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AutoFocus: a hierarchical framework to
explore multi-omic disease associations
spanning multiple scales of biomolecular
interaction
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Recent advances in high-throughput measurement technologies have enabled the analysis of
molecular perturbations associated with disease phenotypes at the multi-omic level. Such
perturbations can range in scale from fluctuations of individual molecules to entire biological
pathways. Data-driven clustering algorithms have long been used to group interactions into
interpretable functional modules; however, these modules are typically constrained to a fixed size or
statistical cutoff. Furthermore, modules are often analyzed independently of their broader biological
context. Consequently, such clustering approaches limit the ability to explore functional module
associations with disease phenotypes across multiple scales. Here, we introduce AutoFocus, a data-
drivenmethod that hierarchically organizes biomolecules and tests for phenotype enrichment at every
levelwithin the hierarchy. As a result, themethod allowsdisease-associatedmodules to emerge at any
scale. We evaluated this approach using two datasets: First, we explored associations of
biomolecules from the multi-omic QMDiab dataset (n = 388) with the well-characterized type 2
diabetes phenotype. Secondly, we utilized the ROS/MAP Alzheimer’s disease dataset (n = 500),
consisting of high-throughput measurements of brain tissue to explore modules associated with
multiple Alzheimer’s Disease-related phenotypes. Ourmethod identifiesmodules that aremulti-omic,
span multiple pathways, and vary in size. We provide an interactive tool to explore this hierarchy at
different levels and probe enriched modules, empowering users to examine the full hierarchy, delve
into biomolecular drivers of disease phenotype within a module, and incorporate functional
annotations.

The increasing availability of high-throughputmeasurement technologies
has led to the generation of a large number of multi-omics datasets,
providing molecular snapshots of biological systems at all -omic levels of
regulation1,2. Such multi-omic datasets can be explored to infer molecular
interactions3–5, or in the context of disease, to identify perturbations for a
deeper understanding of pathophysiological mechanisms6–8. To this end,
various computational methods have been developed to cluster multi-
omic biomolecules into easier-to-interpret functional modules that

attempt to describe alterations caused by a disease in a biological
system5,9–13.

Functional modules generally consist of interacting biomolecules that
are coordinated, coregulated, or otherwise involved in the same biological
process14,15. Grouping molecules into such functional modules can often be
achieved using existing functional annotations available in large databases
comprised of experimentally derived interactions16,17. However, these
types of annotations are constrained by research bias and are limited
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between -omic layers, for example those between metabolomics and
transcriptomics18,19. Thus, while experimentally validated annotations
promise to create well-supported functionalmodules, the lack of exhaustive
annotations in a high-throughput context is often a severe limitation. Data-
driven methods that infer interactions between biomolecules directly from
the data are often a compelling alternative. Such methods include k-means
clustering, hierarchical clustering, network approaches, principal compo-
nent analysis (PCA), or other matrix factorization approaches12,20–23.

A significant challenge for these data-driven methods which statisti-
cally identify modules is determining the appropriate scale of a biological
process that should be deemed a module. For instance, the catabolism of
carbon units of cells can be studied at various levels, such as single-molecule
level (glucose or pyruvate), pathway level (glycolysis), or functional pathway
group level (central carbon metabolism, Fig. 1a)24. This exemplifies the

concept that functional modules are not necessarily distinct processes, and
that different hierarchical levels of super- and sub-modules exist25,26. In
addition, previous work by our group has shown that phenotypes can
impact biological system at a variety of levels; certain phenotypes, for
example related to specific pathological perturbations, manifest at the level
of a few molecules, while others, like sex effects, impact entire pathways or
pathway groups12,27.

Despite the biological relevance of such hierarchies, current module
identification algorithms are not designed to produce data-driven modules
that can explore biological processes at multiple scales. Existing algorithms
apply restrictive parameters, such as p-value cutoffs, network connectivity
metrics, or desiredmodule size, to demarcatemodules at a fixed level, which
are then further explored as standalone processes, disconnected from the
larger biological context10,11,28–30. Thus, when analyzing the effects of a

b c d

e f g

Omics datasets

Biomolecule Correlation
Matrix

Correlation-based Hierarchy

Biomolecule Association
with Phenotype

Enrichment Peak Finding Cluster Functional Annotation 
and Graphical Modelling

p

p Biomolecules

Sa
m

pl
es

Fold Change

-lo
g 

  (
p)

10

Phenotype, 

Dataset
Distribution

Pathway 
Distribution

Module Drivers

Biomolecules
 (leaves)

Omics datasets Omics datasets

Dataset Concatenation

Internal
Nodes

Phosphoenolpyruvate

Pyruvate

Glucose-6-phosphate

Fructose-6-phosphate

Fructose-1,6-biphosphate

Glyceraldehyde3-phosphate

1,3-biphosphoglycerate

3-phosphoglycerate

2-phosphoglycerateG
ly

co
ly

si
s

Acetyl CoA

Citrate

alpha-ketoglutarate
Succinyl CoA

Fumarate

Oxaloacetate

Citric 
acid cycleIsocitrate

Succinate

cisaconitate

Malate

H2O

H2O

H2O

H2O

H2O
H2O

NADH
NAD+

NAD+

NADH

FADH2

FAD

FADH2

FAD

GTP

GDP

GDP

GTP

NADH + CO2
NAD+ + CoASH

NADH + CO2

NAD+

CoASH

Glucose

ATP

ADP

2ADP

2ATP

2ADP

2ATP

ATP

ADP

2H2O

2NAD+  + 2Pi

2NADH + 2H+

a

Phosphoenolpyruvate

Pyruvate

Glucose-6-phosphate

Fructose-6-phosphate

Fructose-1,6-biphosphate

Glyceraldehyde3-phosphate

1,3-biphosphoglycerate

3-phosphoglycerate

2-phosphoglycerateG
ly

co
ly

si
s

Glucose

ATP

ADP

2ADP

2ATP

2ADP

2ATP

ATP

ADP

2H2O

2NAD+  + 2Pi

2NADH + 2H+

Glucose

Hierarchical AutoFocus Concept

Fig. 1 | AutoFocusmethod overview. aConceptual depiction of applying “focus” to
the biological process of carbon metabolism at different hierarchical levels.
bMultiple molecular datasets with biomolecules from the same n samples are
concatenated into a single matrix, accompanied by sample phenotype information,
p. c Correlation coefficients between molecules are calculated to generate a corre-
lation matrix, d Correlation coefficients are converted to distances to create a

hierarchical tree of biomolecules, e Biomolecules are univariately correlated with the
phenotype of interest and filtered for statistical significance, f Enrichment “peaks”
are detected by performing an enrichment analysis of the “leaves” descending from
each internal node, i.e., the number of significantly correlated molecules in the
respective cluster. g Functional annotation and module driver analysis is performed
on each enriched module.
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disease-phenotype on these modules, fixed-scale approaches do not reveal
how a phenotype impacts different granularity levels within a module (e.g.,
singlemolecule versuspathway levels), and cannotdeterminehow impacted
modules relate to one another in the larger biological system. Further, fixed-
scale modules restrict all phenotype associations to a single level, failing to
capture the variety of scales that may exist among diverse phenotypes.

We here address the issue of identifying multi-level modules and
allowing phenotype association to manifest at any scale by designing an
interactive and adaptive hierarchical clustering and phenotype association
approach. We introduce a new method, AutoFocus, that hierarchically
structures molecular datasets, overlays phenotype association onto the
hierarchy, and performs enrichment analysis to annotate functional mod-
ules within this system. The method is accompanied by an interactive
application that allows a user to explore the hierarchy created by their data
and provides functional insights through module annotation and the
identification of module members driving phenotype association (Fig. 1).
We then apply ourmethod to two independent datasets to validate its ability
to capture known disease signal and explore new findings: Type 2 Diabetes
in The Qatar Metabolomics Study on Diabetes (QMDiab, n = 388)2, which
contains 12 multi-omic datasets including metabolomics, proteomics, and
glycomics; and the Alzheimer’s Disease in the Religious Orders Study/
Memory and Aging Project (ROS/MAP, n = 500)31, which includes a
metabolomics and proteomics platform and multiple clinical phenotypes.
Finally, we examine how the clusters output by the AutoFocus method
compare to those created by existing clustering algorithms.

Results
Description of AutoFocus framework
The AutoFocus tool enables fast clustering and phenotype association of
multiple omics datasets, accompanied by an intuitive, interactive applica-
tion for result exploration. Preprocessed, matched-sample omics datasets
from any specimen, body fluid, or platform, are combined and pairwise
correlated (Fig. 1b, c). These correlations are transformed into a distance
metric that is used to structure all molecules into a single dependency tree
based on well-established hierarchical clustering (Fig. 1d). Univariate
associations of each molecule with a desired phenotype of interest are cal-
culated, and significantly associatedmolecules, which are the “leaves” of the
tree, are annotated at the bottom of the diagram (Fig. 1d–f).

The tree is then scanned from top to bottom. For each internal node of
the tree, the leaves descending from that node create a cluster (see high-
lighted parts of Fig. 1f). An enrichment analysis of significant hits is per-
formed on the molecules within that cluster. If a user-defined enrichment

threshold is reached, that internal node is labeled as an “enrichment peak”
(Fig. 1f). Finally, functional annotation is performed on the modules asso-
ciated with each peak along with a phenotype “driver” analysis (Fig. 1g).
Drivers are defined as module members sharing a direct, unconfounded
correlation edge with the disease phenotype based on a mixed-distribution
graphical model.

All AutoFocus functionalities are available as an R package at https://
github.com/krumsieklab/autofocus. As input, the method accepts Excel
sheets of preprocessed measurements from multiple omics datasets along
with dataset-specific molecular annotations and sample-specific annota-
tions, including phenotype(s) of interest and covariate information.
Accompanying theworkflow inFig. 1 is an interactive Shiny application that
allows a user to set an enrichment threshold and easily explore the resulting
functional modules.

Intra- and inter-dataset relationships in the 12-dataset multi-
omics QMDiab study
As all data-driven clusteringmethods dependon the similarity relationships
between the measured variables, we first explored the correlation structure
of a dataset with various omics layers to get an overview of the highly
complex underlying statistical structures. The QMDiab dataset consists of
5135 biomolecules from 8 metabolomics datasets (5 different platforms
performed on plasma, 2 on urine, and 1 on saliva), 3 blood glycomics
datasets, and 1 blood proteomics dataset (Table 1). These 12 datasets were
combined and the pairwise biomolecule correlations were calculated. A
systemic correlation bias was detected across the various assays: Intra-
dataset correlations were systematically higher than inter-dataset correla-
tions (Fig. 2a).This bias persistedeven in instanceswhere the samemolecule
was measured on different platforms. For example, when analyzing two
specific molecules, valine and leucine, measured on two almost identical
plasma metabolomics platforms, we observed that valine had a higher
correlationwith leucinemeasured on the same platform than its correlation
with itself measured on a different platform (Fig. 2b). As a consequence of
this bias, molecules from the same dataset tended to be in close proximity in
a hierarchical structure (Fig. 2c). This poses a problem when using corre-
lation networks to statistically extract interactions between thesemolecules,
a common approach to inferring biological relationships.We systematically
probed the QMDiab correlation network for the optimal statistical cutoff to
create a network whose edge set best models ground truth interactions. We
found that this optimal cutoff differs between ground truth annotations for
intra-dataset edges (metabolite pathways) and ground truth annotations for
inter-dataset edges (KEGG and Recon3D-based gene-metabolite edges,

Table1 |Overviewof -omic types, sample types, platforms, collectionmethods, andanalytecount for theQMDiabandROS/MAP
datasets

Dataset Omic type Sample type Platform Method # of analytes

QMDiab
(n = 410)

Metabolomics Plasma Metabolon (HD2) UHPLC/GC-MS/MS 466

Plasma Metabolon (HD4) UHPLC/GC-MS/MS 843

Plasma Nightingale NMR 224

Plasma Biocrates p150 FIA-MS/MS 161

Saliva Metabolon UHPLC/GC-MS/MS 251

Urine Metabolon UHPLC/GC-MS/MS 695

Urine Chenomx NMR 32

Proteomics Plasma SOMAscan SOMAmer+DNA microarray 1141

Lipidomics Plasma Metabolon (Lipidyzer) LC-MS 1133

Glycomics Plasma Genos IgG 39

Plasma Genos Total N-glycans 60

Plasma Leiden University IgA 90

ROS/MAP
(n = 500)

Metabolomics Brain Tissue Metabolon UHPLC/GC-MS/MS 667

Proteomics Brain Tissue ACQUITY UPLC+ TSQ-Vantage MS UHPLC-MS/MS 7526
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Supplementary Fig. 1)32. This indicates the inability of a single statisti-
cal cutoff to recover biologically relevant interactions in a multi-dataset
context.

Notably, this observation of higher correlations within the same omics
layers appears to be a natural feature of multi-omics datasets. Neither
AutoFocus, nor any other clustering-based method can sufficiently remove
this bias, as all clustering methods rely on the associations between mea-
sured molecules. However, unlike existing methods, the hierarchical fra-
mework ofAutoFocus does not apply afixed statistical cutoff to correlations
between analytes, allowing any intra- and inter- dataset relationships to
naturally emerge from the data structure. As the AutoFocus method eval-
uates clusters at every internal node of a hierarchy, clusters formed by nodes
closer to the root of the tree will encompass molecules spanning different
-omics, fluids, and datasets whose relationships would have been excluded
when using statistical significance-based cutoffs (Fig. 1c). The resulting
clusters are more representative of multi-omic, multi-fluidic, and multi-
dataset biological interactions as compared to cutoff-dependent clustering
methods.

AutoFocusanalysis onQMDiab reveals impact of type 2 diabetes
at multiple levels of molecular interactions
Systems-level analysis of type 2 diabetes. The phenotype of interest
used for this analysis was Type 2 Diabetes (T2D) diagnosis. After cor-
recting for age, sex, and BMI, 188 of the 5135 molecules were found to be
significantly associated with Type 2 Diabetes (p < 0.05, Bonferroni
adjusted), covering 10 of the 12 omics datasets. The IgG and IgA gly-
comics datasets showed no significant associations with T2D. We
observed a broad distribution of signal across the hierarchical tree
(Fig. 3a), suggesting a system wide T2D effect across omics and body
fluids. Certain regions of the tree had substantially denser distributions of
significantly associated biomolecules, suggesting hotspots of T2D
perturbation.

Type 2 diabetes modules. To identify T2D modules for the QMDiab
dataset, we applied a “majority vote” enrichment threshold of 0.5, where
at least 50% of a cluster’s members must be significantly associated with
T2D for it to be designated as a T2D module. The AutoFocus method
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plasma, 2 on urine, and 1 on saliva, 3 blood glycomics datasets and 1 blood pro-
teomics dataset. a View of the full hierarchical structure created from the QMDiab
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significant-node enrichment fraction. Pathway annotations were only available for
the metabolites measured by Metabolon. c Confounder-corrected mixed graphical
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age and 2 unknown molecules. As these molecules are directly connected to
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identified 21 modules, ranging in size from 2 to 192 biomolecules
(Supplementary Fig. 2 and Supplementary Data 1). In addition, there
were 33 single-moleculemodules, identified as T2D-associatedmolecules
that did not belong to any of the 21modules. The identified T2Dmodules
substantially ranged in scale (Fig. 3a), from very high correlation near the
leaves at tree height 0 to low correlations near the root at tree height 1.
This shows that Type 2 Diabetes manifests at various levels of the bio-
logical hierarchy, from closely connected molecules to larger pathways.

As expected, most of the smaller, highly correlated modules tended to
containmolecules fromonly one dataset, due to the aforementionedwithin-
dataset correlation biases, most notably within the lipidomic and pro-
teomics datasets. However, AutoFocus identified six T2D modules that
contained molecules frommultiple omics or fluids (Supplementary Fig. 2).
The smaller of these modules included molecules that were measured
multiple times but on different platforms, e.g., onemodule whichwasmade
up of pyroglutaminemeasured on theMetabolonHD2 andHD4platforms.
The largest module with 192 molecules (Fig. 3a), comprising of the bulk of
the T2D-associated analytes in the QMDiab dataset, brought together
molecules from both metabolomic and proteomic datasets and all three
body fluids in QMDiab (Fig. 3b).

This 192-analyte module contained two sub-modules, each with sub-
stantially different functional components. The larger, right-hand “child”
tree (Fig. 3a, pink) contained molecules involved in energy metabolism,
including various carbohydrates, such as mannose, glucose, and 1,5-anhy-
droglucitol, which are known biomarkers of diabetes33,34, as well as TCA
cycle metabolites like pyruvate and lactate in plasma. In addition, this
module showed significant changes in the abundance of ketone bodies
acetoacetate and 3-hydroxybutyrate in urine, supporting the prevalence of
ketosis and ketone body secretion in T2D patients35.

The left sub-tree (Fig. 3a, yellow) in this module contained biomolecules
related to bone growth, mineralization, and degradation, as well as some
chemokines and endothelial cell proteins. The bone degradation molecules
included the proteins Osteomodulin (OMD), Integrin-binding sialoprotein
(IBSP), and C-type lectin domain protein (Clec11A) and the metabolite
prolylhydroxyproline in both plasma and urine36–39. Osteoporesis has a well-
documented relationship to T2D, and although the mechanisms are not
established, hypotheses for the link include inflammation and
microangiopathy40. The presence of chemokines Stromal cell-derived factor 1
(CXCL12) and C-Cmotif chemokine 22 (CCL22), as well as Endothelial cell-
specific molecule 1 (ESM1) in this sub-module presented potential osteo-
porosis links to inflammation and microangiopathy, respectively.

Type 2 diabetes module driver analysis. We further analyzed this
module using amixed graphical model (MGM) approach, which allowed
us to differentiate direct correlations between biomolecules and T2D
from indirect, statistically confounded correlations. We identified and
labeled as drivers those molecules that had a direct correlation with T2D
diagnosis, signified by sharing an edge in the MGM network. The MGM
identified 5 biomolecules showing direct correlations with T2D,
including CXCL12 and ornithine in urine, 1, 5-anhydroglucitol in saliva,
as well as 2 unknown urine metabolites (Fig. 3c). The variety of drivers
likely reflects the multiple functional components associated with T2D
(such as hyperglycemia and inflammation).

Stability of QMDiab hierarchy. The modules identified by the Auto-
Focus algorithm are highly dependent on the hierarchical structure of the
data. A bootstrapping method was used to assess the stability of the
hierarchical structure in the QMDiab dataset. Briefly, this involved
generating bootstrap samples by randomly sampling with replacement
and constructing hierarchical trees from these samples. The cophenetic
correlation between each bootstrapped tree and the original tree was
calculated, and the procedurewas repeated 100 times. The results showed
an average cophenetic correlation of 0.924 with a standard deviation of
0.006, indicating high stability of the QMDiab hierarchical structure.

Taken together, the AutoFocus analysis on this large T2D dataset
showed the benefits of exploring multi-omics datasets with a hierarchical
algorithm: First, AutoFocus was able to cluster and draw links between
multiple omics and fluids into functional modules in T2D at a variety of
scales within the hierarchy. Second, the granularity of the hierarchical
structure allowed us to explore the functional sub-modules of an identified
enrichment peak separately and in detail. For the largest QMDiab cluster
associated with T2D, we were able to identify that one sub-module was
enriched for energy metabolism molecules and the other for bone growth
and degradation, while the peak annotations showed us how these two
processes interacted together at a larger biological scale. Finally, mixed
graphical models allowed us to perform a driver analysis on each module,
indicatingwhichmolecules had direct statistical links to theT2Dphenotype
in each module, and which ones were confounded correlations.

AutoFocus on ROS/MAP dataset shows Alzheimer’s disease
phenotype impact at different levels of the biological hierarchy
As another use case, AutoFocus was applied to anAlzheimer’s disease (AD)
dataset of brain samples from the Religious Order Study (ROS) and Rush
Memory andAgingProject (MAP)cohorts31. This dataset consistedof 8,193
biomolecules from one metabolomics and one proteomics platform, both
performed on brain tissue from post-mortem samples (Table 1). For this
analysis, we examined the association between the biomolecules and two
clinical AD phenotypes simultaneously: 1) Neurofibrillary tangles (NFT),
defined by the immunohistochemistry-based overall paired helical filament
tau tangles load from post-mortem pathology, and 2) cognitive decline
(CD), defined by the rate of change in global cognition over lifetime. These
phenotypes were chosen because they represent two distinct effects of AD,
molecular and cognitive.

Systems-level analysis of ADphenotypes. Of the 8193molecules in the
ROS/MAPdataset, 887molecules significantly associatedwithNFTand 763
molecules significantly associated with CD (p < 0.05, adjusted p-values). All
statistical models were corrected for age at death, sex, BMI, post-mortem
interval, years of education, and APOE genotype. To maintain consistency
with previous studies published on theROS/MAPdataset41, the FDR p-value
correction method was used instead of Bonferroni, leading to a dense dis-
tribution of significant hits across the tree (Fig. 4a). Both phenotypes had
robust metabolic associations, as metabolites made up 20% and 26% of
significant hits in NFT and CD, respectively, even though metabolites only
made up 8.14% of the underlying dataset. There were 358 overlapping
molecules significantly associated with both phenotypes.

AD modules. A total of 171 modules were identified with a “majority
vote” enrichment threshold of 0.5, with 83 modules unique to the NFT
phenotype, 82 unique to the CD phenotype, and 6 modules associated
with both phenotypes. There were 466 single-molecule modules that did
not belong to any of the 171 modules. The multi-molecule modules
ranged in size from 2 to 165 biomolecules (Supplementary Fig. 3, Sup-
plementary Data 2). Similar to the QMDiab dataset, modules associated
with both phenotypes ranged drastically in tree height across the tree,
from 0 to 0.83 (Fig. 4a).

An interesting feature arising from applying AutoFocus on two phe-
notypes was the nesting of enrichment peaks, where the peak of one phe-
notype was a descendant of a peak of the other. As the NFT and CD
phenotypes had a large overlap of significantly associated molecules, their
enriched modules tended to occupy similar regions of the tree. Despite this
considerable overlap, only 6 internal nodes were identified as enrichment
peaks for both phenotypes (Fig. 4a, orange nodes). For all other regions of
the hierarchy where both phenotypes had overlapping significant hits,
modules enriched for one phenotype contained descendent sub-modules
enriched for the other phenotype (Fig. 4b, c). This nesting highlights how
different phenotypes within a single disease can manifest at different scales
of biological processes, where cognitive decline may be associated with a
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biological process at a higher level than neurofibrillary tangles pathology,
and vice versa.

The ROS/MAP hierarchical structure was strongly affected by the
dataset correlation bias as metabolites were condensed within the tree,
leading to only 6 of the 170 modules being multi-omic (Fig. 4a, Supple-
mentary Data 2). Within the dense metabolomic region of the ROS/MAP
hierarchy, CD had more significant metabolite associations, which resulted
in a higher enrichment peak (larger cluster) than the NFT phenotype. This
36-metabolite module was enriched for antioxidants and lipid peroxidation
metabolites42,43, indicating that CD interacts with oxidative stress metabo-
lism at a higher biological scale than NFT (Fig. 4b, Supplementary Data 2).

One of the 6 modules identified for both phenotypes was a metabo-
lomic module enriched for amino acids, with 22 out of 29 members being
amino acids or their derivatives (Fig. 4b). These include branched-chain
amino acids (valine, leucine, and isoleucine) whose dysregulation is a well-
known marker of AD pathology, as well as the aromatic amino acids (tyr-
osine, phenylalanine, and tryptophan) which are substrates for neuro-
transmitters like serotonin, dopamine, and norepinephrine (Fig. 4c,
SupplementaryData 2)44.As thiswas amodulewhere bothphenotypeswere
enriched at the same level, these processes donot seemtobe specific to either
phenotype but are a shared feature of both AD traits. Interestingly, this
metabolomicmodule breaks away from themetabolite-dense portion of the

hierarchy, and is surrounded by proteins, indicating a closer functional
relationship of amino acids to proteomic processes (Fig. 4a).

Of the 6multi-omicmodules was the largest module in the tree, which
significantly associated with the NFT phenotype (Fig. 4d). This module
contained proteins and metabolites involved in a variety of processes; one
sub-module showedmulti-omicdysregulationof arginineflux, degradation,
and metabolism45–48, one sub-module contained proteins associated with
inflammatory mediator TNF-α49–51, while an adjacent sub-module con-
tained glycosylation proteins52. In contrast, the CD phenotype had enrich-
ment peaks for the NFT sub-modules involved in arginine metabolism and
inflammation, but not for the region associated with protein glycosylation.
This indicates that protein glycosylation has an NFT-specific association,
and thus the NFT phenotype is associated at a higher level in the biological
hierarchy for this process than the CD phenotype.

Stability of ROS/MAP hierarchy. The bootstrapping procedure applied
to the ROS/MAP dataset resulted in a mean cophenetic correlation of
0.62 with a standard deviation of 0.02. These values suggest that the
hierarchical structure is less stable for the ROS/MAPdataset compared to
the QMDiab dataset. The lower mean cophenetic correlation indicates
greater variability in the hierarchical structure when subjected to boot-
strapping. While the reason for this remains unclear, insight can be

Phenotype
Neurofibrillary Tangles
Cognitive Decline

Both phenotypes

Platform

a

c db

Metabolomics

Proteomics

ROS/MAP Hierarchy with Platform Distribution

Metabolite-dense 
Module

Largest ROS/MAP 
Module

Multi-phenotype 
Associated Module

Fig. 4 | Results of running the AutoFocus method on the ROS/MAP dataset. The
dataset included a total of 500 samples, which contained 8193 biomolecules from a
metabolomics platform a proteomics platform performed on post-mortem brain
tissue. a View of the full hierarchical structure created from the ROS/MAP dataset
with two phenotypes annotated and dataset distribution below. Magenta circles
represent the neurofibrillary tangles phenotype, green circles represent cognitive
decline, and orange circles are overlaps between the two. Significant molecules are
dispersed densely throughout the tree and enriched modules are scattered
throughout the hierarchy at a large range of heights. b Zoomed-in view of a

metabolomicsmodule enriched for significant hits associated with cognitive decline.
Thismodule containedmetabolites related to oxidative stress and lipid peroxidation.
c Zoomed in view of the largest module found in the dataset which was enriched for
metabolites and proteins significantly associated with neurofibrillary tangles.
d Zoomed-in view of the largest module enriched for both phenotypes with the left
sub-tree (yellow) enriched for mitochondrial proteins and the right sub-tree (pink)
enriched for proteins related to synaptic vesicle exocytosis and inhibitory
neurotransmission.
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drawn from the differences in the QMDiab and ROS/MAP hierarchical
structures. The internal nodes of the QMDiab hierarchy are evenly dis-
tributed across the height of the tree. InROS/MAP, on the other hand, the
internal nodes are densest higher up in the tree. This indicates weaker
correlations within the data that could lead to a more variable structure
when clustering the multi-omics markers.

In summary, overlaying these two phenotypes on the ROS/MAP
hierarchy demonstrated the difference in biological manifestation of cog-
nitive decline and tau neurofibrillary tangles in Alzheimer’s disease. These
differences highlight phenotype-specific processes, while modules equally
enriched for both phenotypes indicatemore universal disease processes that
may not be attributable to a single phenotype.

Comparison with other clustering methods
To adequately compare the performance of AutoFocus against other
methods, we chose existing clustering algorithms that met the following
criteria: First, themethodsmust have been designed to cluster biomolecular
features (instead of samples). Second, themethodsmust have infrastructure
for a multi-scale examination of the identified clusters. We identified three
statisticalmethods thatmet these criteria and are commonlyused to identify
clusters that show phenotype associations: (1) MoDentify12, a partial cor-
relation network-based method that uses phenotype association to define
modules. (2) MEGENA11 (Multiscale Embedded Gene Co-Expression
Network Analysis) because of its ability to identify multi-scale clustering
structures. (3) WGCNA10 (Weighted Gene Co-Expression Network Ana-
lysis) as it is similarly a hierarchical method, in addition to being a widely
used tool for clustering omics data.

Structural comparison. Both MoDentify and MEGENA rely on
underlying network structures upon which to perform their clustering
methods. MoDentify models molecular interactions between biomole-
cules by transforming omics datasets into a partial correlation network
with edges selected using a p-value inclusion criterion12. Similarly,
MEGENAmodels these interactions using a similarity metric (filtered by
an FDR p-value cutoff) to construct a Planar Filtered Network (PFN)11.
Despite the difference in network derivation methods, the networks of
bothmethods are still largely affected by the correlation bias discussed in
Results “Intra- and inter-dataset relationships in the 12-dataset multi-
omics QMDiab study”, with intra-dataset edges represented at a much
higher rate than inter-dataset edges (Supplementary Fig. 4).

In contrast,WGCNAderives ahierarchical structureusinga “topological
overlapmatrix” (TOM) of a co-expression network10. The dataset correlation
bias persisted in theWGCNAhierarchy, as evident by the proteomics dataset
being highly segregated in WGCNA’s TOM-based tree (Supplementary
Fig. 5a). Taken together, the correlation bias introduced when combining
multiple omics datasets will affect the underlying correlation and cluster
structure, regardless of the method. The ability to capture the relationships
between these datasets then relies on the clustering approach.

Cluster comparison. The three methods compared to AutoFocus have
vastly different designs for identifying clusters.

MoDentify identifies clusters by selecting seed nodes in their network
and performing a greedy neighborhood search, integrating each new visited
node into a cluster, and testing for significant association with phenotype
based on a conglomerative measure12. Because of this stepwise network
expansion design, MoDentify does not identify nested structures. Due to
these discrepancies between the approaches, the resulting clusters from
MoDentify and AutoFocus are substantially different (Fig. 4a). Of note,
MoDentify was considerably computationally expensive on the QMDiab
dataset, taking 10 h over 4 2.7 GHz Quad-Core Intel Core i7 CPUs.

MEGENA initially splits its PFN into clusters based on Newman’s
modularity measure, then iteratively splits those clusters into subclusters
based on a compactness evaluation11. Consequently, theMEGENAmethod
produces nested clusters, similar to AutoFocus. This leads to a larger
similarity between MEGENA and AutoFocus clusters, with two-thirds of

MEGENA’s clusters with a Jaccard similarity score of over 0.5 with at least
one cluster in AutoFocus’s hierarchy (Fig. 5b). However, MEGENA lacks
the functionality to organize sub-clusters within their parent clusters,
leaving themulti-scale relationships between clusters tomanual inspection.
AutoFocus allows the user to analyze these relationships in the R Shiny app,
which visualizes nested clusters within their parent clusters and con-
textualizes their relationships.

WGCNAproduced themost similar results toAutoFocus, likely due to
theuse of hierarchical clustering inbothmethods10. This similarity is evident
as 40% ofWGCNAclusters have an exactmatch in theAutoFocus tree, and
90% have a Jaccard similarity of at least 0.5 (Fig. 5C). However, each analyte
is placed into a single cluster and the resulting clusters have no overlap. This
leads toWGCNA results being a single scale per cluster, with no regard for
potential sub- or super-processes. In fact, 17 of the 26WGCNAclusters that
significantly associated with type 2 diabetes had their highest Jaccard
similarity score to sub-clusters found within the largest AutoFocus cluster
described in Fig. 3. AutoFocus was not only able to identify the processes
foundwithinWGCNA clusters but was also able to contextualize them into
the broader system in which they participate.

Further, the AutoFocus framework can add this multi-scale context to
a WGCNA hierarchy. The method’s framework is applicable to any input
tree structure, including the hierarchical structure derived from the “topo-
logical overlap matrix” (TOM) of a co-expression network used in
WGCNA10. The QMDiab dataset was rerun using WGCNA’s TOM-based
hierarchical structure, the results and a comparison to the original analysis
of which can be seen in Supplementary Fig. 5.

Beyond the clustering approaches, all three methods use aggregated
metrics of cluster members to associate clusters with disease, rather than
looking at the individual molecules within. As such, the interpretability
of individual node association to disease is lost, and the association sig-
nal of a singlemember can be dispersed into large clusters that are otherwise
full of noise. The use of enrichment as an association metric, alongside the
added functionality of ‘piggy-backers’ in the hierarchy leads AutoFocus
to have the most signal-dense clusters among the four methods, even at
moderately low thresholds (Fig. 5d).

In summary, compared to MoDentify, MEGENA, and WGCNA,
AutoFocusprovides clusters that are denser in signal andmore interpretable
at the node level, alongside a visualization tool that is able to contextualize
the scale of clusters and how they interact.

Discussion
The AutoFocus method provides a novel computational approach for
identifying disease-perturbed, multi-omic modules of biomolecules at var-
ious resolutions of biological hierarchy. By testing for enrichment at each
internal node in a hierarchical tree, AutoFocus allows relationships between
molecules across all platforms, fluids, and omics to be analyzed in the
context of phenotypic perturbations. The identifiedmodules are better able
tomodelmulti-omic,multi-fluidic, andmulti-dataset biological interactions
as compared to clusteringmethodswhich rely onmodules defined at a fixed
level and explored as standalone processes. The hierarchical framework
allows for the explorationof one ormore phenotypes atfinegranularity or at
a larger, zoomed-out scale. Furthermore, the method’s implementation in
an interactive application makes navigation of the complex biological
structure, and the modules within, easy and intuitive.

We appliedAutoFocus to twomulti-omic datasets,QMDiab andROS/
MAP. For both datasets, AutoFocus was able to find amultitude of disease-
associated modules at various levels of correlation. For the type 2 diabetes
(T2D) phenotype in QMDiab, AutoFocus was able to detect multi-omic
modules enriched for known T2D associated processes, such as energy
metabolism pathways and bone degradation, distinguishing them as sepa-
rate but related processes. We were able to integrate the TOM-based hier-
archical structure of the WGCNA method into AutoFocus to identify
discrepancies in the module results stemming from the underlying hier-
archy. Applying AutoFocus to the ROS/MAP Alzheimer’s disease dataset
with multiple phenotypes, we were able to distinguish the different scales at
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which two different pathophenotypes associated with dysregulated pro-
cesses within a single disease. Without the hierarchical perspective and tool
allowing us to explore multiple levels within our dataset, neither of these
findings would have been possible.

A core limitation of the field of biomolecular clustering across multi-
platform and multi-omic datasets is the dataset correlation bias in which
intra-dataset correlations are systematically higher than inter-dataset cor-
relations. In the context of AutoFocus, this bias affects the hierarchical

Fig. 5 | Comparison of AutoFocus with MEGENA, WGCNA, and MoDentify.
Highest Jaccard similarities of clusters from MoDentify (a), MEGENA (b), and
WGCNA (c) with clusters from AutoFocus hierarchy. d Proportion of significantly

associated molecules in associated clusters found by the four methods. AutoFocus’
proportion increases with a more stringent threshold, surpassing the proportion in
WGCNA, MoDentify and MEGENA comfortably after a threshold of 0.35.
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structurebetween themolecules, and therefore themodules identifiedby the
algorithm will be more likely to contain relationships within one dataset
than cross-dataset interactions. Notably however, this bias will affect any
method that uses statistical similarity measures between molecules. By
testing clusters at all levels of the hierarchy rather than cutting clusters into
disparate groups that potentially sever ties between datasets, the AutoFocus
design increases the likelihood of identifying multi-omic modules if
they exist.

In addition to the bias, the AutoFocus tool is limited by the lack of a
gold standard against which to compare the resulting modules. Experi-
mental evidence for interactions of molecules from high throughput
experiments are far from comprehensive, especially between omics layers,
and therefore there is no ground truth against which modules can be
compared. However, similar to the correlation bias mentioned above, all
clusteringmethods run into this problem.AutoFocus should then be seenas
a tool for exploring existing associations between molecules and disease
within the context of the whole biological system measured by high-
throughput experiments.

In conclusion, AutoFocus is a new approach to detect modules in
complex, multi-omics data at any scale of association. It allows for multiple
phenotype comparison and comes with an interactive Shiny app for result
exploration. Our results show that AutoFocus is effective at identifying
interactions between biological systems and disease perturbations and can
distinguishmolecular modules affected by different phenotypes in complex
disease.

Methods
Datasets
The QMDiab study was conducted at the Dermatology Department of
HamadMedical Corporation (HMC) inDoha,Qatar. The study population
was predominantly of Arab, South Asian, and Filipino descent, with par-
ticipants falling between the ages of 23 and 71. Data was collected between
February and June of 2012; collection and sampling methods have been
previously described elsewhere34. The study was approved by the Institu-
tional Review Boards of HMC and Weill Cornell Medicine-Qatar (WCM-
Q). Written informed consent was obtained from all participants. For the
analysis described in this paper, samples came from 388 distinct subjects
(192 females, 196 males; 195 diabetic, 193 non-diabetic).

The Religious Order Study (ROS) and Rush Memory and Aging
Project (MAP) are two studies conducted by the Rush Alzheimer’s Disease
Center. ROS started recruiting individuals from religious communities
across the United States in 1994, and MAP started recruiting individuals
from a wide range of backgrounds and socio-economic statuses from
Northeastern Illinois in 1997. Data collection and sampling methods have
been previously described elsewhere41. For this study, data from post-
mortem tissue of 500 distinct subjectswas included (352 females, 148males;
220withAlzheimer’sDisease, 119withmild cognitive impairment, 153with
no cognitive impairment, 8 with other forms of dementia). Both cohorts
were approved by an institutional review board of Rush UniversityMedical
center. All participants provided informed consent, an Anatomic Gift Act,
and a repository consent to allow their data and biospecimens to be shared.

All ethical regulations relevant to human research participants were
followed.

Multi-omic measurements
QMDiab. Plasma metabolomic profiling was performed by running
plasma samples through 5 separate platforms: 1) The Metabolon Inc.
HD2 platform, which uses non-targeted ultrahigh-performance liquid
chromatography (UHPLC) and gas chromatography (GC) separation
coupled with mass spectrometry (MS/MS)53. This yielded 466 measured
metabolites. 2) The Metabolon UHPLC-MS/MS and GC-MS/MS HD4
platform (843 metabolites). 3) The Metabolon LipidyzerTM platform,
which resolved fatty acid side chains (1133 lipids)54. 4) The Biocrates Life
SciencesAGAbsoluteIDQTMp150metabolomics kit, which used targeted
flow injection analysis tandem mass spectrometry (FIA-MS/MS) from

(161 molecules)55. 5) The targeted Nuclear Magnetic Resonance (NMR)
platform of Nightingale Ltd. (224 metabolites)56.

Urine metabolomic profiling was performed through non-targeted
ultrahigh-performance liquid chromatography and gas chromatography
separation, coupled with mass spectrometry on the Metabolon Inc. HD2
platform (695 metabolites) and the targeted proton Nuclear Magnetic
Resonance (1H NMR) platform of Chenomx, Inc. (32 metabolites)57.

Saliva metabolomic profiling was performed through non-targeted
ultrahigh-performance liquid chromatography and gas chromatography
separation, coupledwithmass spectrometryon theMetabolon Inc. platform
(251 metabolites).

Glycomics profiling was performed on 3 separate platforms; 356
plasma sampleswere sent toGenos, Ltd. (Zagreb,Croatia) for the analysis of
total plasma N-glycosylation using ultra-performance liquid chromato-
graphy (UPLC) and IgG Fc N-glycosylation using liquid chromatography
mass spectrometry lycol-profiling58 (39 and 60 measured glycans, respec-
tively). IgA glycomics measurements were collected at Leiden University
Medical Center usingUPLC coupled to a quadrupole-TOF-MS, resulting in
90 measured IgA molecules as previously described59,60.

Plasma proteomics profiling was performed on 356 samples at the
WCM-Q proteomics core, using the SOMAscan assay (version 1.1) pro-
tocols and instrumentation provided and certified by SomaLogic Inc.
(Boulder, CO)61 (1141 proteins).

ROS/MAP. For 500 of the brain tissue samples of the ROS/MAP cohort,
brain metabolomic profiling was performed through non-targeted
ultrahigh-performance liquid chromatography and gas chromato-
graphy separation, coupled with mass spectrometry on the Metabolon
Inc. platform (667metabolites)41. Brain proteomic profiles were collected
on 265 ROS/MAP samples using tandem mass tag (TMT)-MS and
downloaded from the AMP-AD Knowledge Portal (https://
adknowledgeportal.synapse.org, 7526 proteins), details of data collec-
tion and processing have been previously described62.

Data preprocessing
QMDiab. For each dataset, samples with more than 20% missing mole-
cules andmolecules withmore than 10%missing samples were removed.
Molecular abundance levels were then probabilistic quotient normalized
to correct for sample-wise variation63 and log-transformed. In the case of
IgA glycomics, proportions (rather than raw counts) of glycans for each
protein class were reported. Quotient normalization was applied protein-
wise to convert data back to a log-normal distribution, and then log-
transformed all together. Data was then scaled, and all outliers with
abundance levels above q ¼ absðqnorm 0:0125

n

� �Þ, with n representing the
number of samples, were set to missing. Missing values were imputed
using a k-nearest neighbors (k-nn) imputation method64. All data pre-
processing was performed with the maplet R package65.

ROS/MAP. The ROS/MAP preprocessing steps have been outlined in
Batra et al.41 and Johnson et al.62. Briefly, metabolites with over 25%
missing values were filtered out, samples were quotient-normalized and
subsequently log-transformed. Outlier samples were removed using the
local outlier factor method and abundance level outliers were set to NA.
Missing values were imputed with a k-nn algorithm. Proteins were log2-
transformed and corrected for batch effects using ‘median polish’
approach. Missing values and outliers were treated with same approach
as the metabolomics data. Duplicated proteins with same Uniprot IDs
were averaged.

Besides the IgA glycomics platform, all other platforms in both the
QMDiab and ROS/MAP datasets measured abundance data of their
respective omics. As such, the distributions of each of these omics platforms
was log-normal and thus the log-transformation step performed for both
datasets resulted in normal distributions for each dataset. After protein-wise
quotient normalization on the IgA dataset as described above, this platform
also resulted in normally distributed abundance measurements.
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After pre-processing the individual dataset, the data matrices were
concatenated into afinaldatamatrix. For theQMDiabdataset, thisfinal data
matrix consisted of 388 samples and 5135 analytes, and for the ROS/MAP
dataset, this final data matrix consisted of 500 samples and 8193 analytes.

AutoFocus method
Hierarchical clustering. Once all datasets were preprocessed and con-
catenated (Fig. 1a), the data matrix was hierarchically clustered. The
distance metric between two analytes was derived as one minus the
absolute value of their Pearson correlation coefficient value such that the
stronger the correlation (either positive or negative), the closer the ana-
lytes were in the hierarchy. This distance matrix was transformed into a
hierarchical structure using the average-linkage method, which has been
shown to maximize the cophenetic correlation between a hierarchical
structure and its correlation-based distance matrix as compared to other
common linkage methods66 (Fig. 1c). On the hierarchical tree, “leaf”
nodes represented biomolecules. Internal nodes represented the root of
all their leaf descendants; therefore, a cluster was defined at each internal
node. Each internal node also had a right and left child, which could be
either a leaf or another internal node.

Univariate analysis. All measured molecules were associated with a
phenotype of interest, p, using a linear model with added confounding
terms to correct for applicable covariates (e.g., age, sex, BMI). P-values
from this linearmodel were used to determinemolecule significance after
adjustment for multiple hypothesis testing.

Enrichment “peak” calculation. To find phenotype association
enrichment among clusters of the hierarchical tree, the internal nodes of
the hierarchy were scanned from top to bottom. At each internal node,
the set of leaves descending from that internal node was considered; if the
proportion of these leaves that were significantly associated with the
phenotype of interest surpassed a user-defined enrichment threshold,
this internal node was labeled as an enrichment “peak”. Once a cluster
was found at which this enrichment point wasmet, the scanning stopped
for its descendants as we reached the highest level at which disease signal
was detected at the desired enrichment threshold. The AutoFocus R
package includes a threshold analysis module to assess the impact of the
enrichment threshold on the resulting clusters. Details of this analysis can
be found in Supplementary Fig. 6.

This process sometimes resulted in “piggy-backers”, defined as peaks
that reached the enrichment only due to one child reaching the enrichment
threshold, and the joining of the two children diluted the signal (reduced the
fraction of significant molecules in the cluster). Once all peaks had been
identified in the hierarchy, each peak was assessed for the individual con-
tributions from either child. A peak whose signal could be attributed to a
single child was removed (details in Supplementary Fig. 7), the child node
that met enrichment was labeled as a peak instead, and the other child that
did not meet the threshold continued to be scanned. This iterative process
continued until all piggy-backers were removed (Supplementary Fig. 7).

Cluster driver analysis. Once enrichment peaks were identified, an
additional analysis was performed on molecules within the biological
cluster descending from each peak to identify potential drivers of the
disease signal. While a significant univariate association indicated a
biological link between amolecule and a phenotype, this effect could have
been indirect, meaning the association was relayed through an inter-
mediate variable that was directly associated with the phenotype.
Therefore, a driver analysis was performed to identify which molecules
had a direct effect.

To this end, the data matrix consisting of abundance data from the
molecules descending from the enriched peak was combined with the
phenotype vector and all covariates and used to build a mixed graphical
model using the mgm package in R67. Graphical models use conditional
dependency estimates between molecules, covariates, and disease diagnosis

to extract direct correlations and to exclude indirect effects through con-
founding. Mixed graphical models in particular are capable of generating
the conditional independence structure of many underlying distributions,
including Gaussian, Poisson, and categorical68.

Forour application,molecules and/or covariateswere labeled asdrivers
of a disease phenotype if they shared an edge with the disease phenotype in
the resulting MGM graph, as they shared a direct correlation with the
phenotype.

AutoFocus code and interactive tool. The AutoFocus method is
accompanied by an interface developed using the Shiny app
environment69 under R version 4.2.2. The code for the app is freely
available as a GitHub at https://github.com/krumsieklab/autofocus. The
user has the option to choose between Pearson and Spearman correlation
methods for distance calculation, and between Bonferroni or FDR for p-
value adjustment methods.

Runtime performance and complexity
Running the AutoFocus method can be parallelized over multiple CPUs to
reduce computation time for large datasets. Generating the results of the
ROS/MAPdataset with 8193molecules and two phenotypes took 4.5 h on a
single 2.7 GHz Quad-Core Intel Core i7 CPU, with most of this time spent
creating theMGMs for each cluster. IfMGMcalculation is omitted from the
analysis, this runtime reduces drastically to just over 6min on the same
architecture.

The computational complexity of AutoFocus (without MGM calcu-
lation) is dominatedby the pairwise correlationoperationused to determine
the distance between molecules. The time complexity of AutoFocus on p
features isOðp2). The space complexity of the algorithm is dominated by the
intermediate p× p matrix used to store pairwise distances between mole-
cules. Therefore, the algorithm’s space complexity is Oðp2Þ.

Stability of hierarchical clustering
The modules returned by the AutoFocus algorithm rely heavily on the
underlying hierarchical structure. To test the stability of this structure for
both the QMDiab and ROS/MAP datasets, the following bootstrapping-
based procedure was performed: First, bootstrapped samples were gener-
ated by randomly sampling with replacement from the original datasets,
maintaining the original sample sizes (n = 388 for QMDiab, n = 500 for
ROS/MAP). Second, a hierarchical tree was calculated from this boot-
strapped data using the method outlined in Section “AutoFocus Method”.
Finally, the cophenetic correlation was calculated between the bootstrapped
hierarchical tree and the hierarchy derived from the full dataset. Cophenetic
correlation calculates the similarity between two hierarchies by correlating
the heights at which each pair of nodes ismerged into clusters in each tree70.
This bootstrapping procedure was repeated 100 times to create a distribu-
tion of cophenetic correlations. From this distribution, the mean and
standard deviation of the cophenetic correlations were calculated. A high
mean cophenetic correlation with low variance would indicate a stable
hierarchical structure.

Comparison to other clustering methods
The MoDentify method12 was run on the QMDiab dataset using the gen-
erateNetwork and identifyModules functions in the publicly available R
package (https://github.com/krumsieklab/MoDentify). The partial corre-
lationnetwork onwhich to run this analysiswas created usingBonferroni p-
value adjustment with a p-value cutoff of 0.01. Overlapping modules were
merged for the comparison analysis.

The MEGENA method11 was run on the QMDiab dataset using a
standard pipeline from the MEGENA R package (https://github.com/
songw01/MEGENA). To allow for the widest range of cluster sizes, the
min.size and max.size parameters were set to 1 and the total number of
analytes in the QMDiab dataset, respectively.

The WGCNA method10 was run on the QMDiab dataset using a
standard pipeline from theWGCNA R package ((https://CRAN.R-project.
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org/package=WGCNA) with the minModuleSize parameter set to 1. For
both WGCNA and MEGENA, clusters were associated with the type 2
diabetes phenotype through correlation of the cluster’s eigenanalyte (the
clusters first principal component) with the disease phenotype. P-values
were then Bonferroni corrected.

Jaccard similarities71 (cluster member intersection divided by cluster
member union) were then calculated between the resulting clusters of the
three comparison methods and those created by the AutoFocus hierarchy’s
internal nodes, both phenotype-associated and not. The highest Jaccard
similarities for each cluster for the threemethods were kept for downstream
analysis.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The preprocessed, concatenated QMDiab dataset used in this paper can be
found at https://doi.org/10.6084/m9.figshare.23934933.v1. The ROS/MAP
data used in this paper can be obtained from two sources: (1)Metabolomics
and proteomics data for the ROS/MAP cohort are available via the AD
Knowledge Portal (https://adknowledgeportal.org). The AD Knowledge
Portal is a platform for accessing data, analyses, and tools generated by the
AcceleratingMedicines Partnership (AMP-AD) Target Discovery Program
and otherNational Institute onAging (NIA)-supported programs to enable
open-science practices and accelerate translational learning. The data,
analyses, and tools are shared early in the research cycle without a pub-
lication embargo on secondary use.Data is available for general research use
according to the following requirements for data access and data attribution
(https://adknowledgeportal.org/DataAccess/Instructions). For access to
content described in this manuscript see: https://doi.org/10.7303/
syn26401311. (2) The full complement of clinical and demographic data
for the ROS/MAP cohort are available via the Rush AD Center Resource
Sharing Hub and can be requested at https://www.radc.rush.edu.

Code availability
Codes used in this study are available at the GitHub repository https://
github.com/krumsieklab/autofocus and https://doi.org/10.5281/zenodo.
1313843572.
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