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Unraveling the spatial organization and
development of human thymocytes through
integration of spatial transcriptomics and
single-cell multi-omics profiling

Yanchuan Li 1,10, Huamei Li2,10, Cheng Peng2, Ge Meng3,4,5, Yijun Lu6,
Honglin Liu 7, Li Cui8, Huan Zhou9, Zhu Xu 6, Lingyun Sun 2, Lihong Liu7 ,
Qing Xiong2 , Beicheng Sun 6 & Shiping Jiao 3,4,5

The structural components of the thymus are essential for guiding T cell
development, but a thorough spatial view is still absent. Here we develop the
TSO-his tool, designed to integrate multimodal data from single-cell and
spatial transcriptomics to decipher the intricate structure of human thymus.
Specifically, we characterize dynamic changes in cell types and critical mar-
kers, identifying ELOVL4 as a mediator of CD4+ T cell positive selection in the
cortex. Utilizing the mapping function of TSO-his, we reconstruct thymic
spatial architecture at single-cell resolution and recapitulates classical cell
types and their essential co-localization for T cell development; additionally,
previously unknown co-localization relationships such as that of CD8αα with
memory B cells and monocytes are identified. Incorporating VDJ sequencing
data, we also delineate distinct intermediate thymocyte states during αβ T cell
development. Overall, these insights enhance our understanding of thymic
biology and may inform therapeutic interventions targeting T cell-mediated
immune responses.

The thymus is crucial for T cell development, and its lobules consist of
cortical (C) and medullary (M) regions that facilitate the movement of
developing T lymphocytes1–3. Typically, CD3+CD4-CD8- (double nega-
tive or DN) precursor T cells migrate from hematopoietic organs to
distal cortical regions, also known as the “sub-capsular zone”4. Fol-
lowing division, these cells migrate to the inner cortical regions and
start expressing CD4 and CD8 co-receptors (double positive or DP;

CD3+CD4+CD8+). The DP cells that fail to recognize major histo-
compatibility complex (MHC) molecules presented by cortical thymic
epithelial cells (cTEC) are eliminated through a process known as
“positive selection”, while the remaining cells pass through the
medulla-cortex (MC) boundary to the medullary region with the help
of chemokines and their ligands (such as CCL21-CCR7), eventually
transforming into CD3+CD4+ or CD3+CD8+ T cells (single positive or
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SP). The medullary thymic epithelial cells (mTEC) and dendritic cells
(DCs) present self-antigens to the developing T cells, and the cells
that recognize these self-antigens undergo apoptosis, a process
known as “negative selection”. The T cells that are tolerant to the
self-antigens are released into the periphery upon maturation5–7.
The thymus gradually becomes fibrotic and atrophic with age,
leading to a reduction in T-cell output and possible TEC abnormal-
ities, which increases the risk of cancer, infections, and autoimmune
diseases8–10. Therefore, gaining an in-depth understanding of the
origin, cellular interactions, and localization of thymic T cells is of
great significance to the fields of cell therapy and regenerative
medicine11.

Single-cell RNA sequencing (scRNA-seq) is a sophisticated tech-
nique for identifying previously uncharacterized cell types and con-
structing cellular atlas of thymus. Studies by Park et al. 8, Zeng et al. 12,
and Michelson et al. 7 have used scRNA-seq to gain insights into the
developmental continuum from early thymocyte genesis to T lym-
phocyte maturation. Specifically, Park et al. conducted an in-depth
analysis of the thymic cell atlas, uncovering new cell subpopulations,
and detailing gene expression profiles across T cell development
stages. Zeng et al. focused on early thymic progenitor cells, TECs, and
themolecularmechanisms of T cell selection, revealing new genes and
pathways. Michelson et al. investigated the later stages of T cell
maturation, examining gene expression changes fromDP to SP cells, T
cell maturation in the medulla, self-tolerance mechanisms, and reg-
ulatory networks for T cell differentiation. Despite these advances,
scRNA-seq requires tissue dissociation, which results in the loss of
spatial information about cells, thereby limiting the understanding of
thymic architecture. Spatial transcriptomics (ST) technology addres-
ses this limitation by enabling unbiased mapping of transcripts across
tissue sections through spatially encoded oligo-deoxythymidine
microarrays13–16, preserving the structural context and cellular rela-
tionships, and offering a new perspective for elucidating thymic tissue
organization.

To the best of our knowledge, Suo et al. 11 pioneered the use
of ST technology with the 10X Visium platform for the thymus,
creating a developmental map of the human immune system.
They utilized empirical thresholds and image segmentation to
determine the cortex, medulla, and cortico-medullary junction of
the thymus and employed the Cell2location17 tool to infer thymic
cell abundance distribution. While this work provides valuable
insights into thymic spatial architecture, the 10X Visium platform
aggregates transcriptomic data from 1-10 cells per capture point,
limiting spatial resolution to proportional abundance of cell types
rather than single-cell resolution. This constraint hampers accu-
rate spatial localization of thymic cells and temporal tracking of
single-cell transcriptional changes. Obtaining single-cell resolu-
tion of thymic spatial architecture is crucial for understanding
thymic cell distribution, interactions, regulatory factors, and T
cell development trajectories. Additionally, integrating thymic
spatial architecture at single-cell resolution with T cell receptor
sequencing (TCR-seq) data can enhance our understanding of the
dynamic evolution of TCR chains during the development of αβ
T cells18.

In this work, we apply scRNA-seq to generate comprehensive
transcriptomic profiles of the human thymus across prenatal, pedia-
tric, adult, and geriatric stages, revealing dynamic changes in thymic
cell types throughout development. By integrating scRNA-seq with
spatial transcriptomics and developing the TSO-his and TSO-hismap
tools, we achieve precise single-cell resolution of thymic cell localiza-
tion and map their distribution along the cortex-medulla axis. Addi-
tionally, TCR sequencing data elucidates distinct intermediate states in
αβ T cell development and their spatial characteristics, offering new
insights into the role of the thymic microenvironment in T cell
development.

Results
Generation of a single-cell atlas of human thymus development
We performed scRNA-seq on 16 thymus samples encompassing the
prenatal (4 samples), pediatric (8 samples), adult (2 samples) and
geriatric (2 samples) stages (Figs. 1a, b; Supplementary Data 1). After
quality control, a total of 130,295 high-quality cells were obtained
(Supplementary Figs. 1a, b; see “Methods”). These cells from diverse
thymus samples were integrated into amerged object using the Seurat
R package (version 4.1.0)19, a comprehensive analysis tool with excel-
lent visualization capabilities (Supplementary Figs. 1c, d). Subse-
quently, principal component analysis (PCA) and unsupervised
clustering were performed (see “Methods”). Utilizing canonical mar-
kers, the clustered cells were pre-annotated into six broad lineages,
namely erythroid (Ery) cells (HBG1 and HBG2), B cells (CD79A and
CD19), plasma cells (IGHG1 and IGHG2), myeloid cells (S100A8, C1QA
and IL3RA), stromal cells (ACTA2 and DCN), and T cells (CD3D and
CD3E) (Supplementary Fig. 1e). The B cells,myeloid cells, stromal cells,
and T cells were further subjected to a second round of clustering,
which revealed 34 distinct cell subtypes (Figs. 1c, d; Supplementary
Fig. 1e; Supplementary Data 2; see “Methods”).

The number of UMIs and genes detected for each subset are
shown in Supplementary Figs. 1f, g. Additionally, an overview of cell
counts from each cell type in the thymus samples was presented in
Supplementary Figs. 1h, i (Supplementary Table 1). Within the thymic
microenvironment annotations, DN cells (CD4-CD8-), DP cells
(CD4+CD8+), and SP cells (CD4+CD8-CD3+ or CD8+CD4-CD3+) are the
predominant cell types involved in T cell differentiation. The DN cells
included early DN cells (DN_early), DN blast cells (DN_blast), and DN
thymocytes undergoing rearrangement (DN_re), and the DP cells
consisted of the DP_blast and DP_re subsets. The subpopulations of SP
cells include CD4+ T cells, regulatory T cells (Treg), CD8+ T cells, and
CD8aa T cells (Figs. 1c, d). Furthermore, B cells are classified into dis-
tinct subtypes, including naïve B cells (B_naive), transitional B cells
(B_trans), and memory B cells (B_memory). Monocytes (Mono), mac-
rophages (Mac), dendritic cells (DCs), and plasmacytoid DCs (pDC)
were the subsets identified in the myeloid population. Stromal cells
were further categorized into cTECs, mTECs, fibroblasts (Fb), cycling
fibroblast cells (Fb_cycling), vascular smooth muscle cells (VSMC),
endothelial cells (Endo), and lymphatic endothelial cells (Lymph)
(Figs. 1c, d).

The reliability of cell type annotations forms the basis for down-
stream analyses. We assessed this by examining two aspects. Firstly,
the purity of cell clusters was evaluated using the ROUGE index20 (see
“Methods”). With the exception of Plasma, Lymph, and DP_blast, the
average index for each subset was above 0.9 (all > 0.85), indicating
good cluster purity (Supplementary Fig. 2a). This was further con-
firmed through pairwise correlations and the purity index defined by
Logistic regression model (Supplementary Figs. 2b, c; see “Methods”).
Secondly, the consistency of annotations with previous studies was
examined. When compared with annotations of the healthy thymus
reported by Park et al. 8, a high degree of consistency is observed
(Supplementary Fig. 2d). These results indicate that the cell types we
identified in the thymus scRNA-seq data are reliable.

To investigate the developmental preferences of different cell
types across various age groups, we calculated the ratio of the
observed to the expected number of cells (Ro/e)

21 to estimate group
preference (see “Methods”). As shown in Figs. 1e, f and Supplementary
Fig. 2e, immature T cell populations, including DN_early, DN_blast,
DN_re, DP_blast, and DP_re, exhibited an antagonistic relationshipwith
age, being most abundant during the prenatal stage (Figs. 1e, f; Sup-
plementary Figs. 2e, f). Conversely, partially mature T cell populations,
such as CD4+ T memory (CD4T_mem), CD8+ T memory (CD8T_mem),
Treg, differentiating Treg (Treg.diff) and natural killer T cells (NKT),
were more prevalent in the adult and geriatric groups. This can be
attributed to the age-dependent progressive fibrosis of the thymus,
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which is characterized by a reduction in thymocytes and an increase in
mesenchymal cells like Fb, Endo, VSMC, and Lymph (Fig. 1f; Supple-
mentary Figs. 2e, f)22. CD8aa cells were more abundant in the prenatal
and pediatric groups compared to the adult and geriatric groups
(Fig. 1f; Supplementary Figs. 2e, f). The abundance of cTECs and
mTECs,which play crucial roles in the selection and regulationof T cell
development, displayed distinct patterns across age groups. The

cTECs were significantly more abundant in the prenatal group, while
mTECs weremore prevalent in the geriatric group. This finding further
supports the notion that epithelial cells and mature T cells synergis-
tically facilitate mutual differentiation23. Thymic DCs that mediate the
negative selection of T cells through antigen presentation were enri-
ched during the prenatal and geriatric stages (Fig. 1f; Supplementary
Figs. 2e, f). B cell subsets, including B_naive, B_trans, B_memory, and
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Plasma, predominated in the geriatric thymus group. A previous
study24 showed that thymic B cells play a compensatory role in antigen
presentation and the elimination of developing thymocytes in the
aging thymus, which is crucial for maintaining thymic function and
immune homeostasis. In summary, these findings provide valuable
insights into the dynamic changes of thymic cell types with age.

Revealing thymic tissue organization with TSO-his
ST sequencing was performed on eight pediatric thymus samples
(3months to 3 years of age) based on the 10XGenomics Visium Spatial
Gene Expression platform (Figs. 1a, b; Supplementary Figs. 3a–c;
Supplementary Data 1; see “Methods”). With the 10X Visium platform,
tissue organization can be determined based onmicrodomains (spots)
measuring 55 µm in diameter, and a center-to-center distance of
100 µm. The scRNA-seq data and ST bulk gene expression data of
matched thymus samples were significantly correlated (R >0.89;
Supplementary Fig. 3d). Typically, T cell development and maturation
occur along the C-MC-M axis within the thymus lobules (C: cortical
regions; M: medullary regions; MC: Medulla-Cortex boundary). Thus,
accurate identification of these regions can provide insights into the
possible roles of different cell types during T cell development. To this
end, we developed the TSO-his (Transcriptomic Segmentation of His-
tological Structure) algorithm for segmenting the histological struc-
tures in thymic H&E sections. The signature (also called medullary
score) scores of 12 medullary marker genes obtained from previous
studieswere initially computed in the thymic ST spots (Supplementary
Table 2). Subsequently, cortical spots, medullary spots and M-C
boundary spots were determined using z-test framework, and
medullary centers were also defined. Finally, utilizing a nearest
neighbor strategy, the lobuleswere accurately segmentedby assigning
spots to the nearest centers (Fig. 2a; see “Methods”). We applied TSO-
his on eight ST slices of thymic tissue and found that the scores
associated with medullary marker genes were prominently empha-
sized in the medullary region (Fig. 2b), which is consistent with pre-
vious reports18,25,26. Furthermore, TSO-his accurately detected
distinctive anatomical features such as the cortical region, medullary
region, M-C boundaries and lobules, which closely resembled the
structures observed in H&E sections (Fig. 2b, c, Supplementary
Figs. 3e, f). By clustering the structural regions in ST slices using the
Pearson correlation of aggregated expression profiles, we found that
themedullary and cortical regions in lobules from eight samples could
be clearly distinguished (Fig. 2d). Notably, the ratio of the number of
spots in the medullary and cortical regions was approximately 1:3
(Supplementary Fig. 3g). Taken together, TSO-his has the ability to
recognize both the medullary and cortical regions of the thymus sec-
tion, as well as to segment its lobules.

Vertical distribution of thymic cell types alongwith C-MC-Maxis
Using the TSO-his tool, we generated a vertical distribution atlas of
thymic cells along the C-MC-M axis, to identify the cell types that
potentially regulate T-cell development. A generalized linear model
was integrated into TSO-his to fit the signature scores of 34 cell types
to spatial distances on the basis of eight ST slices (see “Methods”). As
shown in Fig. 2e, the abundance of cTECs andmTECs showed opposite
trends when transitioning from the distal cortical region to the

medullary center. The cTECs predominated in the cortical region and
declined rapidly at the M-C boundary, while mTEC numbers increased
significantly in the medullary regions. These findings are consistent
with the results shown in Fig. 2f and Fig. 2g. The immature states of T
cells, namely DN_early, DN_blast, DP_blast, DP_re, and abT (entry)
subsets were enriched in the cortical region and declined along the C-
MC-M axis. In contrast, the mature CD4+ T, CD4 T_mem, CD8+ T, CD8+

T_mem, CD8aa, and Treg cells predominantly occupied the medullary
region and exhibited a sharp increase at the M-C boundary (Figs. 2e–g
and Supplementary Fig. 4a), in agreement with previous studies27,28.

Other immune cells, including B_naive, B_trans, B_memory,
Plasma, pDC, DC, Mac, and Mono, were primarily localized in the
medullary region (Figs. 2e–g; Supplementary Fig. 4a). Stromal cells,
including Endo, VSMC, Fb, and Lymph, were predominantly detected
in the medullary region and to a lesser extent in the cortical region
(Figs. 2e–g; Supplementary Fig. 4a). Notably, we observed a protrusion
phenomenon of Endo cells in the distal cortical region. Previous
studies29,30 have shown that an increase in their abundance enhances
vascular permeability and facilitates the recruitment of T cell pre-
cursors to the distal cortical area (Fig. 2e). The Fb cells andVSMCswere
aggregated cells exhibited a sudden accumulation near the M-C
boundary, suggesting their potential role in the positive selection
process of T cells (Fig. 2e). To validate this hypothesis, we investigated
the interactions between Fb, VSMC, and thymic T cells using the
CellChat (version 1.1.3)31 tool (see “Methods”). As shown in Fig. 2h, both
Fb and VSMCs interacted strongly with DP_blast, DP_re, and CD8+

T cells (Fig. 2h). To enhance the credibility of these interaction
strengths, we performed proportional gradient subsampling of Fb
(also for VSMC), along with thymic cells, revealing stable and con-
sistent strengths between Fb (VSMC) and thymic cells (Supplementary
Figs. 4b, c). Specifically, significant ligand-receptor pairs identified by
CellChat between Fb (or VSMC) and DP and SP cells, revealing a sub-
stantial overlap (almost greater than 80%) with CellphoneDB32 (Fig. 2i;
see “Methods”). Extracting the significant ligand-receptor pairs iden-
tified byboth CellChat andCellphoneDB further demonstrated that Fb
and VSMC in the cortical region engagewith CD8 receptors on DP cells
by presenting MHC class I molecules, thereby mediating T cell recog-
nition and selection, in line with our initial hypothesis (Fig. 2j). More-
over, Fb and VSMCs interact with SP T cells in the medullary region
through collagen-related genes and their ligand CD44, potentially
facilitating the localization and migration of mature T cells into the
bloodstream. However, it is challenging to determine the relationship
between Ery and spatial distance due to contamination inH&E sections
(Fig. 2e; Supplementary Figs. 4d, e).

Overall, these results provide important insights into the
dynamics of cell types along the C-MC-M spatial axis within the thymic
microenvironment. We also show that thymic Fb and VSMCs interact
with DP cells via MHC class I molecules, potentially facilitating T cell
recognition and selection.

Identification of significant distance-varying genes along the C-
MC-M axis
The gene expression changes across anatomical regions of the thymus
are crucial for T cell development at different stages. To identify the
novel regulatory relationship between gene expression and T cell

Fig. 1 | Generation of a transcriptional atlas of human thymus development at
different age groups. a Schematic representation of the study design. b Summary
of normal thymus samples. Different shapes and colors represent data types, and
arrows indicate the transition from prenatal to geriatric stages. c Two-dimensional
uniform manifold approximation and projection (UMAP) of single cells collected
from normal thymus samples. Annotated cell types are color-coded. d Dot plot
showing marker gene expression used for cellular annotation. The size of the dots
indicates the proportion of that marker expressed in a particular cell type and the
color indicates the average expression level. The annotation bars on the left and top

indicate broadcell subsets, with the corresponding color codes. eUMAP coloredby
age groups, including prenatal, pediatric, adult, and geriatric groups. f Age group
preference of each cell type was measured by the ratio (Ro/e)

21 of the observed
number of cells to the expected number of cells at random (i.e., with no association
between subsets and ages, allowing observation of the expected number of cells).
Figure 1a created with BioRender.com released under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International license. Source data are
provided as a Source Data file.
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development, we used the TSO-his tool to screen for significant
distance-varying genes (DVGs) along theC-MC-Maxis (see “Methods”).
In combinationwith eight ST samples, we identified 1885DVGs (pooled
p ≤ 1%), including medulla markers (marked in red) and classical stage
markers of T-cell development (marked in green)8,33. Hierarchical
clustering of these genes revealed enrichment of specific pathways in
different regions (Fig. 3a; Supplementary Data 3; see “Methods”). The

cortical regions were enriched for thymic T cell selection, thymocyte
apoptotic process andTcell receptor signalingpathway,whilemedulla
regions were involved in processes such as negative regulation of
immune system process, leukocyte migration and regulation of cell-
cell adhesion (Fig. 3a).We explored the relationship between theDVGs
and the differentially expressed genes (DEGs) inmedullary and cortical
regions and detected considerable overlap (Figs. 3b, c; Supplementary
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Data 4). TSO-his was used to determine the top five most prominently
expressed genes in the cortical and medullary regions (Fig. 3d). CCL19
was the most significantly upregulated gene in the medulla and spe-
cifically expressed in mTECs, while its ligand CCR7 was expressed at
high levels in mature T cells, confirming that CCL19-CCR7 synergisti-
cally guide the migration of mature T cells from the thymus to the
peripheral blood (Fig. 3e and Supplementary Figs. 5a–c)1. Intriguingly,
genes enriched in the cortical region exhibited notable relevance to
thymocyte differentiation and/or T cell function (Supplementary
Data 4). For instance, Recombination Activating Gene 1 (RAG1)
emerged as a pivotal contributor, crucially involved in V(D)J recom-
bination and essential for the survival and positive selection of DP
thymocytes34. Similarly, Terminal Deoxynucleotidyl Transferase
(DNTT), indispensable for random nucleotide insertion during T-cell
receptor rearrangement35, was identified. Key roles in thedevelopment
of a major subset of Natural Killer T (NKT) cells were attributed to CD1
family proteins, specifically CD1C and CD1D36. Additionally, Stathmin 1
(STMN1), a modulator of microtubule dynamics, surfaced as crucial in
the maturation, activation, and functional orchestration of T cells37.
Interestingly, certain transcripts retained elusive connections to the
aforementioned processes, including Elongation of very long chain
fatty acids 4 (ELOVL4), linked to macular degeneration diseases, and
CD99, also known as MIC2 or E2 antigen, a cell surface glycoprotein,
stood out among these transcripts. The expression of ELOVL4 and
CD99 was prominently elevated within the cortical region, particularly
at the DP stages (Fig. 3f). Importantly, the expression of ELOVL4 and
CD99were significantly upregulated in DP_re compared to DP_blast, in
line with the expression pattern of genes associated with the TCRα
chain (Figs. 3g, h). Furthermore, we investigated how the expression of
ELOVL4 and CD99 relates to that of the TCRα chain across various age
groups. Remarkably, the expression patterns of these two genes clo-
sely paralleled the fluctuations observed in the TCRα chain, particu-
larly among geriatric individuals, where a notable decline was
observed simultaneously (Figs. 3i, j). This decline may be attributed to
the degeneration and shrinkage of the aging thymus, leading to
diminished functionality. Additionally, correlation analysis provided
quantitative evidence of a strong positive relationship between the
expression of ELOVL4 and CD99 and the TCRα chain (Fig. 3k).

Given the involvement of the DP_re stage in TCRα chain rearran-
gement and T cell positive selection, we postulate that ELOVL4 and
CD99 play pivotal roles in these processes, particularly in TCRα chain
development. To ascertain the contributionof thesegenes, we isolated
thymocytes from both mice and humans at various developmental
stages and examined the protein levels of ELOVL4 and CD99. Our
analysis revealed an enrichment of ELOVL4 and CD99 expression at the
DP_re stage, aligningwith their corresponding RNA expression profiles

(Figs. 4a–c). To further validate the functions of ELOVL4 and CD99, we
employed the CHimeric IMmune Editing approach38, utilizing a
CRISPR-Cas9 bone marrow delivery system for rapid gene function
evaluation in this context (Fig. 4d; Supplementary Figs. 6a, b; see
“Methods”). Chimeric mice exhibited a notable decrease in the fre-
quency of thymic CD4+ T cells derived from ELOVL4-KO bonemarrow,
a phenomenonnot observedwithCD99-KObonemarrow compared to
control counterparts (Figs. 4e–h, l–o). Intriguingly, the absence of
ELOVL4 resulted in decreased production of cytokines, including
interleukin 2 (IL-2) and interferon-γ (IFN-γ), coupled with reduced
proliferation upon TCR +CD28 stimulation in naïve CD4+ T cells, as
evidenced by ELISA and 3H-thymidine incorporation assays (Figs. 4i, j).
Conversely, CD99 deficiency had no discernible impact on this process
(Figs. 4p, q). Furthermore, upon analysis of the Treg population, we
found no significant differences between the wild-type (WT) and
ELOVL4-KO groups in the percentages of Tregs. However, the reduced
Treg numbers observed in the ELOVL4-KO groupmay be attributed to
the loss of total CD4+ T cells (Fig. 4k). These findings establish ELOVL4
as a novel regulator governing the maturation and activation of CD4+

T cells. The significance of these compelling results underscores the
effectiveness of this analytical approach in rapidly identifying crucial
genes that orchestrate intricate immunological processes.

Optimizing TSO-his for thymic cortex and medulla segmenta-
tion with distance-varying genes
Since the identification of medullary and cortical regions by TSO-his
mainly relies on the hypothesis testing framework using multiple ST
slices (Fig. 2a; step 2), our aim was to explore the feasibility of effi-
ciently and rapidly identifying regions in ST slices, even when using a
single ST slice. To this end, we utilized a combination of feature
selection based on both significantly DVGs and DEGs, and the Extreme
Gradient Boosting (XGBoost)39 model to develop a classifier capable of
replacing step 2 in the TSO-his method (see “Methods”; Figs. 2a, 3c;
Supplementary Fig. 7a). The results demonstrated a good perfor-
mance, with an overall accuracy of 95.8% and an area under the curve
(AUC) of 0.986 for the training set, as well as an accuracy of 95.1% and
an AUC of 0.977 for the testing set (Supplementary Figs. 7b, c). Addi-
tionally, when the predictions from the XGBoost classifier were pro-
jectedonto the three ST slices,we observed a strong concordancewith
the regions identified using the hypothesis testing framework
employed in TSO-his (Supplementary Fig. 7d). Moreover, we analyzed
the contributions of features in the classifier, noting that the CC-
chemokine family of genes was the most prominent (Supplementary
Fig. 7e). To further validate the performance of our trained XGBoost
classifier, we used the thymic ST slices of Suo et al. 11 as an independent
testing set, and demonstrated that the identified medullary and

Fig. 2 | Identification of critical regions in thymic spatial transcriptomics (ST)
slices, and depiction of changes in cell type with spatial distance. a Algorithm
for identifying cortical and medullary regions of thymus and segmenting thymic
lobules based on spatial transcriptome data (TSO-his). Details are provided in
“Methods” section. b Critical tissue regions of Thy5 (top) and Thy7 (bottom)
thymus sections as determined by TSO-his analysis. Left: Hematoxylin and Eosin
(H&E) slices (control);Middle: medullary scores of spatial spots; Right: cortex,
medulla, and Medulla-Cortex (M-C) boundaries. Medullary center spots in thymus
sections aremarked in green. Segmentation results for other ST slices can be found
in Supplementary Figs. 3e, f (n = 8 biological replicates). c Dissection of thymus ST
slices into lobules basedon the nearest-neighbor strategy usingTSO-his. Left: Thy5;
Right: Thy7.dHierarchical clustering of identified cortical andmedullary regions in
lobules of eight thymus slices, with similarity measured by Pearson correlation of
averaged expression profiles between regions. e Spatial-distance applied to eight
thymus ST slices, illustrating the distribution of signature gene scores for 34 cell
types from the distal cortex to medullary center. The lines, representing the rela-
tionship between spatial distance and signature scores of cell types, were
smoothed using the generalized linear models, and the shaded areas around these

lines denote the 95% confidence intervals for the fitted values. f, g Spatial spot
scores of Thy 5 (f) and Thy7 (g) samples based on signature genes of cell types and
smoothed using the “wkde” method in the Nebulosa R package70. Enriched popu-
lations in cortical regions (cTECs, DP_blast, and abT(entry)) and medullary regions
(mTEC, CD4+ T and CD8+ T) are shown. h Network plots showing cell-cell com-
munications derived fromCellChat. (left) Fb vs. T cells and (right) VSMC vs. T cells.
The thickness of the edges indicates the strength of the interaction. Nodes are
color-coded according to the cell types. (i) Comparison of shared and unique sig-
nificant ligand-receptor interactions (%) between CellChat31 and CellPhoneDB32

tools. (left) Fb vs. T cells, (right) VSMC vs. T cells. (j) Dot plot showing the selected
significant ligand-receptor pairs. (left) Fb vs. T cells and (right) VSMC vs. T cells.
The color of the dots reflects communication probabilities and dot size represents
computed p-values. Empty space indicates that the communication probability is
zero. P-values were computed from one-sided permutation tests. cTEC: Cortical
thymic epithelial cells, mTEC: Medullary thymic epithelial cells, VSMC: Vascular
Smooth Muscle Cell, Fb: Fibroblasts, DP_blast: Double positive blast cells,
DP_re: Double positive rearrangement cells. Source data are provided as a
Source Data file.
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cortical regions aligned well with the corresponding H&E images, as
well as the regions highlighted by medullary scores (Supplementary
Fig. 7f), thus confirming reliable performance and successful integra-
tion into the TSO-his methodology.

Spatial architecture of the thymus at single-cell resolution
Given the limited resolution of ST technology, the spots represent only
the average gene expression of multiple cells. To this end, we devel-
oped the TSO-hismap tool to accurately map thymic single cells to ST
coordinates, and determine the physical proximity between different
cell types within the spots during T cell development. It can recon-
struct a spatial atlas of the thymus at single-cell resolution by inte-
grating scRNA-seq and ST data through TSO-his and the spatial
deconvolution tool CARD40 (Fig. 5a; Supplementary Figs. 8a, b; see
“Methods”). To assess the performance of TSO-hismap, we conducted

simulations of thymus ST data by incorporating known cell type
locations at various noise levels (see “Methods”). By mapping single
cells to these simulated ST data, TSO-hismap consistently demon-
strated superior accuracy compared to Seurat19 Coordinate Transfer
(SrtCT), CellTrek41, and CARD (Fig. 5b). Furthermore, we projected
thymic single cells onto eight real ST sections using TSO-hismap and
the other tools (Fig. 5c; Supplementary Figs. 8c–e and 9a). While
CellTrek and SrtCT showed limited ability to differentiate cell types
within the cortex and medulla regions (Supplementary Fig. 8e), both
TSO-hismap and CARD demonstrated significant differences in the
cellular composition of the medullary and cortical regions that align
with the thymic anatomical structures (Fig. 5c and Supplementary
Fig. 9a). To further compare the performance of TSO-hismap and
CARD, we visualized the relative proportions of each cell type in the
cortex and medulla regions using a Sankey diagram (Fig. 5d;
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Supplementary Fig. 9b). Most thymic cell types displayed nearly
identical distributions (Fig. 5d; Supplementary Figs. 9b, c). However,
TSO-hismap accurately projected cTEC cells into the cortex region,
whereas CARD mapped a significant proportion of cTEC cells to the
medulla region (Supplementary Fig. 9d). TSO-hismap placed B_mem-
ory cells at the boundary of the medulla region, which is consistent
with a previous report42, while CARD primarily mapped them to the
cortex region (Supplementary Fig. 9d). These findings indicate that the
results obtained with TSO-hismap aligned more consistently with the
localization studies of thymic cell types compared to CARD. In addi-
tion, we compared the relative abundance of cell types observed in the
scRNA-seq data with that obtained after projection to spatial coordi-
nates, and found that TSO-hismap exhibited the highest correlation
(R =0.99; Supplementary Fig. 9e, f). These findings demonstrate that
TSO-hismap can accurately reconstruct the spatial distribution of dif-
ferent thymic cell types at single-cell resolution.

Based on the spatial atlas reconstructed by TSO-hismap, we first
quantified the relative distances of different cell types from the
medullary center (Fig. 5e). Interestingly, CD8aa, B_memory, DC, pDC,
Mono, andMacexhibited a higher abundance at the boundarywith the
cortex (Figs. 5e, f). Furthermore, we assessed the proximity of different
cell types by segmenting the spots at a single-cell resolutionusingTSO-
hismap. The J-index (see “Methods”) was introduced to measure the
strengthof co-localization basedon segmented spots and illustrate the
co-localization patterns. cTECs were highly concentrated at the prox-
imal cortico-medullary junction and around blood vessels, and
strongly co-localized with certain DP_re cells (Figs. 6a, b; J-index =
0.959; Supplementary Data 5). We also observed that Fb cells were
enriched in the cortical regions surrounding blood vessels and co-
localized with cTECs (Fig. 6a; Supplementary Fig. 9g; J-index = 0.613;
Supplementary Data 5). Previous studies have suggested a role for Fb
in TEC maintenance and T cell development, although the underlying
mechanism remains unknown43,44. This finding provides potential evi-
dence of their involvement in T cell differentiation. In the medullary
region, we observed strong co-localization of mTECs with CD4+ T and
CD8+ T cells (Supplementary Fig. 9g; J-indexes = 0.768 and 0.759).
Furthermore, CD8aa cells (Supplementary Figs. 9h–j) were enriched
near theM-C boundary and co-localized strongly with DC cells (J-index
= 0.821) but weakly with mTECs (J-index = 0.254). This suggests that
DCs may mediate the negative selection of CD8aa cells (Fig. 6a, b),
which is consistent with previous studies8,11. Moreover, CD8aa cells
also showed significant co-localization with B_memory cells (Fig. 6b; J-
index = 0.759) and, as well as with Mono cells. These co-existences
were further confirmed by H&E staining (Figs. 6b, c; J-index = 0.807;
CD8aa:GNG4; B_memory: IgA;Mono:CD14). However, the natureof the

interaction between these cells and CD8aa cells remains unclear and
warrants further exploration. To summarize, the spatial distribution
and coexistence of various cell types in the thymus provide a
panoramic view of T cell development (Fig. 6d).

Revealing multiple enigmatic intermediate subpopulations in
αβ T cell development through TCR signaling
We were able to reconstruct the developmental route of T cells by
mapping out cell types at different stages using conventional marker
genes (Fig. 6d and Fig. 7a). Since TCR chain recombination is a critical
aspect of T cell development and maturation, we generated and ana-
lyzed αβ-VDJ sequencing data from 16 normal thymus samples (Fig. 1a
and Fig. 7b; Supplementary Fig. 10a). The diversity of TCR clones was
highest in the pediatric group and lowest in the geriatric group (Sup-
plementary Fig. 10b; see “Methods”). By combining thymic TCR-seq,
scRNA-seq, andST-seqdata,weobserved that T cellswith a large clonal
size (≥3) were usually enriched in the medullary regions, while T cells
with a clone size of 1 were primarily in the cortical region (Figs. 7b, c;
Supplementary Figs. 10c, d). Furthermore, leveraging scTCR-seq data,
T cells lacking β chains were filtered out (Fig. 7b). The remaining
αβT cells were stratified into distinct T cell subpopulations based on
the expressionof α, β, δ, and γ chain-associated genes (see “Methods”).
Notably, four TCRγ- T-cell subpopulations predominated:
TCRα-TCRβ+TCRδ+, TCRα+TCRβ+TCRδ+, TCRα-TCRβ+TCRδ-, and
TCRα+TCRβ+TCRδ- (Fig. 7d). Conversely, other T-cell subpopulations,
particularly those expressing γ chain related genes (i.e, TCRγ + ), were
excluded due to their limited representation (Fig. 7d; see “Methods”).
Analysis of single-cell data from Park et al. 8 and Cordes et. al.33 con-
firmed the existence of these four T-cell subpopulations (Fig. 7d).
Classical theory outlines two distinct developmental routes for T cells
at theDNstage: successful beta rearrangement leads toαβTcells, while
successful delta rearrangement results in γδT cells. In our investigation
focusing on αβT cells, both TCRα-TCRβ+TCRδ+ and TCRα+TCRβ+TCRδ+

subpopulations contain δ chain information. This raises the question
of whether these subsets harbor an abundance of double cells. To
address this, we employed Scrublet45 and DoubletDetection46 tools for
identifying doublets (Fig. 7e; Supplementary Figs. 10e–g; see “Meth-
ods”). Our analysis revealed consistently low doublet scores across all
subpopulations, with fewer than 4% of cells detected as doublets
(Fig. 7e). These findings suggest the consistent presence of four T-cell
subpopulations during αβT cell development.

Next, the spatial localization of the four aforementioned sub-
populations was traced using TSO-hismap, indicating that
TCRα-TCRβ+TCRδ+ and TCRα+TCRβ+TCRδ+ cells were predominantly
distributed in cortical regions, away from the medullary center.

Fig. 3 | Exploring spatial gene expression patterns and functional con-
sequences in thymic T cell development and differentiation. a Heat map
showing the smoothed expression of genes that exhibited significant variance with
distance in pediatric spatial transcriptomics (ST) slices. The red arrow indicates the
direction of gene expression change from the distal cortex to themedullary center
(Supplementary Data 3). Two broad gene clusters (Cluster1 and Cluster2) were
assigned by cutting the hierarchical clustering tree, and the biological processes
(BP) terms enriched in each cluster are selectively shown. The medulla indicator
genes (Supplementary Table 2) closely linked to T-cell differentiation status8,33 are
highlighted.bHeatmapofmarker genes, only the top 30 over-expressed genes are
shown for the cortical andmedullary regions, respectively. Spots are ordered by ST
samples. c Overlap between genes that vary significantly with distance (DVGs) and
the differentially expressed genes (DEGs) between medullary and cortical regions.
d Spatial distribution of the top ten DEGs in eight thymus ST slices; five were up-
regulated in the medullary region and the remainder in the cortical region. The
lines, representing the relationship between spatial distance and gene expressions,
were smoothed using the natural spline regression model, and the shaded areas
around these lines denote the 95% confidence intervals for the fitted values. e, f
Expression levels (left) and spatial localization (right) of (e) CCL19, CCR7 and (f)

ELOVL4 and CD99 in thymic cell types. g, h Violin plots combined with box plots
showing the distribution of ELOVL4 (left) and CD99 (middle) expression, and T-cell
receptor α (TCRα)-related gene scores (right) in DP_blast andDP_re cell types in our
thymic single-cell dataset. Median value, interquartile range (IQR) as bounds of the
box and whiskers that extends from the box to upper/lower quartile ± IQR × 1.5. P-
values were obtained from the two-sided t-test. Our thymus data (DP_blast=15,812
cells; DP_re=52,320 cells; (g) Park et al.’s data, (DP(P) = 12,057 cells; DP(Q) = 11,219
cells; (h). i, j Scatter plot showing the expression of the selected gene and the
signature score of TCRα changing with age in the DP_re stage. Each data point
represents an individual sample, with the dashed line indicating the loess fit. The
signature score of TCRα is inferred by its associated TRAV* genes. (i) ELOVL4 vs.
TCRα; (j) CD99 vs. TCRα. k Scatter plot showing the associations between the
expression of CD99 (left) and ELOVL4 (right) with the signature score of TCRα
separately. The shaded areas indicate the 95% confidence interval from the linear
regression models, respectively. “R” represents the Pearson correlation coefficient,
and the p-value is obtained from the two-sided t-test. DP_blast: Double positive
blast cells, DP_re: Double positive rearrangement cells. Source data are provided as
a Source Data file.
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TCRα-TCRβ+TCRδ- and TCRα+TCRβ+TCRδ- cells, especially the latter,
were enriched in the medulla (Fig. 7f-h; Supplementary Figs. 10h, i;
see “Methods”). By measuring the Euclidean distance from repre-
sentative regions of T-cell subpopulations to the center of themedulla,
the TCRα-TCRβ+TCRδ+ population was the most distant, while
TCRα+TCRβ+TCRδ+ and TCRα-TCRβ+TCRδ- were almost equidistant,
and TCRα+TCRβ+TCRδ- was closest to the medullary center (Fig. 7i; see
“Methods”). Furthermore, to investigate the biological functions of the
four T-cell subpopulations, we screened for the DEGs (Fig. 7j;

Supplementary Fig. 10j). The proliferation-related genes TYMS, TOP2A
and MKI67 were significantly overexpressed in the TCRα-TCRβ+TCRδ+

and TCRα+TCRβ+TCRδ+ subpopulations, and are involved in DNA
replication and chromosome sistermonomer division. TRDC, a marker
gene of the early stage of T cell differentiation, was also highly
expressed in both subpopulations (Figs. 7j, k; Supplementary Data 6).
CD8B and RAG1 were highly expressed in the TCRα-TCRβ+TCRδ- sub-
group, and as markers of DP rearrangement, are enriched during the
positive selection of T cells. TRAC and MHC class I antigens were
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significantly overexpressed in the TCRα+TCRβ+TCRδ- population,
suggesting a close association between the latter and mature T cells
(Figs. 7j, k; Supplementary Data 6).

On the age axis, we examined the dynamic changes in abundance
of the four T-cell subpopulations across age groups. Notably,
TCRα-TCRβ+TCRδ+ cells displayed a significant negative correlation
with age, being more abundant in the prenatal group (Fig. 7l; Supple-
mentary Data Fig. 11a). Conversely, TCRα+TCRβ+TCRδ+ and
TCRα-TCRβ+TCRδ- were enriched in the Pediatric and Adult stages,
respectively (Fig. 7l).Moreover, TCRα+TCRβ+TCRδ- exhibited a positive
correlation with age and was predominantly found in the geriatric
group (Fig. 7l; Supplementary Fig. 11a). These findings underscore the
dynamic alterations in the composition of thymic T-cell subpopula-
tions throughout the aging process.

Overall, these four T-cell subpopulations within αβT cells exhibit
distinct spatial distributions, unique gene expression patterns, and
dynamic changes in abundance across various age groups, offering
valuable insights into their biological processes and developmental
traits.

αβ T cell maturation is a continuous differentiation process
across multiple intermediate states
Given the close relationship between T-cell development and the TCR
repertoire as well as TCR diversity, we observed pronounced biases in
VJ gene usage among the four T-cell subpopulations for TCRα and
TCRβ chains. The TRBV* gene exhibited prominence in both
TCRα-TCRβ+TCRδ+ and TCRα+TCRβ+TCRδ+ subpopulations, whereas
TRBJ* was prevalent in the TCRα-TCRβ+TCRδ- and TCRα+TCRβ+TCRδ-

subpopulations (Figs. 8a, b). Additionally, TRAV* and TRAJ* displayed a
distinct preference in both TCRα+TCRβ+TCRδ+ and TCRα+TCRβ+TCRδ-

subpopulations, with TRAJ* apparently enriched in TCRα+TCRβ+TCRδ-

cells (Fig. 8a).While certain TRAV* genes, such as TRAV40, TRAV41, and
TRAV31, displayed a preference for TCRα+TCRβ+TCRδ+ subpopula-
tions, the overall enrichment of TRAV* genes were observed in
TCRα+TCRβ+TCRδ- cells (Figs. 8a, b). Notably, the signature score of
TRDV* appeared comparable between the TCRα-TCRβ+TCRδ+ and
TCRα+TCRβ+TCRδ+ subpopulations, indicating that these δ chaingenes
are used with similar frequency. Classical theory suggests that mature
TCR chains typically manifest a broader spectrum of V gene segment
utilization. However, during the initial stages of T cell development, a
preference emerges for the selection of J gene segments.
Consequently, the TCRα-TCRβ+TCRδ- and TCRα+TCRβ+TCRδ- sub-
populations exhibit comparatively more mature β chains than the
TCRα-TCRβ+TCRδ+ and TCRα+TCRβ+TCRδ+ subpopulations. In terms of
α chains, the TCRα+TCRβ+TCRδ- subpopulation demonstrates a
heightened degree of maturity compared to the TCRα+TCRβ+TCRδ+

subpopulation.

To ascertain the timing and transition points of differentiation for
the TCRα+TCRβ+TCRδ+ and TCRα-TCRβ+TCRδ- populations, the T-cells
in the DN andDP stages were re-clustered (Supplementary Figs. 11b, c).
Refined subgroups were identified within the DN stage, namely
DN_early, DN_trans, DN_blast, DN_re, and ISP (Supplementary
Figs. 11c, d). Typically, the developing human DN compartment is
categorized into the CD34+CD38-CD1A- (DN1) stage, representing the
most immature thymocyte subset, followed by the CD34+CD38+CD1A-

(DN2) and CD34+CD38+CD1A+ (DN3) stages. Our comparison revealed
that DN_early is predominantly found in the DN1 stage, DN_trans,
DN_blast primarily in the DN2 stage, while the DN3 stage is closely
linked with DN_re and ISP (Fig. 8c). Similarly, distinct clusters were
observed within the DP_blast stage, namely DP_blast1 (UNG), DP_blast2
(TYMS), DP_blast3 (TOP2A and CDK1), DP_blast4 (CDC20), and
DP_blast5 (RAG1), based on RNA velocity, pseudo-time, and cell-cycle
scores (Fig. 8d; Supplementary Fig. 11c, e-i; see “Methods”). Addition-
ally, the DP_re cells were re-clustered into DP_re1 (ACTG1 and GAPDH),
DP_re2 (STMN1 and MZB1), DP_re3 (MT1X and CDR1), and DP_re4
(PTPRC and HSPH1) subsets based on RNA velocity, particularly the
signature scores of TRAV* genes (the higher the score, the more
mature it indicates). (Fig. 8e; Supplementary Figs. 11j, k). To gain a
more systematic understanding of the differentiation pattern of
αβT cells, pseudo-time analysis was performed on all T cells, which
consistently demonstrated anordered arrangement of T cells basedon
known marker genes and transcription factors (Fig. 8f and Supple-
mentary Fig. 11l)8.

Based on refined annotations of T cells, cells exhibiting TCR
amplification were isolated from all four T-cell subpopulations, and
their respective cumulative distributions were computed across var-
ious stages of T cell differentiation (see “Methods”). As shown
in Fig. 8g, the TCRα-TCRβ+TCRδ+ cells accumulated significantly
in the DN and DP_blast stages, suggesting their early differentiation
(Fig. 8g). Similarly, the TCRα+TCRβ+TCRδ+ subpopulation ranked sec-
ond in accumulation, succeeded by TCRα-TCRβ+TCRδ-. As the
TCRα+TCRβ+TCRδ- cells accumulated predominantly at the SP stage,
indicative of a closer proximity to mature T-cell phenotypes, thus
representing a later stage of differentiation (Fig. 8g). Prompted by
these observations, we pose a fundamental question: Do the identified
four T-cell subpopulations accurately delineate continuous develop-
mental stages within T cell maturation? To address this pivotal inquiry,
we meticulously curated cells exhibiting identical β chains
(CDR3 sequences) from the four T-cell subpopulations. Subsequently,
we diligently tracked the fate of these clonal cells, with the sorting of
T-cell subpopulations aligning with the chronological sequence out-
lined in Fig. 8g. Our findings unveil a distinct and coherent develop-
mental trajectory of these cells, progressing from the nascent
TCRα-TCRβ+TCRδ+ subpopulation to the TCRα+TCRβ+TCRδ-

Fig. 4 | Using CRISPR/Cas9-mediated knockout to investigate cortical region-
enriched genes in thymus development. a Immunoblot analysis of the ELOVL4
proteins using mouse and human thymocytes at different stages as indicated. b, c
Flow cytometric analysis of CD99 expression using median fluorescence intensity
(MFI) on gated thymocytes as indicated. Summary graphs are presented as
mean ± SD. P values were determined by an unpaired two-tailed Student’s t test.
d Schematic of Lentiviral CRISPR/Cas9-Mediated knockout using bone marrow
chimeric mice. e Immunoblot analysis of ELOVL4 proteins using naïve T cells from
CRISPR/Cas9-Mediated ELOVL4 knockout and control mice. f–h Flow cytometric
analysis of thymocyte subpopulations showing a representative FACS plot (left)
and summary graph (right) of total thymocyte numbers and frequencyof indicated
subpopulations (n = 3 biological replicates). i, j ELISA analyzes of IFN-γ and IL-2
expression using supernatants collected from naïve CD4+ T cells and naïve CD8+

T cells purified from splenocytes of CRISPR/Cas9-Mediated ELOVL4 knockout and
control mice (n = 4 biological replicates), stimulated for 48hours with plate-bound
anti-CD3 plus anti-CD28 antibodies. T-cell proliferation assays weremeasured after
40hours by pulse-labeling the stimulated T cells with [3H] thymidine for 8 hours.

k Flow cytometric analysis of Treg cells (CD4+CD25+Foxp3+) showing a repre-
sentative FACS plot (left) and summary graph (right) of absolute numbers and
frequency (n = 3 biological replicates). (l) Flow cytometric analysis of the surface
expression of CD99 on splenocyte T cells within the indicated group. m–o Flow
cytometric analysis of thymocyte subpopulations showing a representative FACS
plot (left) and summary graph (right) of total thymocyte numbers and frequency
of indicated subpopulations. p, q ELISA analyzes of interferon-gamma (IFN-γ) and
IL-2 expression using supernatants collected from naïve CD4+ T cells
(CD4+CD44loCD62Lhi) and naïve CD8+ T cells (CD8+CD44loCD62Lhi) purified from
splenocytes of CRISPR/Cas9-Mediated CD99 knockout and control mice (n = 4
biological replicates), stimulated for 48 hours with plate-bound anti-CD3 plus anti-
CD28 antibodies. T-cell proliferation assays were measured after 40h by pulse-
labeling the stimulated T cells with [3H] thymidine for 8 hours. 8-week-old female
mice were used for experiment. Figure 4d created with BioRender.com released
under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Interna-
tional license. ELISA: Enzyme-Linked immunosorbent assay, FACS: Fluorescence-
Activated cell sorting. Source data are provided as a Source Data file.
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subpopulation (Fig. 8h). Notably, exemplified by TRB:CASSDSNQPQHF,
this progression encompasses transitions fromDP_blast1 (TCRα-TCRβ+

TCRδ+), DP_blast2 (TCRα+TCRβ+TCRδ+), abT (entry) (TCRα-TCRβ+

TCRδ-) to the SP state (TCRα+TCRβ+TCRδ-).
To further determine the transition points of the four T-cell sub-

populations, the relative proportions across cell types were examined.
As shown in Fig. 8i, the TCRα-TCRβ+TCRδ+ cells were highly enriched

from the DN_early to DP_blast1 stages, while TCRα+TCRβ+TCRδ+ cells
were more abundant from the DP_blast2 to DP_blast4 stages. Likewise,
the TCRα-TCRβ+TCRδ- cells were mainly involved in the differentiation
of DP_re1 and DP_re4 stages. The stage from abT(entry) to mature
T-cells was predominantly composed of the TCRα+TCRβ+TCRδ- cells
(Fig. 8i). In addition, there was a significant expansion of
TCRα-TCRβ+TCRδ+ towards TCRα+TCRβ+TCRδ+ during differentiation
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from the DP_blast1 to DP_blast2 and DP_blast3 stages (Fig. 8j; see
“Methods”). TCRα+TCRβ+TCRδ+ significantly transitioned towards the
TCRα-TCRβ+TCRδ- subpopulation from the DP_blast4/5 to DP_re1/
re2 stages (Fig. 8j). From the DP_re4 to abT(entry) stage,
TCRα-TCRβ+TCRδ- underwent significant expansion towards
TCRα+TCRβ+TCRδ-, with no significant flow of TCRα+TCRβ+TCRδ- to
other subpopulations (Fig. 8j). These results collectively indicate that
DP_blast1, DP_blast4/5 and DP_re4 represent the transition points of
the four T-cell subpopulations, and the formation and maturation of
TCR chains constitute a continuous rather than a transient differ-
entiation process.

Based on these findings, we propose a novel perspective on the
developmental trajectory of αβ T cells. Specifically, during the early
stages of T cell development, both the segment genes of the β and δ
chains are concurrently active (TCRα-TCRβ+TCRδ+). This finding aligns
with prior investigations suggest that the expression levels of δ seg-
ment genes in early T cellsmay influence the cellular fate (α/β or γ/δ)47.
Moreover, concomitant with the expression of α segment genes, a
triple-positive intermediate T cell state emerges (TCRα+TCRβ+TCRδ+).
Notably, during this stage, the α chain exhibits discernible immature
characteristics, speculation of its potential pivotal regulatory role in
facilitating the β-selection process of T cells. As T cells progress into
the DP rearrangement stage, the expression of δ chain is wholly sup-
pressed. Intriguingly, the segment genes of immature α chain are also
subject to suppression, resulting in the formation of TCRα-TCRβ+TCRδ-

cells. However, it is imperative to underscore that the underlying
regulatory mechanism governing the suppressed expression of α
segment genes remains elusive. Ultimately, to form functional TCR
complexes, the TCRαβ complex is formed by integrating with the β
chain following α rearrangement during the DP stage, culminating in
the development of SP T cells (TCRα+TCRβ+TCRδ-). Additionally, we
summarize the developmental timing and characteristics of the four
T-cell subpopulations in Fig. 8k to depict αβ T cell development.

Discussion
The proper development of T cells is crucial for maintaining a healthy
adaptive immune system6,28,48. Although numerous studies utilizing
scRNA-seq have uncovered the developmental mechanisms of thymic
T cells, the spatial distribution of the cells at single-cell resolution
within the thymic microenvironment, and the inter-cellular interac-
tions remain to be elucidated8,11,49–51. Additionally, previous studies
have primarily focused on thymus development in fetal or early
pediatric stages, with limited information available regarding the thy-
mus in elderly individuals8,11,33,52. In this study, we mapped thymocyte
development at single-cell resolution from the fetal to geriatric stages.
Our findings revealed a higher enrichment of immature-state T cells in
the prenatal and pediatric thymus, while mature-state T cells pre-
dominated in the adult and geriatric groups. This suggests that the
microenvironment of the prenatal and pediatric thymus is more con-
ducive for T-cell development, whereas the geriatric thymus tends to

undergo fibrosis and atrophy, leading to the development of auto-
immune diseases53.

The spatial localization of cell types in the thymic microenviron-
ment is closely associated with their function54. To investigate the
spatial distribution of thymic cell types, we developed the TSO-his tool
based on ST data from eight pediatric donors. TSO-his effectively
identified the critical structural regions and lobular segmentation in ST
slices. By applying this tool, we comprehensively examined the rela-
tionship between cell types and their spatial distance, and inferred the
spatial location of these cells. We found that Fb and VSMCs interact
with DP cells via MHC class I molecules, potentially facilitating T-cell
recognition and selection. Furthermore, we identified significant
distance-varying genes and characterized their expression patterns
and biological functions.While projecting single cells into ST slices can
effectively characterize the spatial cell atlas of the thymus, accurate
localization of 34 cell types proved to be challenging. The widely used
tool SrtCT55, as well as the recently published CellTrek41, showed
unsatisfactory results. To address this issue, wedeveloped the thymus-
specific TSO-hismap by integrating histological structures determined
by TSO-his and the spatial deconvolution tool CARD. TSO-hismap
allowed accurate projection of thymic cell types in ST slices, which
aligned with the anatomical structure of the thymus. Based on the
spatial architecture of the thymus at single-cell resolution obtained by
TSO-hismap, we systematically characterized the spatial localization
and interactions among cell types in the thymic microenvironment,
and identified several novel co-localizations, including CD8aa with
B_memory and Mono. These findings provide important insights into
T-cell development in the thymus.

Four distinct subpopulationswithin theαβTcell lineagehavebeen
identified, each characterized by unique patterns of TCR receptors,
providing valuable insights into the intricate stages of T cell develop-
ment within the thymus. By leveraging TCR sequencing data, scRNA-
seq, and spatial transcriptomics, we have systematically delineated
the spatial distribution of these four T-cell subpopulations
within the thymic architecture. Early precursors (TCRα-TCRβ+TCRδ+,
TCRα+TCRβ+TCRδ+) primarily inhabit the cortex, whereasmoremature
T cells (TCRα-TCRβ+TCRδ-, TCRα+TCRβ+TCRδ-) are predominantly
located in the medulla, highlighting the nuanced interplay between
diverse thymic microenvironments and T cell maturation. Moreover,
dynamic alterations in the TCR repertoire during T cell maturation
were observed, with discernible biases in the utilization of VJ genes
across different subpopulations, elucidating the intricate mechanisms
governing TCR repertoire selection.Meticulous tracking of TCR clones
has further facilitated the delineation of the developmental timeline
and critical transition points among these four T-cell subpopulations.
Significantly, as T cells transition from the TCRα+TCRβ+TCRδ+ to the
TCRα-TCRβ+TCRδ- stage, the suppressed expression of α chain-related
genes may result from regulatory constraints imposed by other cel-
lular proteins or pathways during TCR chain folding and assembly into
functional complexes within the cell.

Fig. 5 | Projectionof single cells fromthenormal thymus tospatial coordinates.
a The strategy of TSO-hismap for projecting single cells onto spatial tran-
scriptomics (ST) slices. Details of the full algorithm can be found in the “Methods”
section. b Boxplots showing the performance of SrtCT, CellTrek, CARD, and TSO-
hismap. Various noise levels (5%, 10%, and 15%) were introduced to evaluate the
accuracy of assigning individual cells to the correct spot in simulated ST datasets.
Median value, interquartile range (IQR) as bounds of the box and whiskers that
extends from the box to upper/lower quartile ± IQR× 1.5. P-values were obtained
using the two-sided t-tests. c Projection of thymic single cells to ST coordinates
using TSO-hismap. Examples include Thy5, Thy6 and Thy7. Each dot represents a
single cell from the normal thymus, with cell types color-coded. An enlarged lobule
with a medullary center of ATAGTTCCACCCACTC-1 is shown. d Sankey plot
showing the proportion of single cells of each cell type projected onto the

medullary, cortical, and Medulla-Cortex (M-C) boundary regions of ST slices using
TSO-hismap. The thickness of the lines indicates the proportion of one cell type
projecting to that region. eBubble plot showing a panoramic view of thymocytes in
the cortical, medullary, and M-C boundary regions inferred by TSO-hismap, based
on eight pediatric ST sections. The size of the dots indicates the proportion of that
cell type in a particular region, and the color shade represents the average distance
of that cell type from the medullary centers. f Single-cell resolved distribution of
B_memory, CD8aa, DC, and Mono in ST slices (left: Thy5, right: Thy7). Each dot
represents an individual cell. B_memory:Memory B cells, DC: Dendritic cells, Mono:
Monocytes. The cell type icons in Fig. 5awere createdwith BioRender.com released
under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Interna-
tional license. Source data are provided as a Source Data file.
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Particularly, the expression of MHC class II genes was suppressed
in cTECs, leading to impaired positive selection of CD4+ T cells. The
discovery of ELOVL4’s regulatory role in CD4+ T cell maturation and its
correlation with the population of CD4+ T cells provides valuable
insights into both fundamental immunological processes and the
clinical implications of its dysfunction. n-3 VLCPUFAs (very long-chain
polyunsaturated fatty acids) have been identified as specific

components of membrane microdomains crucial for cellular signaling
processes during T lymphocyte activation56. Consequently, the
downregulation of ELOVL4may potentially inhibit the synthesis of n-3
VLCPUFAs, thereby opposing the formation of the microdomains
required for CD4+ T cell maturation and activation.

In summary, our study delivers an in-depth investigation of thy-
mocyte development, spatial organization at single-cell resolution,
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and the dynamic changes in TCR signaling associated with T-cell
maturation. It offers valuable insights and data resources for both
fundamental immunological mechanisms and potential clinical
applications

Methods
All studies comply with all relevant ethical regulations. All research
protocols involving human samples were subjected to review by the
Ethics Committee of Nanjing Drum Tower Hospital, and received
approval for the study protocols as described in detail below.

Thymic tissue acquisition
The study adhered to the principles delineated in the Declaration of
Helsinki, and ethical clearance was secured from the Research Ethics
Committee of Nanjing Drum Tower Hospital (ID 2020-015-01). 16
individualswere recruited between January 2020 andNovember 2022,
encompassing healthy thymus subjects spanning various life stages
(prenatal, pediatric, adult, and elderly). Fetal specimens were sourced
frommiscarriages or stillbirths, while pediatric samples were obtained
from patients with congenital heart disease undergoing surgical
intervention, necessitating the removal of obstructing thymic tissue.
Specimens from adult and elderly subjects were procured post-
humously from organ donors. The patients included males and
females, as the information on sex and gender was not relevant in our
study. The clinical characteristics of the patients were shown in Sup-
plementary Data 1. All patients provided written informed consent for
sample collection and data analyzes prior to operation.

Detailed demographic characteristics of the study population
were succinctly presented in Supplementary Data 1.

Tissue dissociation and preparation of single-cell suspensions
To initiate tissue dissociation, samples were rinsed in ice-cold 1×PBS at
4°C. They were then transferred to a sterile RNase-free culture dish for
processing. Using surgical scissors, the tissues were finely cut into small
fragments, approximately 0.5mm² in size. Unwanted tissues such as
blood stains, fatty layers, and connective tissueswere eliminatedduring
the washing process with 1×PBS. The tissue samples were then incu-
bated in a constant-temperature water bath set at 37 °C, utilizing the
Miltenyi MACSHuman Tumor Dissociation kit (130-095-929). Typically,
the incubation period ceased once the digestive solution turned turbid
and the tissue mass dissolved. Following this, the cell suspension was
filtered using a 40 µm cell strainer (Corning, 352340).

Upon filtration, the cell suspension underwent centrifugation at
400rcf at 4 °C for 5minutes. The supernatant was discarded, and
10mL of 1X pre-diluted Red Blood Cell Lysis Solution (10x) (Milte-
nyi,130-094-183) was added to the tube, ensuring even distribution.
After incubating at 4°C for 5–10minutes, centrifugation was promptly
performed at 400rcf at 4°C for 5minutes. The supernatant was then
removed, and the cellswerewashed two to three timeswithpre-cooled
1X PBS. To assess cell viability, trypan blue staining was conducted
using the TC20 automated cell counter (Bio-Rad, 1450102). Based on
the results, adjustments were made to achieve a target concentration
of 700–1200 cells/µL with a cell viability exceeding 90%. Once the

desired cell concentration and viability were attained, the cells were
kept on ice, ready for the 10X Genomics single-cell immune profiling
chip on-board experiment to commence within 30minutes.

Library preparation for 10X genomics single-cell 5’ gene
expression and V(D)J sequencing
The scRNA-seq and V(D)J libraries were generated using the 10X
Genomics Chromium Controller instrument, Chromium Single Cell 5’
Library & Gel Bead Kit, and V(D)J Enrichment Kit according to the
manufacturer’s instructions. Briefly, single-cell suspensions of thymus
tissues (>90% viability) were loaded onto the controller to generate gel
bead-in-emulsions for individual cells. The mRNA was reverse tran-
scribed and sample indexed to obtain barcoded cDNA, which was
purified using DynaBeads and amplified by PCR. To construct the 5’
gene expression library, the amplified barcoded cDNA was frag-
mented, end repaired, A-tailed, sample indexed, and subjected to
double-size selection (average size 450bp). For the V(D)J library, V(D)J
sequences of human T cells were enriched from the amplified cDNA,
followed by fragmentation, end repairing, A-tailing, sample indexing,
and double-size selection (average size 600 bp). DNA was quantified
using the Qubit dsDNA HS assay kit (Thermo, Q32851), and the frag-
ment size distribution of the librarieswas determinedusing theAgilent
2100 BioAnalyzer High Sensitivity DNA kit (Agilent Technologies,
5067-4626). Subsequently, the pooled libraries were sequenced on the
Illumina high-output sequencing platform, and both RNA-seq and V(D)
J libraries had 150 bp paired-end reads.

10X library sequencing
The scRNA libraries were sequenced using the Illumina Novaseq plat-
form, ensuring aminimum sequencing depth of 50,000 reads per cell.
The sequencing setup included 150bp read 1, 8 bp i7 index, and 150 bp
read 2. Similarly, the single-cell TCR libraries were sequenced on the
same platform, with a minimum sequencing depth of 5000 reads per
cell, and using the same sequencing setup. For scRNA-seq analysis,
180,039 cells were sequenced, resulting in 7,169,639,936 reads. Each
sample had 358,481,997 reads, and each cell had 39,823 reads on
average. In addition, an average of 20,816 genes were detected per
sample. For scTCR-seq, 147,694 cells were sequenced, yielding
835,189,411 reads. On average, each sample had 41,759,471 reads, and
each cell had 5,655 reads. Detailed statistics on the mapping of indi-
vidual cells are shown in Supplementary Data 1.

10X Visium experiment and spatial transcriptome sequencing
Sample preparation and tissue optimization. Fresh tissues were fro-
zen and embedded in an optical cutting tissue (OCT) compound using
liquid nitrogen. The RNA quality of the OCT embedded block was
evaluated using Agilent 2100. Only tissues with an RNA integrity
number (RIN) greater than 7 were selected for the Visium spatial gene
expression experiments. To optimize the tissue, the Visium Spatial
Tissue Optimization Slide & Reagent kit (10X Genomics, PN-1000193)
was utilized following the guidelines provided in the Visium Spatial
Tissue Optimization User Guide (CG000238, 10X Genomics). The
optimization process involved placing tissue sections onto 7 Capture

Fig. 6 | Spatial co-localization and characterization of thymic cell types. a Atlas
of thymic cell types coexisting in spatial transcriptomics (ST) slices. Each vertex
represents a cell type and the thickness of the edges indicates the strength of the J-
index (see “Methods”). Edges with J-index values below 0.3 are not shown, those
with values less than 0.6 are gray, and those above 0.6 are highlighted by the color
code of the specific cell type. In addition, Ery was not considered due to con-
tamination in ST slices. b In combination with the ST images (Thy5 and Thy7 as
examples), the spatial co-localization of the cell types is visualized. cTEC vs. DP_re
(top) and CD8aa vs. B_memory vs. Mono vs. DC (bottom). Each dot represents a
cell projected onto spatial coordinates by TSO-hismap, with cell types color-coded.
c Immunofluorescence staining showing the expression patterns of GNG4 (CD8aa),

IgA (B_memory), andCD14 (Mono) in the thymus (5monthsold). Scale bars: 100 um
(middle panel) and 50um (bottom panel; magnified slices) (n = 3 technical
replicates). d Schematic representation of the spatial co-localization of thymic cell
types at different stages of human T cell development, from the distal cortex to the
innermedulla. Ery: Erythrocytes, B_memory: Memory B cells, cTEC: Cortical thymic
epithelial cells, Mono: Monocytes, DC: Dendritic cells, DP_re: Double positive
rearrangement cells. The thymus, lobule, and cell type icons in Fig. 6dwere created
with BioRender.com released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license. Source data are provided
as a Source Data file.
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Areas on a VisiumTissueOptimization slide. These sectionswere fixed,
stained, and permeabilized for different durations. During permeabi-
lization, the released mRNA molecules bound to oligonucleotides
present on the Capture Areas. Subsequently, fluorescent cDNA was
synthesized on the slide and subjected to imaging. The optimal per-
meabilization time was determined by maximizing the fluorescence
signal while minimizing signal diffusion. If the signal remained the

same at two different time points, the longer permeabilization time
was considered the optimal choice.

Staining and imaging. Cryosections were cut to a thickness of 10μm
and thenmounted onto the GEX arrays. These sections were placed on
a Thermocycler Adapter with the active surface facing upwards and
incubated at 37 °C for 1minute. Subsequently, they were fixed for
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6minutes using methyl alcohol at −20°C. Following the fixation, the
sectionswere stainedwithH&E (Eosin, Dako CS701, Hematoxylin Dako
S3309, bluing buffer CS702). The brightfield images were captured
using a Leica Aperio Versa8 whole-slide scanner at a resolution of 20×.

cDNA library preparation for sequencing. The Visium spatial gene
expression analysis was conducted using the Visium spatial gene
expression slide and Reagent Kit (10X Genomics, PN-1000184). To
create leakproof wells for reagent addition, the Slide Cassette was
utilized for each well. Subsequently, 70 μl of Permeabilization enzyme
was added and incubated at 37°C for 30minutes. Afterward, each well
waswashedwith 100μl of SSC buffer, followed by the addition of 75μl
of reverse transcription Master Mix for cDNA synthesis. Upon com-
pletion of the first-strand synthesis, the RT Master Mix was removed
from the wells. A solution of 75μl of 0.08M KOH was added and
incubated at room temperature for 5minutes. Then, the KOH was
removed from the wells, and they were washed with 100μl of
EB buffer. Subsequently, 75μl of Second Strand Mix was added to
each well for second-strand synthesis. For cDNA amplification, a
S1000TM Touch Thermal Cycler (Bio Rad) was employed. Following
the manufacturer’s instructions, the Visium spatial libraries were
constructed using the Visium spatial Library construction kit (10X
Genomics, PN-1000184). Finally, the libraries were sequenced using an
Illumina NovaSeq 6000 sequencer with a sequencing depth of at least
50,000 reads per spot using a pair-end 150bp (PE150) reading
strategy.

Antibodies and plasmid
The functional-grade antibodies utilized in this study included CD3
(Cat: 14-0031-82, clone 145-2C11,1:1000) and CD28 (Cat: 16-0281-82,
clone 37.51, 1:1000), both sourced from eBioscience. Fluorescence-
labeled antibodies for CD3 (Cat: 11-0032-82, 17A2,1:200), CD4 (Cat:
MCD0428, RM4-5, 1:200), CD8 (Cat: A15385, 53-6.7, 1:200), CD25 (Cat:
17-0251-82, PC61.5, 1:200), FOXP3 (Cat: 25-5773-82, FJK-16s, 1:200),
CD44 (Cat: 17-0441-82, IM7, 1:200), CD62L (Cat: 12-0621-82, MEL-14,
1:200) and CD99 (Cat: 12-0997-42, 3B2/TA8, 1:200) were from
eBioscience. Mouse CD99 PE-conjugated Antibody were from R&D
(Cat: FAB3905P,1:200). The antibody targeting mouse ELOVL4 (Cat:
55023-1-AP,clone 55023-1-AP, 1:1000) was procured from Proteintech.
Anti-Actin (Cat: MAB1501, C-4, 1:10,000) was from Sigma. psPAX2,
pMD2.G and lentiviral sgRNA vector were co-transfected into
HEK293T cells to produce lentiviruses.

Cell line, mice and BM adoptive transfer
HEK293T cells were originally purchased from ATCC (catalog no. CRL-
3216). Rag1-KO (C57BL/6, Strain NO. T004753) mice were purchased
from Gempharmatech Co., Ltd. ROSA26-Cas9mice (C57BL/6, Cat. NO.
NM-KI-00120) were purchased from Shanghai Model Organisms Cen-
ter, Inc. Cas9-expressing bone marrow cells isolated from ROSA26-
Cas9 mice were spin transduced with lentiviral constructs on a
Retronectin-coated plate and adoptively transferred into irradiated
(950 rad on an X-Rad irradiator) Rag1-KO mice. After 8weeks, the chi-
meric mice were euthanized using CO2 asphyxiation followed by cer-
vical dislocation for analysis of thymus T cell development and
peripheral T cell activation. All animal experiments were conducted in
accordance with the guidelines set forth by the institutional and
national committees. Explicit permission to perform animal experi-
ments was granted by the Institutional Animal Care and Use Com-
mittee (IACUC) at Nanjing Medical University, under the protocol
number 2308051. The animals were housed in a specific pathogen-free
(SPF) facility. For each experiment, sex-matched and age-matched
(6–8 weeks old) mice were used, with experimental and control ani-
mals co-housed to ensure consistent environmental conditions. The
facility maintains strict protocols to prevent pathogen contamination
and to ensure the well-being of the animals. All sgRNA sequences and
their oligos are listed in Supplementary Table 5.

Naïve T cells isolation and stimulation
Total T cells were isolated from the spleen utilizing a pan T cell isola-
tion kit (Miltenyi Biotec), in accordance with established protocols.
Enriched T cell populations were subsequently subjected to flow
cytometric cell sorting based on distinctive cell surface markers.
Specifically, the sorting strategy involved selecting cells displaying the
CD4+CD44loCD62Lhi for naïve CD4+ T cells, and theCD8+CD44loCD62Lhi

for naïve CD8+ T cells. The obtained naïve CD4+ and CD8+ T cells were
subjected to stimulation through the utilization of plate-bound anti-
CD3 (1μg/ml) and anti-CD28 (1μg/ml) antibodies (eBioscience).

Flow Cytometry (FACS)
Thymic, splenic, and lymph node single-cell suspensions were prepared
by gently homogenizing the tissues using a tissue homogenizer. Cells
were washed in PBS and resuspended in FACS buffer (PBS containing
2% FBS and 0.1% sodium azide). The cells were then incubated with Fc-
block (anti-mouse CD16/CD32) for 10minutes at 4°C to block non-
specific binding. Subsequently, cells were stained with fluorochrome-

Fig. 7 | Spatio-temporal dynamics of four T-cell subpopulations. a Schematic
representation of human T cell development. b Uniform Manifold Approximation
and Projection (UMAP) plot showing the cells with rearranged T-cell receptor α
(TCRα) (purple), TCRβ (dark blue), or fully rearranged TCRαβ (dark green). c TSO-
his applied to eight thymus spatial transcriptomics (ST) slides showing the variation
in clone size with spatial distance. Lines smoothed using generalized linearmodels,
with shaded areas representing 95% confidence intervals. The blue dashed line
represents the Medulla-Cortex (M-C) boundary. T cells with larger clone sizes are
more enriched in the medullary region. d T-cell subpopulations generated using
four TCR chains (see “Methods”). Due to significant under-representation (almost
below 5%) of the TCRγ+ subpopulation, only the TCRγ- T-cell subpopulations are
presented. The bar plot showing counts for TCRα-TCRβ+TCRδ+, TCRα+TCRβ+TCRδ+,
TCRα-TCRβ+TCRδ- and TCRα+TCRβ+TCRδ- subpopulations. The pie charts on the
right show the relative abundance of these subpopulations in the datasets of this
study (top), Park et al. 8 (middle) andCordes et al. 33 (bottom); “Others” include the
TCRα+TCRβ-TCRδ-, TCRα-TCRβ-TCRδ-, TCRα+TCRβ-TCRδ+ and TCRα-TCRβ-TCRδ+

populations. e Violin combined with box plot showing the distribution of doublet
scores inferred by Scrublet45 for four T-cell subpopulations. Median value, inter-
quartile range (IQR) as bounds of the box andwhiskers that extend from the box to
upper/lower quartile ± IQR × 1.5 (top). Stacked bar plot showing the proportions of
doublet and singlet cells inferred by Scrublet andDoubletDetection46 within each T
cell subpopulation (bottom). Subpopulations: TCRα-TCRβ+TCRδ+ (n = 4,165 cells),
TCRα+TCRβ+TCRδ+ (n = 3305 cells), TCRα-TCRβ+TCRδ- (n = 12,691 cells), and

TCRα+TCRβ+TCRδ- (n = 39,015 cells). f, g Projection of the four T cell subpopula-
tionsonto STslices usingTSO-hismap forThy5 (f) andThy7 (g). Eachdot represents
a T cell and the white dotted line indicates the M-C boundary. h Spatial-distance
applied toeight thymusST slides, showing the trendof signature scores for the four
T-cell subpopulations from the distal cortex to medullary center spots. Lines
smoothed using generalized linear models, with shaded areas representing 95%
confidence intervals. The blue dashed line represents the M-C boundary. i Box plot
showing the distances of the four T-cell subpopulations relative to the medullary
center. Each dot indicates an ST sample. Median value, interquartile range (IQR) as
bounds of the box andwhiskers that extend from the box to upper/lower quartile ±
IQR × 1.5. The two-sided t-test was used for statistical analysis. j Heatmap showing
the top 25 significantly upregulated genes in each T cell subpopulation (FDR ≤0.01
and logFC ≥0.25). Representative genes in each subpopulation are marked in red.
T cells within each subgroup are arranged in chronological order of differentiation.
k Dot plot showing the six most significantly enriched biological processes terms
(by log10(p-value)) for each subgroup established in Fig. 7j. P-values were obtained
using Fisher’s exact test and adjusted by the Benjamini-Hochberg method. (l) Top
panel: Stacked bar plot showing the relative proportions of the four T cell sub-
populations in each thymus sample, marked by color codes. Bottom panel: Age
group preference of T cell subpopulation measured by Ro/e

21. TCRα-TCRβ+TCRδ+

and TCRα+TCRβ+TCRδ+ are enriched in the younger group,while TCRα-TCRβ+TCRδ-

and TCRα+TCRβ+TCRδ- are more prevalent in the geriatric group. Source data are
provided as a Source Data file.
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conjugated antibodies against surface markers for 30minutes at 4°C in
the dark. Data acquisition was performed on a BD FACSCelesta flow
cytometer, and data were analyzed using FlowJo (v10).

Western Blot (WB)
Protein extracts were prepared from thymocytes or naïve T cells using
RIPA buffer containing protease and phosphatase inhibitors (Pierce).

Protein concentrations were determined using the BCA assay (Pierce).
Equal amounts of protein (30μg) were separated by SDS-PAGE on a
12% polyacrylamide gel and transferred to PVDF membranes. Mem-
branes were blocked with 5% non-fat dry milk in TBS-T (20mM Tris-
HCl, 150mM NaCl, 0.1% Tween-20) for 1 h at room temperature, fol-
lowed by overnight incubation at 4 °C with primary antibodies. After
washing, membranes were incubated with HRP-conjugated secondary
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antibodies for 1 hour at room temperature. Bands were visualized
using ECL substrate (Thermo Scientific) and imaged with Bio-Rad
ChemiDoc.

Enzyme-Linked Immunosorbent Assay (ELISA)
Serum or cell culture supernatants were collected and stored at −80°C
until analysis. ELISA kits for IL-2 and IFN-γ were purchased from Bio-
legend and assays were performed according to the manufacturer’s
instructions. Briefly, samples and standards were added to 96-well
plates pre-coated with capture antibodies. After incubation and
washing, detection antibodies were added, followed by HRP-
conjugated secondary antibodies. The plates were developed using
TMB substrate, and the reaction was stopped with 2N H2SO4. Absor-
bance was measured at 450nm using a microplate reader (Multiskan
FC, Thermo Scientific). Concentrations were calculated based on the
standard curve.

Gating strategy
For immune cells, lymphocytes were gated based on FSC-A and SSC-A.
Singlet cells were gated according to the pattern of FSC-H vs FSC-A.
Detailed gating strategies are shown in Supplementary Figs. 6a, b.

Multiplex immunofluorescence assays
Multiplex staining was performed using the Opal 4- Color Manual IHC
Kit (NEL810001KT) with the anti-GNG4 (1:500; 13780-1-AP, Protein
Tech), anti-IgA (1:200; ab124716, Abcam), and anti-CD14 (undiluted,
GT229807, Gene Tech) antibodies. The staining was visualized with
fluorescein AF-690 (1:75), AF-520 (1:75) and AF-570 (1:50), and the
nuclei were counterstained with 4’, 6- diamidino- 2- phenylindole
(1:3,000). All sections were covered with Vectashield Hardset 895
mounting media, and scanned using the Vectra slide scanner
(PerkinElmer).

Single-cell RNA sequencing (scRNA-seq) data processing, inte-
gration, and dimensionality reduction
The raw sequencing data of normal thymus samples were processed
using the CellRanger pipeline (version 4.0.0, 10X Genomics) and
aligned to the GRCH38 v93 genome assembly with default parameters.
The resulting UMI countmatrices by cell barcode were loaded into the
Seurat R package (version 4.1.0)19. Cells with less than 200 or more
than 5000 expressed genes, more than 15% mitochondrial counts,
more than 50% ribosomal counts, or less than 500, or more than

20,000 UMI counts were discarded (Supplementary Fig. 1a). Doublet
cells were detected using DoubletFinder57 (version 2.0.3) and filtered
out (Supplementary Fig. 1b). A total of 130,295 cells were obtained
after quality control. For each sample, the raw UMI counts were log-
normalized using a scale of 10,000, and the top 2000 highly variable
genes were determined using the FindVariableGenes function with the
“vst” selectionmethod. To removedonor effects, canonical correlation
analysis (CCA) was performed using the FindIntegrationAnchors and
IntegrateData functions. Following integration, all samples were
merged into a single Seurat object with the “integrated” assay. The
ScaleData function was then used to regress out the effects of UMI
count, percentage of mitochondrial and ribosomal genes, and the S
and G2/M scores (obtained using the CellCycleScoring function). For
dimensionality reduction, principal component analysis (PCA) was
conducted on the 2000 variable genes, and 50 principal components
(PCs) were retained for subsequent analysis. The first 30 principal
components were used for uniform manifold approximation and
projection (UMAP), with a minimum distance of 0.3 and 30 neighbors
(Supplementary Fig. 1e).

Cell type annotation and visualization for normal thymus
The cell types in the thymus were identified by unsupervised clus-
tering and comparison of the differentially expressed genes (DEGs)
with known marker genes from literature (Fig. 1d; Supplementary
Fig. 1e). To annotate the broad cell categories, the cells were initially
clustered based on the first 30 PCs using the Shared Nearest Neigh-
bor (SNN) algorithm with the FindNeighbors and FindClusters func-
tion, and parameters k = 30 and resolution = 0.8. The DEGs were
screened using the FindAllMarkers function in Seurat, with
min.pct = 0.25 and logfc.threshold = 0.25. Six major cell types,
including Ery (HBG1 and HBG2), B cells (CD79A and CD19), plasma
cells (IGHG1 and IGHG2), myeloid cells (S100A8, C1QA and IL3RA),
stromal cells (ACTA2 and DCN) and T cells (CD3D and CD3E)8,58, were
identified by comparing the DEGs of each cluster to the canonical
marker genes. The B cells, myeloid cells, stromal cells, and T cells
were subjected to a second round of clustering. Briefly, the first 30
PCs were re-extracted from the subset of the “integrated” assay, and
unsupervised clustering was conducted with a resolution range of
0.3–1.5, followed by differential expression analysis based on the
“RNA” assay. Each sub-cluster was required to have a minimum of
20 significantly highly expressed genes (FDR ≤0.01 and logFC ≥0.25;
Wilcoxon test) compared to other cells.

Fig. 8 | Characterizing the temporal sequence of differentiation dynamics in
fourT-cell subpopulations. aBubble plots showing thepreferenceof eachTRB[VJ]
* gene segment present in the four T-cell subpopulations (top) and TRA[VJ]* in the
TCRα+TCRβ+TCRδ+ and TCRα+TCRβ+TCRδ- subpopulations (bottom). Gene seg-
ments are positioned according to their genomic location. b Violin plots showing
the distribution of signature scores across the four T-cell subpopulations, as
inferred by TCRα, TCRβ, and TCRγ V gene segments. Median value, interquartile
range (IQR) as bounds of the box andwhiskers that extends from the box to upper/
lower quartile ± IQR × 1.5. Subpopulations: TCRα-TCRβ+TCRδ+ (n = 4165 cells),
TCRα+TCRβ+TCRδ+ (n = 3305 cells), TCRα-TCRβ+TCRδ- (n = 12,691 cells), and
TCRα+TCRβ+TCRδ- (n = 39,015 cells). c Heatmap showing the association between
the DN subsets defined by our clustering strategy and the traditional human DN
stages. The color gradient reflects the relative proportions of our annotated DN
subsets across the DN1-DN3 developmental stages. d RNA velocity stream from
DP_blast1 to DP_blast5, with cell subsets marked with color codes. e Violin plot
showing the distribution of signature scores across DP_re1 to DP_re4, as inferred by
TCRα V gene segments. Median value, interquartile range (IQR) as bounds of the
box andwhiskers that extends from the box to upper/lower quartile ± IQR× 1.5. Cell
subsets: DP_re1 (n = 3865), DP_re2 (n = 18,337), DP_re3 (n = 2152), and DP_re4
(n = 3010). fHeatmap showing representative genes provided by Park et al.8 across
T cell differentiation pseudotime. Top panel: The x-axis represents pseudo-
temporal ordering. Gene expression levels across the pseudotime axis are
maximum-normalized and smoothened, and grouped by their functional

categories and expression patterns. Bottom panel: Cell type annotation of cells are
aligned along the pseudotime axis. g Tracking of T cells with identical TCRβ chains
in the four T-cell subpopulations from DN_early to SP (single positive) develop-
ment. Cumulative distribution curves showing the number of T cells at different
stages (see “Methods”). Lines smoothed using generalized additive models (GAM),
with shaded areas representing95%confidence intervals.h Sankeyplot tracking the
differentiation routes for cells sharing identical TCRβ clonotypes across T-cell
subpopulations. i Heatmap (top) and line plot (bottom) showing the relative
abundance of the four T-cell subpopulations at each stage from DN_early to SP
development. Abundance was averaged for each cell type after 100 down-
samplings for the four T-cell subpopulations respectively. j Significance of the
transition of each T-cell subpopulation to the other three subpopulations at spe-
cific differentiation stages. P-values obtained by one-sided hypergeometric tests,
with p ≤0.01 indicating a significant transition to a specific subpopulation (see
“Methods”). k Schematic diagram of the developmental timing of the four T-cell
subpopulations. The solid line indicates a transitional relationship between two
subpopulations and the dotted line indicates the absence of such a relationship.
The thickness of the solid line represents the strength of significance obtained in
Fig. 8j. DN: Double negative, DP: Double positive, SP: Single positive, DP_blast: DP
blast cells, DP_re: DP rearrangement cells, TCR: T-cell receptor. The TCR icons in
Fig. 8k were created with BioRender.com and released under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International license. Source data are
provided as a Source Data file.
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B cells were re-clustered at a resolution of 0.3, and the B_naive
(CD19, CD79A, IGHD), B_trans (MS4A1, CD24), and B_memory (IGHA1,
CD27) subtypes were identified. Myeloid cells were re-clustered into
four subtypes at a resolution of 0.5, namely Mono (S100A8, S100A9),
Mac (C1QA, C1QC), DC (HLA-DPA1, HLA-DQB1), and pDC (IL3RA,
LILRA4). Stromal cells were divided into five subtypes at a resolution of
0.3, including Fb (DCN, COL1A1), Fb_cycling (DCN, COL1A1, UBE2C,
TOP2A), VSMC (TAGLN, ACTA2), Endo (ACKR1, PLVAP), Lymph (TFF3,
NTS), and TEC (KRT17, KRT9). TEC cells were further isolated and re-
clustered into two groups, namely cTEC (CCL25, GNG11) and mTEC
(CCL19, KRT19). The DN (CD4-CD8-), DP (CD4+CD8+), abT (entry) and SP
(CD3+CD4+CD8- or CD3+CD4-CD8+) subtypes of T cells were identified
after clustering at a resolution of 0.5 and comparing with the thymus
data of Park et al. 8 and Cordes et al. 33. The DN cells were further
divided into the DN_early (IGLL1, SMIM24, TRDC), DN_blast (TOP2A,
TYMS), and DN_re (PTCRA, RAG1, RAG2) sub-clusters at a resolution of
0.5. The DP cells were classified into DP_blast (CDK1, TOP2A) and DP_re
(RAG1, RAG2) subtypes at a resolution of 0.3. The SP cells were anno-
tated as CD4+ T (CD4, SELL), CD4+ T_mem (IL7R, CCR7), Treg.diff
(FOXP3, IFITM1), Treg (FOXP3, IL32), CD8+ T (CD8A, CD8B, GZMM,
ABLIM1), CD8+ T_mem (CCL4,GZMK), CD8aa (CD8A,CD27, ID3), agonist
T cells (T_agonist) (TNFRSF1B, LCP2), apoptosis T cells (T_apoptosis)
(BCL2L11), proliferating T cells (T_proliferating) (TYMS, UBE2T), NKT
(NKG7, KLRB1), and innate lymphoid cell type 3 (ILC3) (IL4I1, SLC16A3,
TNFRSF25) at a high resolution (1.5). Overall, the thymus cells were
classified into 34 clusters within six major cell lineages (Figs. 1c, d;
Supplementary Fig. 1e). The signature marker genes for each cluster
are listed in Supplementary Data 2.

To visualize the refined annotations more efficiently, we
employed the FindAllMarkers function in Seurat was used to identify
the top 30 significantly upregulated genes for each cell type, and the
subset of these genes was exported to Scanpy (version 1.8.1)59 python
package. Using gene expression as the response variable, and the cell
type, percentage ofmitochondria and ribosomes, and cell-cycle scores
as covariates, anL2-regularized linearmodelwasfitted and the residual
matrix containing biological information was retained8. The PCs were
extracted using the scanpy.pp.pca function with default parameters,
and the batches were aligned using the scanpy.api.pp.bbknn function
to achieve a high-resolution and batch-mixed manifold. The UMAP
coordinates of cells were generated using the scanpy.tl.umap function
in Scanpy and exported as a new embedding in the merged normal
thymus Seurat object for visualization (Fig. 1c).

Assessment of the purity of single-cell populations
ROGUE Index. The ROGUE index20 (version 1.0) ranging from zero to
one was used to assess the purity of single cell populations (Supple-
mentary Fig. 2a). One represents complete purity and zero represents
the most heterogeneous state of a population.

Calculation of purity index by logistic regression model
The purity index was defined using a logistic regression model (Sup-
plementary Fig. 2c). Briefly, 50% of the cells from each cell type were
down-sampled to generate the training set, then a logistic regression
model was trained using the sklearn.LogisticRegression function from
the sklearn60 Python package (version 1.3.2) with the parameters
penalty = “l2” and C =0.2. The features were genes and the labels were
cell types. The remaining 50% of the single cell dataset was used to test
the model. These processes were repeated 100 times, and the purity
index was calculated using the following equation:

Purityj =
1

100

X100
i = 1

C0
ij

Cj

 !
ð1Þ

where Cj indicates the number of cells of cell type j in the test set, C0
ij

represents the number of cells accurately predicted to be of type j in

the ith iteration, Purityj indicates the purity index of cell type j. The
purity index ranges from0 to1, and larger value indicates higher purity
and less heterogeneity.

Differential expression analysis
The differentially expressed genes (DEGs) between the subsets were
screened using FindAllMarkers function (Wilcoxon rank-sum test,
min.pct= 0.25, and logfc.threshold = 0.25) in Seurat, with adjusted
p-value ≤0.01 (corrected using the Bonferroni method) as the
threshold.

Group preferences analysis
Tomeasure the preference of each cluster across different groups, the
observed and expected (as inferred by the Chi-square test) number of
cells in each cluster were compared according to a previously estab-
lished formula21 (Figs. 1f, 7l, 8a; Supplementary Fig. 2e,f). A cluster was
considered to be enriched in a specific group status if the ratio of
observed to expected (Ro/e) number of cells was greater than 1.

Ro=e =
Observed
Excepted

ð2Þ

Here, “Observed” represents the actual cell counts of subsets
within different age groups, while “Expected” indicates the frequencies
anticipated if there were no association between subsets and age
groups. These expected frequencies were computed by multiplying
the respective row and column totals of each subset and then dividing
by the total number of cells.

Spatial transcriptomics (ST) data processing
Raw sequencing data were processed using the Spaceranger pipeline
(version 2.0.0) from 10X Genomics with the GRCh38 v93 genome
assembly as the reference, and resulting UMI count spotmatrices were
sorted by cell barcode. Raw UMI count spot matrices, along with the
corresponding images, spot-image coordinates, and scale factors,
were loaded into the Seurat R package (version 4.1.0)19. Only the spots
that overlaid tissue sections were retained for further analysis.

For each ST sample, the raw UMI counts were log-normalized
using the ScaleData functionwith a scale factor of 10,000. The number
of spots detected in these ST samples ranged from 2138 to 2838, with a
mean of approximately 2605 (Supplementary Fig. 3a). On average,
each spot contained approximately 2933 genes, with an approximate
UMI count of 8612 (Supplementary Figs. 3b, c).

TSO-his algorithm
The TSO-his algorithm was developed to determine the medullary-
cortical regions in ST slices, delineate lobules, andmeasure changes in
gene expression or cell abundance with spatial distance (Fig. 2a). The
detailed steps were as follows:

(1) Scoring ST spots: The ST spots were scored by combining
medulla-indicator genes, including EBI3, CCL17, CCR7, CSF2RB, CCL21,
CCL22, TNFRSF18, CCL27, CXCL10, CXCL9, MS4A1, and LAMP3 (Supple-
mentary Table 2)6,28,48, using the AddModuleScore function from the
Seurat package. The higher scoring spots weremore likely to fall in the
medullary region, while the lower scoring spots were associated with
the cortical regions.

(2) Screening high scoring spots: In the ST slices, regionswith high
brightness occupy a relatively small area, and most spots do not
deviate significantly, allowing the medullary scores to fit a normal
distribution. Briefly, kernel density was used to find the center of the
normal distribution, and the scores under the center point were used
to fit the normal distribution. The p-value of the medullary score for
each spot was obtained using the fitted normal distribution (z-test),
and corrected by Benjamin and Hochberg method61. Spots with
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adjusted p-values ≤ 1e-5 were considered significantly highlighted, and
denoted as S.

(3) Determining medullary and cortical regions: The Euclidean
distancebetween spots in the set Swascalculatedbasedon their image
coordinates. A spot was considered an outlier and removed if its dis-
tance to its two nearest neighbors exceeded themean of the distances
plus three times the standard deviation (as inferred from the entire
slices; denoted as ε). This process resulted in an updated set, S’. To
determine candidate medullary regions, M, a distance matrix was
initially constructed from the spots in S′. Each spot S0j in S’ was then
assigned to the i-th medullary region Mi if it met the following condi-
tion:

If 9S0k 2 Mi such that distanceðS0j, S0kÞ< ε, then S0j 2 Mi ð3Þ

Therefore, if M contains m medullary regions, the following con-
dition are satisfied:

[m
i = 1

Mi = S
0

\m
i= 1

Mi =+ ð4Þ

Based on the determined medullary set M, candidate medullary
regions containing fewer than eight spots were excluded to reduce
false positives. Spots not classified as part of the medullary regions
were considered cortical regions. To delineate the medulla-cortex
(M-C) boundaries, a subset of spots from the cortical region was
initially extracted if at least one of their six nearest neighbors was
within themedullary region. Spots within themedullary regions were
then used to define the M-C boundary if at least one of their six
nearest neighbors was part of the previously extracted cortical
subset.

(4) Segmenting lobules: Lobules, the fundamental structural units
of thymic T-cell development, encompass bothmedullary and cortical
regions. To achieve precise segmentation of these lobules, a nearest
neighbor strategy was employed. Specifically, for each ST slice, the
medullary center of each medullary region was defined as the spot
closest to the arithmetic mean of all coordinates within that region.
Subsequently, spots were allocated to the nearest medullary central
spot based on Euclidean distances, thereby delineating clusters that
represent the thymic lobules.

(5) Measuring dynamic change in cell type signature score: To
measure the dynamic change in cell type signature score with spatial
distance, generalized linear Gaussian models with four degrees of
freedom were fitted. Notably, the signature score was derived using
the AddModuleScore function from Seurat, incorporating the top 20
highly expressed genes for the corresponding cell type as features.
The distance between the spot of each thymus lobule and
its medullary center was normalized to 0–1 scale by the maximum
value, and the spots across all ST slices were organized in
descending order.

(6) Identifying significant distance-varying genes (DVGs): To pin-
point significant DVGs in ST slices, generalized linear Gaussianmodels
with four degrees of freedom were fitted for each gene and distance
within each slice, and then the dependence of gene expression on spot
distance was tested. P values corresponding to each natural spline
were corrected using the Benjamin-Hochberg method in each slice.
Corrected p values for each gene fromeight ST sliceswere thenpooled
together using Stouffer’s Z-score method. Genes with pooled
p-value ≤0.01 were considered to be significantly co-varying with
spatial distance (i.e., DVGs; Fig. 3a; Supplementary Data 3).

Cell-cell communication analysis
Cellchat. The CellChat (version 1.1.3)31 R package was used to evaluate
the interaction between thymic cell subsets based on known ligand-
receptor pairs. The normalized counts of merged thymus samples
were loaded into CellChat, and the data were pre-processed using the
identifyOverExpressedGenes, identifyOverExpressedInteractions, and
projectData functions basedon the “CellChatDB.human”database. The
core functions of CellChat, namely computeCommunProb, compute-
CommunProbPathway and aggregationNet, were applied in a sequen-
tial manner to infer significant ligand-receptor pairs. The resulting
significant interaction pairs were visually represented using the net-
Visual_bubble function in CellChat (Fig. 2j).

To assess the robustness of the inferred interactions predicted by
CellChat, a thorough evaluation utilizing a down-sampling strategy
was employed. The procedurewas outlined as follows: Down-sampling
was performed for each cell type based on given cell proportions.
Starting with a 100% initial sampling ratio, the ratio was iteratively
decreased by 5% until reaching 50% of the original cell type count.
Subsequently, inference of interactions using CellChat was carried out
for each down-sampled dataset (Supplementary Fig. 4b). Finally, the
measurement of interaction strength consistency was conducted
using the Coefficient of Variation (CV) (Supplementary Fig. 4c).

CellPhoneDB
CellPhoneDB32 (version v5.0), a repository of ligand-receptor interac-
tions, was employed to identify enriched interactions between various
cell types in single-cell transcriptomics data. To manage computa-
tional load and ensure fair representation, the dataset was down-
sampled by randomly selecting 1000 cells fromeach cell type. Analysis
was conducted using default parameters with the “cellphonedb
method statistical_analysis” command (Fig. 2i). To enhance the relia-
bility of significant ligand-receptor interactions, only those identified
by both CellChat and CellphoneDB were considered for selec-
tion (Fig. 2j).

XGBoost model for predicting cortical and medullary spots
Given that TSO-his requires multiple ST slices to establish a reliable
background signal, an improved strategy based on theXGBoostmodel
wasused topredict cortical andmedullary spotswithin a single ST slice
(Supplementary Fig. 7a). Briefly, the genes at the intersection of sig-
nificant distance-varying genes (DVGs) and differentially expressed
genes (DEGs) were selected as candidate features. ST slices from Thy9
to Thy12 were used as the training set, while Thy5 to Thy8were used as
the test set. Medullary and cortical labels corresponding to each spot
in the training set were provided by TSO-his. The features with weak
importance were filtered out using the wrapper_feat_select function in
the FeatureSelection R package (version 1.0.0), with the parameters
objective = ‘reg:linear’ and max_depth = 5. Only the top 50 genes with
the highest importance, ranked by the “Cover” index in descending
order, were selected as confidence features (Supplementary Table 3).
The XGBoost model was trained using the xgb.cv function in the
xgboost package (version 1.7.5.1), employing five-fold cross-validation
with the parameters objective = ‘binary:logistic’ and max_depth = 10.
Model performance was evaluated based on the area under the curve
(AUC) and the accuracy of the test set. In addition, the thymic ST data
from So et al. 11 were used as an independent validation set to further
assess the reliability of the model (Supplementary Fig. 7f). Notably, A
structured description for the XGBoost model based on the DOME62

(Data, Optimization, Model, Evaluation) framework, as detailed in
Supplementary Table 4. This standardized approach aims to establish
a unified method to enhance clarity in understanding models.

Spatial mapping of single-cells
TSO-hismap method. The TSO-hismap method was developed to
project thymic cells into spatial transcriptomics (ST) slices (Fig. 5a).
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The steps were detailed as follows: (1) To determine the ST regions
wherein thymic cell types reside, the scRNA-seq was integrated with
the ST data using the Canonical Correlation Analysis (CCA) method
from the Seurat package (Supplementary Fig. 8a), followed by data
scaling and dimensionality reduction. Cells and spots were clustered
based on the first 30 PCs using the shared nearest neighbor (SNN)
algorithm implemented as FindNeighbors with parameters “k = 30”,
and the five nearest neighbor spots of each single cell were obtained
using the Seurat:::NNHelper function. Based on the cortical regions,
medullary regions, andmedulla-cortex (M-C) boundary of the ST slices
depicted by TSO-his, the relative proportion f of nearest-neighbor
spots of each cell type in the three regions was counted. If
f region < 0.05, the cell type was considered not to be in that region. (2)
The createCARDObject function from the R package CARD (version
1.0)40 was used to create objects for ST and single cell data, with
parameters “minCountGene = 100” and “minCountSpot = 5”, and the
CARD_deconvolution function was employed to deconvolute the ST
spots with default parameters (Supplementary Fig. 8b). (3) The single
cells were mapped to spatial locations using the CARD_SCMapping
function of the CARD package with the parameter “numCell = 20”.
Since this method initially does not consider the anatomical structure
of the thymus, the CARD_SCMapping function was modified to incor-
porate the spatial location information of thymic cell types obtained in
step (1). Specifically, if neighboring cells of a spot include cell types
that were not enriched in the region where the spot was located, these
cells were excluded from the spot’s assignment.

CellTrek analysis
CellTrek utilizes ST data to train a multivariate random forest model,
and predict spatial coordinates by leveraging dimension reduction
features shared with scRNA-seq data41. The traint function in the
CellTrek R package (version 0.0.94) was used to obtain the co-
embedding of ST and scRNA-seq data, and the celltrek function with
default parameters was applied to project single cells onto the ST
coordinates (Supplementary Fig. 8e).

Seurat coordinate transfer (SrtCT) analysis
SrtCT utilizes the data transfer approach to assign single-cell labels to
ST spots. Specifically, the FindTransferAnchors function from Seurat
was initially used, with ST data as the query and scRNA-seq data as the
reference, then the TransferData function was applied to transfer the
single-cell labels (i.e., cell type) to ST spots using default parameters
(Supplementary Fig. 8e).

Generation of synthetic spatial transcriptomics (ST) datasets
To assess the accuracy and robustness of TSO-hismap, synthetic ST
datasets with predefined cell type compositions and spatial coordi-
nates of cells were generated. Specifically, Thy5 ST data served as a
spatial template, and a subset of 500 cells from each cell type in the
thymus scRNA-seq data was randomly selected to form the training
set. The FindVariableFeatures function from Seurat was employed to
identify the top 2,000 highly variable genes (HVGs) within the
training dataset. These HVGs were then used to match each spot to
the ten closest cells in the training set based on the Pearson corre-
lation coefficient of gene expression. For each spot, synthetic
expression was calculated as the sum of UMI counts for each gene
across the ten closest cells, with cell type compositions and cell
coordinates documented accordingly. Importantly, before HVGs
screening, perturbations were introduced by shuffling gene expres-
sions among different cells. Simulated ST datasets with varying noise
levels were generated using perturbation proportions of 5%,
10%, and 15%.

Subsequently, the remaining thymus single-cell datasets were
used as test sets andmapped to the simulated ST datasets using SrtCT,
CellTrek, CARD, and TSO-hismap, respectively. Themapping accuracy

was assessed using the following formula:

Accuracyi =
S0i \ Si
�� ��
S0i ∪ Si
�� �� ð5Þ

S0i represents the set of cell types mapped to spot i, while Si represents
the set of actual cell types in the simulated data for spot i. The term
S0i \ Si
�� �� represents the count of common cell types between S0i and Si,
while S0i ∪ Si

�� �� represents the count of cell types in theunionof S0i and Si.

Spatial co-localization analysis of cell types
To explore the spatial co-localization panorama of thymic cell types,
the single cells were projected onto ST slices using TSO-hismap, where
each spot was split into 20 single cells and the J-indexwas employed to
measure the strength of spatial co-localization between cell types.

Jij =
jSi \ Sjj

minfjSij,jSj j g
ð6Þ

|Si| and |Sj| denote the number of spots containing cell types i,and j
respectively. jSi \ Sjj indicates the number of spots containing both
cell type i and j. Jij represents the co-localization index of cell types i
and j, ranging from zero to one. An index of one suggests complete co-
localization of the cell types in ST slices, while an index of zero
indicates lack of co-localization. The spatial co-localization network of
thymic cell types was visualized using the textplot_network function in
quanteda R package (version 2.1.2), where lines with a J-index less than
0.3 were removed (Fig. 6a; Supplementary Data 5). Notably, Ery cells
were excluded due to their contamination in ST slices (Supplementary
Figs. 4d, e).

T-cell receptor (TCR) sequencing analysis
αβTCR VDJ sequence analysis. The single-cell αβTCR sequencing
data was mapped using the CellRanger pipeline (version 4.0.0, 10X
Genomics) with the “vdj”mode to the GRCH38 v93 genome assembly.
The VDJ sequence information for each cell was extracted from the
output file “filtered_contig_annotations.csv”, and subsequently added
to the “meta.data” slot of the merged thymus Seurat object, based on
the cell barcodes from the same donor.

Diversity of TCRs in different age groups
To assess T-cell receptor (TCR) diversity across different age groups,
each samplewas down-sampled to a standardized count of 1,000 cells,
ensuring a consistent sample size and reducing any potential biases
arising from discrepancies in T cell counts among the samples. This
processwas repeated 100 times. For each iteration, Shannon’s entropy
was used to estimate TCR diversity as per the formula below:

Hi =
X
xi

pðxiÞ � log2½pðxiÞ� ð7Þ

The p(xi) represents the frequency of a given TCR clone among all
T cells with TCR identified in the i-th iteration. Finally, box plots were
used to visualize the differences in the TCR diversity index H across
age groups (Supplementary Fig. 10b).

Projection of T cells with different clone sizes to spatial tran-
scriptomics (ST) slices
To examine the distribution of T cells in ST slices, they were categor-
ized into three groups on the basis of the TCR clone size: clone size = 1,
clone size = 2, and clone size ≥ 3. To this end, the FindAllMarkers
function from Seurat was used to identify the top 20 genes with the
highest expression in each group. Subsequently, the AddModuleScore
function was utilized to assign scores to the ST spots based on these
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genes. Finally, the spot scores were visualized using the SpatialFea-
turePlot function (Supplementary Fig. 10d).

Delineation of T-cell subpopulations for αβT cells
To determine the temporal dynamics of TCR chain formation, the cells
were classified on the basis of the different combinations of TCRα,
TCRß, TCRδ and TCRγ chains. The TCRα+ or TCRß+ cells harbored the
specific CDR3 sequence associated with that particular chain. In the
TCRδ+ or TCRγ+ cells, the cumulative UMIs of TRD[V | J |C] or TRG[V |
J |C] genes exceeded 1. Nevertheless, due to the negligible proportion
of TCRγ+ T-cell subpopulations in the αβTCR-seq data, these
entities were disregarded for analytical purposes. Among the TCRγ-

T cells, TCRα-TCRß+TCRδ+, TCRα+TCRß+TCRδ+, TCRα-TCRß+TCRδ- and
TCRα+TCRß+TCRδ- were the predominant subpopulations of αβT cells
(Fig. 7d). These subpopulations were externally validated using thymic
single-cell data from Park et al. and Cordes et al. 8,33. Notably, to avoid
the influence of doublets on T-cell subpopulations, Scrublet45 (version
0.2.2) and DoubletDetection46 (version 3.0) tools were used, as per the
official guidelines, to estimate doublet scores for each subpopulation
and identify potential doublet cells, with all parameters set to default
values.

Spatial distance assessment for T-cell subpopulations
To measure the relative distances of the four T-cell subpopulations
from the medullary centers, spots in ST slices were scored using the
AddModuleScore function from Seurat, based on the top 20 highly
expressed markers for each subpopulation. Spots with signature
scores exceeding the 75th percentile in each ST slice were then
selected for each T-cell subpopulation. The relative distances of these
selected spots to the nearest medullary center were calculated, char-
acterizing the proximity of each T-cell subpopulation to themedullary
centers (Fig. 7i).

Gene ontology (GO) enrichment analysis of T-cell
subpopulations
The top 100 highly expressed genes of each T cell subpopulation were
subjected to GO analysis. The gene identifiers were mapped using the
bitr function from the clusterProfiler package (version 4.2.0)63 in
conjunction with the annotation package “org.Hs.eg.db”. The
enrichGO function of the clusterProfiler package was used to obtain
the significantly enriched GO terms for each subpopulation with the
Benjamini-Hochberg correction method. The top five or six sig-
nificantly enriched terms (adjusted p ≤0.01) in each group were
visualized using the ggplot2 package (version 3.3.5) (Fig. 7j, k).

Trajectory analysis
Monocle2 analysis. Monocle2 (version 2.22.0)64 was utilized to con-
duct pseudotime trajectory analyzes for the DP_blast cell populations.
Specifically, the newCellDataSet function was used to create a “cell_-
data_set” object, and cells were arranged on based on differentially
expressed genes (DEGs) identified by differentialGeneTest with
q-value ≤0.01. Dimensionality reduction was performed using the
reduceDimension function with the “DDRTree” algorithm. The mini-
mum spanning tree of the cells was visualized with the plot_cell_-
trajectory function (Supplementary Fig. 11f).

Diffusion map analysis
T cells with TCR clones from the normal thymus were used for dif-
fusion map analysis. Differentially expressed genes (DEGs) (adjusted
p-value ≤0.01, and logFC ≥0.25) for each T cell subset were identified
using the FindAllMarkers function in Seurat. These DEGs were then
used to recalculate the PCs, which were input into SCANPY65 for
diffusion map analysis. The analysis involved sequential application
of the scanpy.pp.neighbors and scanpy.tl.diffmap functions, with a
neighborhood graph computed using 50 neighbors and the first 30

PCs. A randomly selected DN_early cell was designated as the root
for the analysis. To visualize the results, the cells were binned
according to pseudotime ordering, and the expression of specific
markers, as reported by Park et al. 8, was depicted using a heat
map (Fig. 8f).

RNA velocity-based cell fate tracing
For the RNA velocity analysis, the scvelo Python package (version
0.3.2)66 was employed to recount spliced and unspliced reads from
pre-aligned BAM files of scRNA-seq data. Following this, RNA velocity
values for each gene of each cell were calculated, and the resulting
RNA velocity vectors were embedded into low-dimensional space
using the scvelo Python pipeline. Subsequently, the developmental
trajectories of DP_blast and DP_re cells were inferred by embedding
RNA velocity vectors into the UMAP space (Fig. 8e; Supplementary
Fig. 11k).

Cell cycle analysis of DP_blast cell subtypes
To determine the cell cycle phase of the subtypes (i.e., DP_blast1 to
DP_blast5) in the DP_blast, a list of genes associated with the cell cycle
(G1/S, S, G2/M, M, and M/G1 phases) was obtained from a previous
study67. The AddModuleScore function in Seurat was then used to cal-
culate scores for each cell at different cycle phases. Finally, the cycle
scores in DP_blast subtypes were visualized using the Complex-
Heatmap package (version 2.13.1)68,69 from Bioconductor (Supple-
mentary Fig. 11g, h).

Order of differentiation of T-cell subpopulations
To determine the order of differentiation among the four T-cell sub-
populations, cells with identical CDR3 sequences of TCRβ chains
across the four T-cell types were selected. From DN_early to SP (single
positive) development, the cell numbers in each subpopulation were
quantified at different stages using the previously selected cells. The
cumulative distribution curves were plotted and normalized to 1 based
on the total number of cells in each subgroup (Fig. 8g).

Tracing the significant flow of TCRβ clonotypes
To determine the transition points between the T-cell subpopula-
tions, the TCRβ clonotypes that were amplified in adjacent cell types
at specific differentiation time points were tracked (Fig. 8j). Specifi-
cally, if x unique clonotypic expansions were present in cell type
Ci of T-cell subpopulation A to cell type Ci+1 of cell subpopulation
B, m unique clonotypes overlapped in A and B, n unique clonotypes
overlapped with A in all other subpopulations, and k clonotypes
were common to A and B in cell types Ci and Ci+1. The significant
p-value for the flow of cell type Ci in T-cell subpopulation A to cell
type Ci+1 in subpopulation B was estimated using a hypergeometric
test.

p= 1�
Xx�1

i=0

m

i

� �
n�m

k � i

� �

n

k

� � ð8Þ

Statistical analysis
Statistical analyzes were conducted using R (version 4.0.2). The cor-
relation between cell subsets or paired samples (SC vs. ST) were
determined by Pearson’s method. The t-test, hypergeometric test,
Fisher’s exact test, permutation test, and Wilcoxon test were used to
determine statistical significance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The raw sequence data generated in this study have been deposited in
the Genome Sequence Archive (GSA-Human) and are publicly acces-
sible via the following links: GSA-Human: HRA007984 (scRNA-seq)
at https://ngdc.cncb.ac.cn/gsa-human/s/C87MlGbL, HRA007980
(Spatial transcriptomicsdata) at https://ngdc.cncb.ac.cn/gsa-human/s/
eOQ2yy34, and HRA007988 (scTCR-seq) at https://ngdc.cncb.ac.cn/
gsa-human/s/38O9Q5t8. The processed data (Seurat object) corre-
sponding to these datasets can be accessed from Zenodo [https://doi.
org/10.5281/zenodo.13207776]. Additionally, the publicly available
datasets reused in this study includePark et al. 8 thymus scRNA-seq and
scTCR-seq datasets, which can be found in the Zenodo repository
(https://doi.org/10.5281/zenodo.3572422). Cordes et al. 33 human thy-
mus scRNA-seq data coupled with scTCR-seq data are accessible via
GEO: GSE195812. Three thymus ST samples are accessible from the
study by Suo et al. 11 (https://developmental.cellatlas.io/fetal-immune).
The remaining data are available within the article, Supplementary
Information or Source Data file Source data are provided with
this paper.

Code availability
All custom code used in this work are available at Github: https://
github.com/lihuamei/Thymus. And can also be accessed on Zenodo
via https://doi.org/10.5281/zenodo.12803343.
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