quality of life (PDQ-39, p = 0.037) 
and worse cognitive status at baseline (MoCA, p = 0.042).
Conclusion  The study confirms the high PNP rate in PD, and demonstrates a significant electrophysiological progression also 
involving nerves of the upper extremities. Longitudinal studies with larger cohorts are urgently needed and should elucidate 
the link between PD and PNP with the underlying pathomechanisms.
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Introduction

As the most common neurodegenerative movement disorder 
[1], the high clinical relevance of Parkinson’s disease (PD) 
is undisputed. PD occurs predominantly in the population 
over the age of 60 years with a global prevalence of around 

1% increasing in tendency due to the aging population [2]. 
Aggregation of α-synuclein in the form of Lewy bodies 
promotes selective and progressive neuronal death lead-
ing to cardinal motor symptoms and a wide range of non-
motor symptoms such as dysautonomia, constipation, and 
neuropsychiatric symptoms [3]. Polyneuropathy (PNP) is a 
pathologic condition of the peripheral nervous system affect-
ing the sensory, motor, and autonomic domains [4]. Depend-
ing on the functional domain, PNP manifests with sensory 
symptoms such as numbness, paresthesia, pain, and motor 
weakness. In our study context, we refer to the impairment 
of the myelinated large nerve fibers. A higher coincidence 
of PNP has been observed in PD [5–9]. Nerve conduction 
studies revealed that in the majority of PD cases, PNP is dis-
tal, symmetric, axonal, and predominantly sensory [10]. As 
a result of PNP comorbidity, PD symptoms such as gait or 
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sensory disturbances could be further compromised [11, 12]. 
The question of whether PNP occurrence is influenced by 
extrinsic factors as implied by data on levodopa utilization or 
is intrinsic to PD itself by α-synuclein pathology in periph-
eral nerves is still under debate [10, 13]. In this prospective 
study, we analyze the electrophysiological course of PNP in 
PD patients over a follow-up period of 2 years. Taking into 
account a variety of clinical and laboratory assessments, we 
evaluate the relevance of PNP in PD as a possible marker of 
disease progression.

Methods

Inclusion of patients

We extended the prospective monocentric “Parkinson Nerve 
Study” cohort at St. Josef-Hospital in Bochum, Germany, 
which had been established for our first observational study 
[5]. This study was registered in the German clinical trials 
registry (DRKS-ID: DRKS00020752) and approved by the 
Ethics Committee of the Medical Faculty of Ruhr University 
Bochum (Reg. No. 18-6360, date of approval 12.09.2018).

All patients participating in our study were seen by neu-
rologists specialized in movement disorders. For eligibility, 
patients had to fulfill the criteria by the United Kingdom 
Parkinson’s Society Brain Bank [14] as well as those by 
the Movement Disorder Society for PD [15]. Patients with 
known causes of PNP such as diabetes or alcohol abuse, 
severe depression, or dementia were excluded from the 
study. All patients agreed to participate in the form of writ-
ten informed consent. One hundred nineteen PD patients 
were enrolled between October 2018 and September 2021. 
Out of these patients, 41 participants could be recruited for 
follow-up after 2 years between September 2020 and August 
2023. Others could not be followed-up due to various rea-
sons (Fig. 1).

Clinical evaluation

Medical history and sociodemographic data of all partici-
pants were assessed. Moreover, a detailed clinical exami-
nation as well as the acquisition of relevant clinical scores 
were carried out as part of the study. Clinical examinations 
that we applied in this study in order to evaluate the sever-
ity of motor and non-motor PD symptoms include Hoehn 
and Yahr Scale (H&Y; [16]) MDS-Unified Parkinson’s Dis-
ease Rating Scale (MDS-UPDRS) Part I, II and III [17], 
Non-Motor Symptoms Questionnaire (NMSQ; [18]) and 
Montreal Cognitive Assessment Test for Dementia (MoCA; 
[19]). Subitem 10 (unexplained pains) and subitem 21 (fall-
ing) of NMSQ were separately analyzed to evaluate PNP-
typical symptoms. Subitem 2.12 (walking and balance) und 

3.12 (postural stability) of MDS-UPDRS were summed up 
to focus on balance deficits and falls. Neuropathy Symptom 
Score (NSS; [20]) and Parkinson’s Disease Questionnaire 
(PDQ-39; [21]) were used to assess the subjective burden 
of PNP symptoms. For sub-analysis, we applied Stebbins’ 
categorization of clinical PD phenotypes into postural insta-
bility/gait difficulty (PIGD), tremor dominant (TD), and 
indeterminate subgroup [22].

Assessment of laboratory values

To evaluate other causes of PNP and the influence of levo-
dopa medication, our patients received blood sampling and 
urine analysis which were checked for abnormalities con-
cerning blood cell count, HbA1c, liver enzymes, urea, elec-
trolytes, creatinine, thyroid stimulating hormone, vitamin 
B12, B1, B6, methylmalonic acid, folic acid, homocysteine, 
holotranscobalamin and serum protein electrophoresis/
immunfixation.

Nerve conduction studies

Nerve conduction studies (NCS) are considered the gold 
standard method for objective and reliable evaluation of large 
nerve function [23]. We performed NCS on the peripheral 
nerves using a Medtronic four-channel electroneurography 
device (Medtronic, Meerbusch, Germany). Our protocol 
included an examination of motor amplitudes of the tibial, 
fibular, median and ulnar nerve and sensory studies of the 
fibular, radial, median, and ulnar nerve. Whenever possible, 
nerve conduction studies were performed bilaterally. The 
lower nerve amplitude was selected for early PNP detection. 
PNP was diagnosed based on the electrophysiological 
criteria by Stöhr et  al., 2014 [24]. PNP severity was 
classified into mild, moderate, and severe. Mild sensory 
PNP was defined as a reduction of sensory nerve action 

Fig. 1   Study flow diagram
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potential (sNAP) < 3.8  µV of the sural nerve. Patients 
presenting with reduced sural sNAP as well as reduced 
compound muscle action potential (cMAP) of the tibial 
nerve < 5 mV were considered to be moderately affected. A 
severe, sensorimotor PNP was set if additionally, a reduction 
of median cMAP < 5 mV or median sNAP < 6.9 µV was 
present.

Statistical analysis

SPSS version 28.0 (IBM Deutschland GmBH, Ehningen, 
Germany) was used for statistical analysis and graphics. The 
Shapiro–Wilk test was applied to assess normal distribution. 
In the case of a normal distribution, comparisons were made 
using the t test. Moreover, the Mann–Whitney U test and the 
Wilcoxon test were utilized for group comparisons concern-
ing non-normally distributed data. To review co-variances 
between different variables, Spearman’s r was applied. Data 
were considered significantly different when p values fell 
below 0.05. To rule out age as a confounding factor of PNP, 
we performed partial correlation analysis with corrections 
for age.

Results

Clinical and PNP status at baseline

We included 41 PD patients for our longitudinal analysis as 
summarized in Table 1.

PD patients with electrophysiological signs of PNP were 
significantly older at examination (p = 0.019) and at PD diag-
nosis (p = 0.017) compared to those without PNP (Table 1). 
Notably, MDS-UPDRS III was significantly higher in the 
PNP-positive subgroup (p < 0.001, Table 1). MDS-UPDRS 
II.12 and III.12 regarding balance and falls showed no dif-
ference between subgroups. NSS did not differ between PD 
patients with and without PNP. Only few patients reported 
unexplained pain (NMSQ item 10). Falls (NMSQ item 21) 
were only present in the PNP-positive subgroup. No dif-
ference could be found in terms of levodopa equivalence 
as well as isolated levodopa dosage. Regarding laboratory 
assessments, a higher folate level was detected in the PD-
PNP subgroup (p = 0.037, Table 1) independent of folic acid 
intake (r = 0.186, p = 0.284).

In total, 65.85% of our PD patients showed signs of an at 
least mild PNP at baseline. Reduced sural and tibial nerve 
amplitudes distinguished PNP-positive from the PNP-nega-
tive subgroup significantly (p < 0.001, Table 1). According 
to our PNP categorization, 31.71% showed mild sensory, 
14.63% moderate sensorimotor, and 19.51% severe senso-
rimotor PNP. Tibial cMAP (r = – 0.456, p = 0.003, Fig. 2a) 
and median sNAP (r = – 0.411, p = 0.011, Fig. 2b) correlated 

inversely with age at examination. Moreover, tibial cMAP 
correlated inversely with age at PD onset (r = – 0.376, 
p = 0.015; Fig. 2c) as well as with NSS scores (r = – 0.458, 
p = 0.003 after correction for age; Fig. 2d). Independent of 
age, lower sural and tibial nerve amplitudes correlated with 
higher MDS-UPDRS III scores (sural nerve r = – 0.389, 
p = 0.013; Fig.  2e; tibial nerve r = – 0.410, p = 0.009; 
Fig. 2f). Regarding Stebbins’ phenotype distribution, 14 out 
of 21 PIGD-PD and 8 out of 12 TD-PD patients (66.67% 
respectively) as well as 5 out of 8 patients of the indetermi-
nate subgroup (62.50%) displayed electrophysiological signs 
of PNP (Fig. 3a).

Follow‑up evaluation

Change of clinical data

Over the course of 2 years, we observed a significant wors-
ening of disease severity according to Hoehn and Yahr scale 
(p = 0.004) whereas MDS-UPDRS III did not change signifi-
cantly (Table 2a). However, MDS-UPDRS II.12 and III.12 
regarding balance and falls increased significantly in the 
total PD cohort (p = 0.036, Table 2a) as well as in the PNP-
positive subgroup (p = 0.012, Table 2b). NMSQ increased 
(NMSQ p = 0.028, Table 2a) and the PNP-specific subitems 
10 and 12 also showed an increasing trend. Levodopa dos-
age increased, whereas homocysteine levels decreased sig-
nificantly in the total PD cohort (LED/levodopa p < 0.001; 
homocysteine p = 0.045, Table 2a). Patients with electroneu-
rographical features of PNP at baseline showed a deterio-
ration of the Hoehn and Yahr scale (p = 0.004) and lower 
MoCA scores (p = 0.009) at T2, as outlined in Table 2b.

Change of PNP parameters

In the nerve conduction analysis, median sNAP (p = 0.002) 
and tibial cMAP (p = 0.004) were shown to be significantly 
reduced at follow-up (Table 2a, Fig. 4a, b). Median sNAP 
decreased by 45%, tibial cMAP decreased by 14.2% in our 
total PD cohort. Comparing PNP-positive PD subgroups 
at T0 vs. T2, amplitudes of the tibial (p = 0.025, Fig. 4a), 
median sensory (p = 0.011), radial sensory (p = 0.046), and 
ulnar sensory (p = 0.006) nerve were significantly reduced, 
whereas the sural sNAP was increased (p < 0.001; Table 2b). 
Overall, 21.95% of the patients presented with either a dete-
rioration of an established PNP into a more affected PNP 
category or developed electrophysiological signs of PNP for 
the first time. 78.05% of the patients were stable in PNP, 
26.83% remained without PNP (Table S1). Patients who 
did not develop PNP exhibited lower UPDRS III (p = 0.002) 
and NSS scores (p = 0.023; Table S1), and were of younger 
age (p = 0.035). Comparing PD patients with stable ver-
sus aggravated PNP, NSS (p = 0.029) and vitamin B12 
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levels (p = 0.015) were higher in the aggravated subgroup 
(Table S2). On individual nerve level, a PNP deterioration 
was defined as a reduction of the nerve amplitude of at least 
2 mV/µV. Sural sNAP worsened in 12.20%, tibial cMAP in 
24.39%, and median cMAP in 25.71% of cases. A deteriora-
tion of the median sNAP was detected in 57.58% of cases. 
Referring to Stebbins’ phenotypes, 15 out of 24 patients of 
the PIGD subtype (62.50%), 3 out of 8 patients of the TD 
subtype (37.50%), and 1 out of 3 patients of the indetermi-
nate subtype (33.33%) showed nerve conduction abnormali-
ties at 2 years of follow-up (Fig. 3b). In sum, PNP status 
in the indeterminate group remained stable while a PNP 

progression was observed in 23.81% of PIGD and 33.33% 
of TD cases (Fig. 3c).

Correlation analysis revealed a significant association of 
the difference of the sural nerve amplitudes with PDQ-39 
(r = – 0.336, p = 0.037; Fig. 5a) and MoCA scores (r = 0.331, 
p = 0.042; Fig. 5b) at T0 independent of patient age. Other 
nerve amplitudes in multiple combinations with clinical and 
laboratory parameters did not show a significant correlation.

Table 1   Clinical and 
electrophysiological 
characteristics of the study 
population with and without 
PNP at baseline

PNP(+) PD patients with PNP, PNP(–) denotes PD patients without PNP. IQR interquartile ratio, H&Y 
Hoehn and Yahr Scale, MDS-UPDRS Movement Disorder Society Unified Parkinson’s Disease Rating 
Scale, NMSQ Non-Motor Symptom Questionnaire, NSS Neuropathy Symptom Score, MoCA Montreal 
Cognitive Assessment, LED levodopa equivalence dose
*p < 0.05; **p < 0.01. Clinical scores: mean values ± standard deviation (SD) are presented. H&Y scale: 
median value and IQR are presented

PNP( +) (n = 27) PNP(–) (n = 14) p

Age at examination (years) 66.33 ± 9.53 (27) 59.36 ± 6.63 (14) 0.019*
Female 8 9
Disease duration (years) 5.67 ± 4.76 (27) 4.93 ± 3.73 (14) 0.658
Age at PD diagnosis (years) 60.67 ± 7.75 (27) 54.43 ± 7.27 (14) 0.017*
H&Y (median, IQR) 2 (IQR 1) (27) 2,25 (IQR 1) (14) 0.977
MDS-UPDRS I 10.73 ± 5.97 (26) 11.43 ± 6.16 (14) 0.898
MDS-UPDRS II 12.58 ± 9.04 (26) 11.43 ± 7.17 (14) 0.831
MDS-UPDRS III 32.59 ± 16.53 (27) 18.79 ± 7.96 (14)  < 0.001**
MDS-UPDRS II.12 + III.12 1.65 ± 2.10 (26) 1.14 ± 0.95 (14) 0.941
PDQ-39 22.38 ± 17.71 (26) 24.19 ± 15.49 (14) 0.533
NMSQ 9.04 ± 5.45 (26) 9.14 ± 4.72 (14) 0.921
NMSQ (item 10—yes) 4 (23) 2 (13)
NMSQ (item 21—yes) 8 (24) 0 (14)
NSS 5.46 ± 3.19 (26) 3.43 ± 2.93 (14) 0.065
MoCA 24.92 ± 3.63 (25) 23.71 ± 3.52 (14) 0.227
LED (mg) 610.15 ± 315.56 (27) 586.32 ± 391.47 (14) 0.834
Levodopa (mg) 329.63 ± 187.22 (27) 323.21 ± 207.19 (14) 0.921
Vitamin B12 (pg/ml) 421.08 ± 163.55 (26) 434.85 ± 105.54 (13) 0.753
Holotranscobalamin (pmol/l) 88.57 ± 34.89 (26) 82.84 ± 24.82 (14) 0.590
Folic acid (ng/ml) 13.03 ± 6.43 (26) 8.24 ± 4.84 (13) 0.037*
Methylmalonic acid (nmol/l) 353.63 ± 293.93 (25) 236.02 ± 71.60 (14) 0.224
Homocysteine (µmol/l) 19.07 ± 7.83 (20) 16.77 ± 5.70 (13) 0.507
Sural nerve (µV) 0.69 ± 1.21 (27) 6.92 ± 1.84 (14)  < 0.001**
Tibial nerve (mV) 5.35 ± 3.79 (27) 10.90 ± 3.35 (14)  < 0.001**
Median motor nerve (mV) 6.40 ± 1.57 (25) 6.27 ± 2.39 (13) 0.834
Median sensory nerve (µV) 7.28 ± 5.53 (24) 10.72 ± 7.59 (13) 0.105
Fibular motor nerve (mV) 2.53 ± 2.36 (11) 2.47 ± 1.98 (6) 0.958
Fibular sensory nerve (µV) 1.28 ± 2.63 (11) 3.08 ± 2.46 (6) 0.091
Radial nerve (µV) 5.53 ± 1.72 (10) 7.80 ± 4.71 (6) 0.301
Ulnar motor nerve (mV) 7.88 ± 1.31 (12) 8.54 ± 2.80 (7) 0.569
Ulnar sensory nerve (µV) 6.06 ± 1.49 (12) 5.70 ± 1.58 (7) 0.627
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Discussion

Despite growing evidence of increased PNP prevalence in 
the PD population, longitudinal nerve conduction studies 
in PD patients are lacking. Therefore, we investigated the 
course of PNP in PD over 2 years to better understand the 
relationship between these entities.

Electrophysiological diagnosis of PNP could be estab-
lished in 65.85% of our PD cohort at baseline. The higher 
PNP prevalence is in line with the findings of previous 

studies, although PNP rates vary greatly from 5% up to 69% 
[5, 25, 26] due to the heterogeneity of the study popula-
tion and definition of PNP diagnosis. Some studies applied 
the American Academy of Neurology (AAN) PNP criteria 
requiring the combination of clinical and electrodiagnos-
tic abnormalities [27] that could have lowered the overall 
PNP rate [6, 7, 25]. Whereas in our study, PNP diagnosis 
mainly relied on electrophysiological parameters, and selec-
tion of the lower amplitude of bilateral nerve measurements 
increased the sensitivity of PNP detection. In our study, we 

a b

c d

r=-0,456, p=0,003 r=-0,411, p=0,011

r=-0,376, p=0,015 r=-0,458, p=0,003

e f
r=-0,389, p=0,013 r=-0,410, p=0,009

Fig. 2   Correlations at baseline. a Amplitude of tibial nerve in rela-
tion to age at examination; b amplitude of median nerve (sensory) in 
relation to age at examination; c amplitude of tibial nerve in relation 

to age at PD onset; d amplitude of tibial nerve in relation to NSS; e 
amplitude of sural nerve in relation to MDS-UPDRS III; f amplitude 
of tibial nerve in relation to MDS-UPDRS III
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a b c

Fig. 3   Distribution and longitudinal evolution of PNP in Stebbins’ 
phenotypes. Patients affected by PNP vs. patients not affected by PNP 
in Stebbins’ phenotypes at T0 (a) and T2 (b); c patients with stable 

vs. aggravated PNP in Stebbins’ phenotypes. PIGD postural instabil-
ity and gait difficulties, TD tremor dominant

Table 2   Longitudinal evaluation of clinical and electrophysiological parameters

a Evaluation of the total cohort at T0 and T2
b Evaluation of PNP-positive PD patients (T0) at T0 and T2
Clinical scores: mean values ± SD are presented. H&Y scale: median value and IQR are presented. NCS: mean amplitudes ± SD are presented. 
H&Y: median and IQR are presented. *p < 0.05, **p < 0.01

T0 total (n = 41) T2 total (n = 41) p T0 PNP( +) (n = 27) T2 PNP( +) (n = 27) p

H&Y (median, IQR) 2 (IQR 1.0) 2,5 (IQR 1.0) 0.004* 2.0 (IQR 1.0) 3.0 (IQR 1.0) 0.004*
MDS-UPDRS I 11.50 ± 5.93 11.78 ± 6.10 0.730 11.48 ± 5.79 11.70 ± 6.31 0.843
MDS-UPDRS II 12.18 ± 8.36 13.45 ± 9.04 0.925 12.58 ± 9.04 14.44 ± 10.16 0.552
MDS-UPDRS III 27.70 ± 15,72 28.18 ± 15,14 0.799 32,59 ± 16.53 33,67 ± 14.54 0.571
MDS-UPDRS II.12 + III.12 1,0.48 ± 1,0.78 2,0.13 ± 2,0.17 0,0.036* 1,0.65 ± 2,0.10 2,0.59 ± 2,0.34 0,0.012*
PDQ-39 23.72 ± 16.92 25.20 ± 18.21 0.562 22.38 ± 17.71 26.49 ± 20.68 0.187
NMSQ 9.10 ± 5.21 11.00 ± 5.26 0.028* 9.04 ± 5.45 10.54 ± 5.31 0.141
NMSQ (item 10—yes) 6 (36) 20 (39) 4 (23) 12 (27)
NMSQ (item 21—yes) 8 (38) 15 (40) 8 (24) 11 (27)
NSS 4.87 ± 3.16 5.05 ± 3.15 0.774 5.46 ± 3.19 5.58 ± 2.86 0.986
MoCA 24.54 ± 3.52 23.68 ± 4.03 0.089 24.79 ± 3.65 23.08 ± 4.38 0.009*
LED (mg) 602.01 ± 338.62 822.89 ± 357.18  < 0.001** 610.15 ± 315.56 885.07 ± 380.58  < 0.001**
Levodopa (mg) 327.44 ± 191.69 491.46 ± 233.09  < 0.001** 329.63 ± 187.22 532.41 ± 267.09  < 0.001**
Vitamin B12 (pg/ml) 433.12 ± 150.11 467.22 ± 165.14 0.270 428.44 ± 162.47 479.06 ± 171.92 0.192
Holotranscobalamin (pmol/l) 86.33 ± 32.60 91.36 ± 34.50 0.430 90.80 ± 34.62 96.53 ± 34.82 0.478
Folic acid (ng/ml) 12.06 ± 6.33 12.23 ± 6.50 0.567 13.41 ± 6.27 12.65 ± 6.42 0.191
Methylmalonic acid (nmol/l) 279.59 ± 138.48 280.82 ± 147.96 0.758 297.07 ± 155.24 289.34 ± 166.01 0.808
Homocysteine (µmol/l) 18.66 ± 6.77 15.97 ± 5.48 0.045* 19.40 ± 7.90 16.08 ± 6.51 0.059
Sural nerve (µV) 2.81 ± 3.32 3.69 ± 3.26 0.058 0.69 ± 1.21 2.65 ± 2.77  < 0.001**
Tibial nerve (mV) 7.24 ± 4.48 6.21 ± 4.02 0.004* 5.35 ± 3.79 4.61 ± 3.68 0.025*
Median sensory nerve (µV) 8.85 ± 6.63 4.78 ± 2.93 0.002* 7.43 ± 5.71 4.07 ± 2.19 0.011*
Fibular motor nerve (mV) 2.52 ± 2.28 2.44 ± 2.30 0.724 2.45 ± 2.50 2.34 ± 2.54 0.799
Fibular sensory nerve (µV) 1.61 ± 2.11 1.23 ± 3.34 0.753 0.81 ± 1.41 0.00 ± 0.00 0.180
Radial nerve (µV) 6.53 ± 3.78 6.58 ± 5.73 0.477 4.91 ± 1.50 2.29 ± 1.63 0.046*
Ulnar motor nerve (mV) 8.26 ± 2.11 7.39 ± 1.69 0.224 7.82 ± 1.45 7.89 ± 1.77 0.678
Ulnar sensory nerve (µV) 5.99 ± 1.65 5.01 ± 4.02 0.392 6.30 ± 1.67 3.09 ± 1.93 0.006*
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focused on the investigation of large fiber neuropathy. For 
this purpose, we chose NCS as an objective and reliable 
method to measure large nerve function. There are further 
specific neurophysiological tests such as quantitative sensory 
testing (QST) based on subjective perception thresholds and 
also integrating small nerve fiber evaluation [28]. Quantita-
tive characterization of nerve fibers constitutes a growing 
field for evaluation of small fiber neuropathy [29]. Future 
studies should expand modalities of nerve assessment meth-
ods to provide a more integral understanding of peripheral 
nerve involvement in PD.

Age at examination and at PD diagnosis was higher in PD 
patients with PNP and correlated inversely with amplitudes 

of the tibial and median nerve. Patients who remained with-
out PNP were also younger than patients with PNP in our 
study. These findings are intriguing since age has been dis-
cussed as an independent risk factor for the development 
of neuropathy. Ceravalo et al. reported that the risk of neu-
ropathy increased by approximately 8% for each year of age 
[25]. Age-related nutritional deficiencies such as vitamin 
B12 status may partly influence the onset of neuropathy in 
PD [30]. Nevertheless, using age-matched controls, a higher 
PNP prevalence in PD has been confirmed in several studies 
[7, 25, 31, 32].

The majority of PNP cases at baseline showed length-
dependently a distal predilection site for sensory and motor 

(a) Evolution of the amplitudes of the tibial nerve; (b) Evolution of the amplitudes of the median sensory nerve; **p <0,01.

a b** **

Fig. 4   Longitudinal course of the tibial and median sensory nerve. a Evolution of the amplitudes of the tibial nerve; b evolution of the ampli-
tudes of the median sensory nerve; **p < 0.01

(a) Difference of sural nerve amplitudes in relation to PDQ-39 at T0;  (b) Difference of sural nerve amplitudes in relation to MoCA 
at T0.

a b

r=-0,336, p=0,037 r=0,331, p=0,042

Fig. 5   Correlation analysis in the longitudinal course. a Difference of sural nerve amplitudes in relation to PDQ-39 at T0; b difference of sural 
nerve amplitudes in relation to MoCA at T0
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nerve impairment of the lower extremities (mild and mod-
erate PNP), although 19.5% of PNP cases also involved the 
median nerve categorized as severe PNP. Using a differ-
ent classification of neuropathy severity, Ramachandran 
et al. reported that out of 28 PD patients with PNP, 15 had 
mild axonal sensory neuropathy (below 2 SD sNAP), 8 had 
severe axonal sensory neuropathy (absent sNAP), and 5 had 
sensorimotor axonal neuropathy (below 2 SD cMAP) [33]. 
Another nerve conduction study found that the superficial 
fibular nerve (55.00%) and the sural nerve (50.00%) were 
most affected in PD patients [8]. These results support the 
general conception that PD-associated PNP is predomi-
nantly sensory and axonal [10], whereas in our cohort, motor 
amplitudes were also significantly affected.

At 2 years of follow-up, an overall PNP progression 
was observed in 21.95% of our PD cohort. This finding is 
intriguing since progression rates of idiopathic and vitamin 
B12 deficiency PNP have been reported to be minimal over 
3 years [34]. Paradoxically, sural sNAP in our PD cohort 
increased over time. Technical issues such as electrical inter-
ference, excessive adipose tissue and edema in limbs could 
have led to variations in sNAP values [35, 36]. PNP progres-
sion affected the tibial nerve and nerves of the upper extrem-
ities. Of those, median sNAP showed the strongest ampli-
tude reduction over 2 years and deterioration of sensory 
median nerve was most prevalent among our PD patients. An 
increased median nerve vulnerability has been discussed in 
PD patients. Yardimci et al. detected a demyelinating median 
neuropathy in 16.12% of PD cases that was bilateral in two-
thirds of the patients [32]. Furthermore, sonography of the 
median nerve displayed an increased cross-sectional area in 
PD patients compared to controls [37]. Our findings, hence, 
advocate monitoring PNP progression of lower and upper 
extremities with particular consideration of the median 
nerve. NSS correlated with tibial nerve amplitude at base-
line. Moreover, NSS was more elevated in the PD subgroup 
that developed PNP or suffered a PNP progression. There-
fore, this scoring system could be a supportive tool to screen 
for PNP progression also associated with PD. Neuropathic 
pain constitutes a severe symptom burden requiring symp-
tomatic relief. NMSQ subitem 10 addresses the important 
aspect of pain, although irrespective of cause, and should be 
considered for PNP evaluation in PD.

With regard to functional impact, reduced nerve ampli-
tudes correlated with higher motor scores at baseline. Corre-
lations between PNP and disease severity (Hoehn and Yahr, 
UPDRS) have been reported in previous studies [6, 7]. The 
deterioration of the Hoehn and Yahr stage was more pro-
nounced in our PNP-positive PD cohort transitioning from 
2.0 to 3.0 which marks the beginning of a postural instabil-
ity and has high clinical relevance. Furthermore, focused 
analysis of balance and gait revealed a higher presence of 
falls in our PNP-positive subgroup as indicated by NMSQ 

subitem 21 and a deterioration of balance and gait (UPDRS 
II.12 + III.12) in all PD cases. Studies have shown that gait 
and balance disturbances in PD can be aggravated by PNP 
comorbidity [11, 38]. Beaulieu et al. reported that presence 
of PNP was significantly associated with more falls, shorter 
stride length, and slower gait speed, but no difference in 
the MDS-UPDRS motor examination scores [11]. There-
fore, sub-analysis of motor and non-motor scores can help 
detect differences of PNP-relevant symptoms in PD. Corra 
et al. performed objective gait and balance assessment using 
wearable health-technology and demonstrated shorter stride 
length, slower gait speed, and smaller toe-off angles in PD 
patients with PNP comorbidity [38]. In our study, no cor-
relation could be found between PNP progression and motor 
progression over the disease course. Decrease of sural nerve 
amplitude exhibited correlations with non-motor scores at 
baseline (PDQ-39, MoCA). Notably, Merola et al. suggested 
PNP as a marker of severe PD phenotype and showed that 
PNP is independently associated with cognitive decline, 
worse axial motor features, and worse non-motor symptoms 
[39]. However, findings regarding isolated sural nerve ampli-
tude should be interpreted with caution for aforementioned 
reasons and more sensory nerve measurements should be 
taken into account to provide a broader perspective. In terms 
of phenotypical PD subtypes, our findings revealed a higher 
PNP prevalence in the TD and PIGD subgroup. Although 
the proportion of TD subgroup patients with PNP decreases 
after 2 years, the percentually strongest PNP aggravation 
was observed in the TD subgroup followed by PIGD sub-
group. These trends indicate a possible impact of PNP on 
specific motor symptoms in PD.

As for large fiber neuropathy, levodopa treatment has 
been discussed as a risk factor for PNP development in PD 
[10, 13]. Baseline levodopa dosage did not differ between 
PD patients presenting with and without PNP. In our study, 
we referred to the daily levodopa dose, which was rather 
low with approximately 300 mg levodopa. Other studies 
comparing daily levodopa doses were also not able to detect 
a difference between PNP-positive and PNP-negative PD 
patients [38, 40]. In contrast, cumulative levodopa dosage 
and duration of levodopa exposure are suggested to impact 
PNP prevalence and severity [7, 25, 30]. Levodopa dosage 
increased over the course of 2 years. However, the difference 
of sural sNAP did not correlate with levodopa dosage in our 
study. Elevated levels of homocysteine and methylmalonic 
acid and vitamin B12 deficiency have been attributed to 
levodopa metabolism [25, 26, 41]. Despite an increase 
in levodopa dose, homocysteine levels in our PD cohort 
decreased. No correlation was found between sural sNAP 
and homocysteine levels, although an earlier study reported a 
significant inverse association between homocysteine levels 
and sNAP of the sural nerve [31]. Beyond extrinsic risk 
factors, an intrinsic cause of neurodegeneration of peripheral 
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nerves should also be taken into consideration. Zhang et al. 
first verified the deposition of phosphorylated α-synuclein 
in sural nerve tissue explicitly in PD patients which may 
add to PNP pathology [42]. The expression of α-synuclein 
was attributed to Schwann cells supporting the hypothesis 
of a peripheral origin in peripheral nerve involvement in 
PD. In comparison to PD, notably fewer studies have 
tackled the question of peripheral nerve alterations in 
atypical Parkinsonian syndromes (APS) [43–46]. Our study 
group previously observed a high prevalence of subjective 
neuropathic symptom burden with electrophysiological 
PNP confirmation in 50% of patients with multiple system 
atrophy (MSA) and progressive supranuclear palsy (PSP) 
using the current NCS protocol [46]. Based on NCS, it is 
not possible to distinguish PD from non-idiopathic forms 
of parkinsonism. In skin biopsies, alpha-synuclein deposits 
were detected in MSA and PD patients only, but not in 
tauopathies or controls suggesting its potential role as a 
biomarker [47]. Evidence of phosphorylated α-synuclein 
accumulation in Schwann cells of MSA patients and tau 
pathology in cranial and spinal nerves of PSP patients 
indicates peripheral nerve involvement in APS [48, 49]. 
Further investigation is needed to determine distinct PNP 
characteristics and differences of PD and APS that may 
suggest biomarker potential.

A limiting factor of our monocentric study is the small 
number of patients that could be consistently followed 
over 2 years. Unfortunately, we lost a significant portion 
of patients to follow-up. One of the various reasons is due 
to the fact that parts of our follow-up visits took place 
during the Covid-19 pandemic, when restrictions of social 
contacts were required. Moreover, for patients with more 
severe disease activity, it was even more difficult to reap-
pear to the visits which could have biased the composition 
of our PD cohort.

In conclusion, our findings reveal the high prevalence 
of PNP in PD patients that could add to the motor 
and sensory symptoms of PD. For the first time, we 
tracked PNP progression over the course of 2  years. 
Electrophysiological deterioration was detected in one-
fifth of PNP cases including sensory nerves of the upper 
extremities what needs to be considered for monitoring. 
PNP progression parallels PD progression especially 
pronounced in TD and PIGD subgroups. Furthermore, 
correlation analysis of sural nerve amplitudes indicates 
that PNP could be a manifestation of non-motor symptoms. 
Therefore, longitudinal evaluation in a larger cohort and 
expansion of qualitative and quantitative nerve assessment 
tests will be necessary to further elucidate the involvement 
of peripheral neuropathy in PD. The investigation for 
putative etiologic correlates will additionally require 
the examination of biosamples such as skin and nerve 
biopsies.
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