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scConfluence: single-cell diagonal
integration with regularized Inverse Optimal
Transport on weakly connected features

Jules Samaran 1, Gabriel Peyré 2 & Laura Cantini 1

The abundance of unpaired multimodal single-cell data has motivated a
growing body of research into the development of diagonal integration
methods. However, the state-of-the-art suffers from the loss of biological
information due to feature conversion and struggles with modality-specific
populations. To overcome these crucial limitations, we here introduce
scConfluence, a method for single-cell diagonal integration. scConfluence
combines uncoupled autoencoders on the complete set of features with reg-
ularized Inverse Optimal Transport on weakly connected features. We exten-
sively benchmark scConfluence in several single-cell integration scenarios
proving that it outperforms the state-of-the-art. We then demonstrate the
biological relevance of scConfluence in three applications. We predict spatial
patterns for Scgn, Synpr and Olah in scRNA-smFISH integration. We improve
the classification of B cells and Monocytes in highly heterogeneous scRNA-
scATAC-CyTOF integration. Finally, we reveal the joint contribution of Fezf2
and apical dendrite morphology in Intra Telencephalic neurons, based on
morphological images and scRNA.

In the last decade, single-cell transcriptomics (scRNA) has revolutio-
nized our understanding of the diversity of cells constituting living
tissues1–3. Since then, a new milestone has been reached with the
introduction of high-throughput sequencing technologies allowing us
to measure additional molecular modalities, such as chromatin
accessibility (scATAC)4,5 and methylation (snmC)6, at the resolution of
the single cell. More recently, technologies allowing the joint mea-
surement of different single-cell modalities from the same cell (i.e.
paired data) have been proposed7–15. Examples of these cutting-edge
sequencing technologies are CITE-seq, simultaneouslymeasuring RNA
and surface protein abundance by leveraging oligonucleotide-
conjugated antibodies8, and 10X Genomics Multiome platform,
quantifying RNA and chromatin accessibility by microdroplet-based
isolation of single nuclei.

Different single-cell modalities describe complementary facets of
the cell; their joint analysis is thus expected to provide tremendous
power to uncover cellular identities16. For achieving this aim, paired

single-cell multimodal data represent an ideal resource17,18 and
numerous methods have been designed for their integration19–22.
Nevertheless, paired data are still rare and limited in the number of
modalities that they contain (maximum three)23. Single-cell multi-
modal data profiled from different cells of the same biological condi-
tion, i.e. unpaired data, thus represent a precious resource for
accessing differentmolecular facets of a cell and better understanding
its identity.

The integration of unpaired single-cell multimodal data, i.e.
diagonal integration, is more challenging than paired integration24.
Indeed, comparing cells from different modalities is not straightfor-
ward, as they are described by different features (e.g. genes, peaks,
proteins). The aim of diagonal integration is to define a low-
dimensional latent space shared by all modalities. In this shared
latent space, cells should be arranged according to their biological
similarity, independently from their modality of origin. Providing such
a biologically meaningful modality alignment of cells, different from
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the many potential artificial alignments that overlap cells from differ-
ent cell types, is extremely challenging.

To guide cell alignment between modalities in the shared latent
space, diagonal integration leverages prior biological information24.
Indeed, connections between the features of different modalities are
generally known in biology. For instance, chromatin peaks can be
mapped to genes based on their proximity to gene promoter regions,
thus enabling the computation of gene activity measurements25,26.
Similarly, protein-coding genes and their corresponding proteins can
be used as connections between scRNA-seq and proteomic data. Most
of the state-of-the-art methods use this prior biological knowledge to
convert all modalities to the same features and then handle the
alignment similarly to batch effect correction27–29. However, this con-
version can result in an important loss of biological information as
features across modalities are weakly connected. Indeed, across-
modality feature connections are often rare and noisy. For example,
protein-coding genes are a subset of all the expressed genes, and not
all possible chromatin peaks are close to the promoter of a gene. This
problem becomes even more challenging once the features measured
in one modality are few due to technological limitations (e.g. targeted
CyTOF providing only a few proteins quantified across cells). State-of-
the-art methods not requiring modality conversions also exist30,31.
However, they still depend on the assumption that most features can
be reliably connected acrossmodalities. In addition,many state-of-the-
artmethods27,28,30,31 ignore the possibility that a population of cells (cell
type/state) canbepresent only in onemodality, which is frequently the
case for unpaired data.

Here, we propose scConfluence, a diagonal integration method
combining uncoupled autoencoders, which reduce the dimensionality
of the original data to a shared latent space and account for potential
batch effects, together with regularized Inverse Optimal Transport
(rIOT)32, which aligns cells acrossmodalities in the shared latent space
by leveraging weakly connected features. By employing rIOT to ensure
modality alignment, scConfluence can independently process the
complete set of original features through autoencoders while utilizing
only the connected features for aligning cell embeddings. Therefore,
our approach does not suffer from the loss of biological information
generally resulting from modality conversion prior to dimension
reduction. In addition, thanks to the unbalanced relaxation of Optimal
Transport33, scConfluence can also deal with cell types absent in a
modality thus overcoming all the major limitations of the state-of-
the-art.

Weextensivelybenchmark scConfluencewith respect to the state-
of-the-art in several scRNA-surface protein and scRNA-scATAC inte-
gration problems. This in-depth comparison proves that scCon-
fluence’s embeddings outperform the state-of-the-art across a wide
variety of datasets. We further demonstrate scConfluence’s robust-
ness, accuracy, and general applicability in addressing three diverse
and crucial biological questions. First, we integrate scRNA-seq and
smFISH profiled from mouse somatosensory cortex and predict Scgn,
Synpr, and Olah to have spatial patterns of expression amenable for
further biological investigation. Second, scConfluence’s integration of
scRNA-seq, scATAC-seq, and CyTOF improves the classification of B
cells and Monocytes in highly heterogeneous human PBMC datasets.
Finally, scConfluence integrates neuronal morphological images with
scRNA-seq from the mouse primary motor cortex revealing the joint
contribution of the Transcription Factor Fezf2 and apical dendrite
morphology to information processing in Intra Telencephalic neurons.

scConfluence is highly modular, allowing its generalization to the
new integration scenarios that will arise as a consequence of the con-
tinuous single-cell technological developments (e.g. single-cell meta-
bolomics). scConfluence is implemented as an extensively
documented open-source Python package seamlessly integrated
within the scverse ecosystem34 and is available at https://github.com/
cantinilab/scconfluence.

Results
scConfluence a newmethod for diagonal single-cell multimodal
integration
We developed scConfluence, a method for diagonal integration com-
bining uncoupled autoencoders with regularized Inverse Optimal
Transport (rIOT) on weakly connected features.

As shown in Fig. 1a, the inputs of scConfluence are single-cell data
from M modalities represented by the matrices X pð Þ 2 Rn pð Þ ×d pð Þ

with
p 2 1::M½ �, where rows correspond to cells and columns to features
(e.g. genes, chromatinpeaks, proteins). The cells ofX pð Þ can come from
multiple experimental batches. As discussed in the Introduction,
although each modality is grounded in a different feature space,
across-modality connections between some features can be defined
based on prior biological knowledge. Therefore, we expect that for all
pairs of modalities p,p0ð Þ, we have access to Y p,p0ð Þ 2 Rn pð Þ ×d p,p0ð Þ

and
Y p0 ,pð Þ 2 Rn p0ð Þ ×d p,p0ð Þ

, conversions of X pð Þ and X p0ð Þ to common features,
respectively. For example, if p corresponds to scRNA and p0 is scATAC,
Y p,p0ð Þ and Y p0 ,pð Þ correspond to the RNA count matrix and the gene
activity matrix derived from peak accessibility counts, respectively.

scConfluence makes use of both the original data X pð Þ and the
converted data Y p,p0ð Þ to learn low-dimensional cell embeddings Z pð Þ 2
Rn pð Þ ×dz in a shared latent space of dimension dz . These embeddings
can then be used for visualization and clustering, useful for discover-
ing subpopulations of cells, and for imputation of features across
modalities (Fig. 1b).

For eachmodality p, scConfluence trains an autoencoder AE pð Þ on
X pð Þ using modality-specific architectures35 and reconstruction losses
LAE pð Þ in order to retain all the complementary information brought by
each modality. AE pð Þ also performs batch correction by learning cell
embeddings independent from their experimental batches of origin
(see “Methods” section). While frameworks based on autoencoders
have been already designed in the context of diagonal
integration29,31,36, the innovation of scConfluence is the combined use
of Optimal Transport and regularized Inverse Optimal Transport
(rIOT) for aligning cells in the shared latent space. Optimal transport
(OT) is a mathematical toolkit for comparing high-dimensional point
clouds37 that is gaining traction for addressing various problems in
single-cell genomics: single-cell multi-omics cell matching38,39, paired
multi-omics integration20,39, trajectory inference39–42 and predicting
single-cell perturbation responses43. Solving theOT problemproduces
a correspondencemap, i.e. transport plan, betweenpoint cloudsbased
on their relative positions (see “Methods” section). rIOT aims at
addressing the inverse problem by inferring the relative positions of
points based on a given transport plan32. scConfluence makes inno-
vative use of both OT and rIOT by first solving an OT problem lever-
aging weakly connected features (Y p,p0ð Þ and Y p0 ,pð Þ) to find a transport
planP p,p0ð Þ acrossmodalities and then using rIOT onP p,p0ð Þ to adjust the
cell embeddings inferred by AE pð Þ and AE p0ð Þ.

In more detail, we first useY p,p0ð Þ and Y p0 ,pð Þ to compute a distance
matrix between cells from differentmodalities whichwe then leverage
to find an unbalanced Optimal Transport plan P p,p0ð Þ 2 Rn pð Þ ×n p0ð Þ

+ (see
“Methods” section for a definition of Unbalanced Optimal Transport).
P p,p0ð Þ provides a partial correspondence map between cells of mod-
alities p and p0 which we aim to leverage to determine the relative
positions of cell embeddings in the shared latent space. This specific
goal corresponds to the rIOT problem that we described above. In
scConfluence, this is achieved by minimizing the loss L p,p0ð Þ

IOT which
penalizes distances between rows ofZ pð Þ andZ p0ð Þ which are coupledby
P p,p0ð Þ. See “Methods” section for a more formal explanation of the
connection between our approach and rIOT. While L p,p0ð Þ

IOT leverages
biological prior knowledge to attract corresponding cells across
modalities, it is not always sufficient to completely overlap them in the
shared latent space. To address this, we add to the loss, as a regular-
ization term, the unbalanced Sinkhorn divergence44 between the cell
embeddings of each pair of modalities ðL p,p0ð Þ

reg Þ. L p,p0ð Þ
reg , based on OT, is
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frequently used inmachine learning tominimize the distance between
high-dimensional point clouds (see “Methods” section). The gradients
of both L p,p0ð Þ

IOT and L p,p0ð Þ
reg are back-propagated through the modality

encoders in order to improve the across-modality alignment of cell
embeddings. In addition, in bothL p,p0ð Þ

IOT (using an unbalanced transport
plan) and L p,p0ð Þ

reg (i.e. unbalanced Sinkhorn divergence), Unbalanced
Optimal Transport achieves a tradeoff between aligning all cells (as in
regular OT) and avoiding artificial alignments for cells that have no
suitable match in the other modality. Therefore, scConfluence is able
to deal with cell populations present only in one modality.

The final loss optimized over the parameters of the AE pð Þ with
stochastic gradient descent is thus:

L=
XM
p= 1

λpLAEðpÞ +
X

1 ≤p<p0 ≤M

λIOTLðp,p0 Þ
IOT + λrLðp,p0 Þ

reg ð1Þ

scConfluence separately uses all original features for dimensionality
reduction in order to retain all the complementary information
brought by each modality and leverages common information in the
form of connected features to align cells with rIOT. Therefore, our

innovative combined use of OT and rIOT allows scConfluence to avoid
the loss of biological information generally resulting from modality
conversion in state-of-the-art methods. As a consequence, scCon-
fluence is much more robust to integration problems where very few
features are connected across modalities (e.g. scRNA-surface protein
data integration). In addition, the quality of scConfluence’s modality
alignment depends on the transport planP p,p0ð Þ which relies only on the
relative distances derived from the converted data Y p,p0ð Þ andY p0 ,pð Þ. As
a consequence, scConfluence can better deal with situations where
strong batch effects between modalities are present in the converted
data space. Furthermore, while state-of-the-art methods strictly
enforce the complete mixing of cells across modalities, scConfluence,
through the use of unbalanced OT, can cope with large discrepancies
between the cell populations present in eachmodality. scConfluence is
thus able to integrate single-cell modalities even when they do not
contain the same cell types.

We extensively benchmarked scConfluence against five state-of-
the-art methods: Seurat (v3.0), Liger, MultiMAP, Uniport, and
scGLUE27–31. Seurat, Liger, and MultiMAP are widely used single-cell
unpaired multi-omics integration methods in the computational

Fig. 1 | The scConfluence framework for diagonal integration. a Schematic
representation of the framework simplified to only two modalities (M = 2). While
the original data matrices X 1ð Þ and X 2ð Þ are inputted to their respective auto-
encoders, converted feature matrices Y 1ð Þ and Y 2ð Þ (shorter notations for Y 1,2ð Þ and
Y 2,1ð Þ) are used to compute an Optimal Transport plan across the two modalities.
The IOT lossLIOT computed thanks to the transportplan and the regularization loss

Lreg constituting together the rIOT constraint, are used to enforce the alignment of
modalities in the shared latent space. b Examples of two outputs of scConfluence:
cell embeddings can be visualized using 2D projections and clustered to discover
new cell subpopulations, they can also be used to impute features across
modalities.
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biology community. Uniport is themain alternative to ourmethod also
using OT. Finally, scGLUE is the most recent and best-performing
method in the NeurIPS challenge on Open Problems in Single-Cell
Analysis45.

scConfluence outperforms the state-of-the-art on the integra-
tion of unbalanced cell populations
One of the main challenges of diagonal single-cell multi-omics inte-
gration is the need to deal with unbalanced cell populations. This
requires aligning shared cell populations, independently of their size,
and preserving modality-specific ones. We thus benchmarked scCon-
fluence with the state-of-the-art based on its ability to integrate single-
cell modalities sharing only a fraction of cell populations. As using
simulated data based on distributional assumptions would favor
methods making the same assumptions, we here designed a bench-
mark using scCATseq data profiled from HeLa, HCT, and K562 cancer
cell lines15. The choice of these data comes from the need to workwith
well-separated clusters, for which cell lines are an ideal example. In
addition, having an equivalent proportionof cells per cluster in the two
modalities allows us to design scenarios with different levels of
unbalanceness in the cell populations. Of note, while scCATseq pro-
vides a joint profiling of scRNA and scATAC from exactly the same cell,
the cell pairing information has not been used here as input of the

various methods. To then test to which extent unbalanced cell popu-
lations affect the results of diagonal integration we modified the
scCATseq data to represent three realistic situations: (i) removing half
of K562 scRNA cells; (ii) removing all K562 scRNA cells and (iii)
removing completely K562 scRNA cells and HCT scATAC cells. See
Fig. 2a for a schematic representation.

A successful integration method should: (i) produce biologically
meaningful integrated cell embeddings, i.e. organizing cells according
to cell types and states, and (ii) align cells profiled from different
modalities (e.g. scRNA, scATAC) that are paired or at least from the
same cell type/state We used the purity score20 to evaluate (i). For (ii),
we used three scores: FractionOf Samples Closer Than the TrueMatch
(FOSCTTM) (modified from refs. 31,38,46 as explained in “Methods”
section), to evaluate the closeness of paired cells, connectivity47, to
assess whether cells from the same cell type are close to each other
independently of their modality of origin, and transfer accuracy48, to
measure the proximity between corresponding cell types across
modalities in the shared latent space (see “Methods” section for all
scores mentioned). Concerning MultiMAP, its output used for down-
stream analyses is a neighborhood cell graph only encoding closest
interactions. This link thresholding in the neighborhood cell graph
results in artificially low performances with FOSCTTM. For this reason,
FOSCTTM was not reported for MultiMAP.

Fig. 2 | Benchmarking cell embeddings in unbalanced cell lines. a Schematic
representation of the benchmarking process. Four scenarios are here considered:
removing half of K562 scRNA cells, removing all K562 scRNA cells, and removing
completely K562 scRNA cells and HCT scATAC cells; b Purity, Transfer accuracy,
Connectivity, and Fraction Of Samples Closer Than the True Match (FOSCTTM)
scores are here reported for the six benchmarked methods (scConfluence, Seurat,
Liger,MultiMAP,Uniport, and scGLUE)on the four controlled settingsderived from
the cell lines data as described in (a). Since purity, transfer accuracy, and con-
nectivity scores are based on nearest neighbors graphs, the plots report their
behavior for various sizes of neighborhood (x-axis). Error bars in the plots specify

the standarddeviation acrossn = 5 random initialization seeds for eachmethod and
they are centered on the median result. Inside bar plots, small dark stars represent
individual seed results. Source data are provided as a Source Data file; c The six
columns of this panel provide UMAP visualizations for the six benchmarked
methods (scConfluence, Seurat, Liger, MultiMAP, Uniport, and scGLUE) on the
same four controlled settings derived from the cell lines data. Different colors in
these UMAP plots correspond to the three different cell lines present in the data
while the shape of the point markers corresponds to the modality of origin of each
cell (scRNA, scATAC).
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As expected, all methods showed decreasing performances when
the scenarios became less balanced. scConfluence outperformed the
state-of-the-art in all scenarios, proving more robustness to vari-
abilities in cell populations’ proportions (see Fig. 2b, c). For the
remaining methods, MultiMAP and scGLUE struggled the most to
group cells based on their cell line of origin, while MultiMAP and
Uniport were less performant in mixing modalities from shared
populations. This can be observed also in the UMAP plots (Fig. 2c).
Regarding LIGER, the results here displayed concern its performances
once setting the number of latent dimensions to three. This choice
particularly advantages the method that fails to integrate the two
modalities for other values of the latent dimensions (see Supplemen-
tary Fig. 1). In addition, even when using three latent dimensions,
LIGER displays high variability in every score across different runs in
most scenarios.

scConfluence outperforms the state-of-the-art in scRNA-surface
protein and scRNA-scATAC integration
To then benchmark scConfluence vs the state-of-the-art on larger and
more realistic diagonal integration scenarios, we considered two 10X
GenomicsMultiome (scRNA+scATAC) datasets: (i) PBMC 10X, a human
PBMC dataset with 9378 cells per modality (ii) OP Multiome, a human
bone marrow dataset, with 69,249 cells per modality profiled from
different sites and donors constituting a total of 13 batches49; plus two
CITE-seq (scRNA+surface protein) datasets: (i) BMCITE, a human bone
marrow dataset with 30,672 cells per modality where 23 surface pro-
tein levels were measured27 (ii)OP Cite, a human bone marrow dataset
with 90,261 cells per modality profiled from different sites and donors

constituting a total of 12 batches andwith 134 surfaceproteins49. These
are gold-standard datasets in multi-omics integration, already used to
benchmark state-of-the-art methods27,31,45,49. We chose paired multi-
omics data to test diagonal integration in order to have ground-truth
matching between cells, useful for evaluating the performances of the
various methods. Of note, the data have been treated as unpaired by
the various methods and the cell pairing information has only been
used for performance evaluation. In addition, the data are provided
with high-quality cell labels useful for performance evaluation. For
details on the data see Supplementary Table 1 and for their pre-
processing see “Methods” section.

The benchmarking of performances is based on the same scores
described in the previous section. In addition, to assess the ability of
the methods to capture additional substructure inside cell types we
added the “cell type FOSCTTM” score (i.e. FOSCTTM considering only
cells from the same cell type), which penalizes the random alignment
of cells from the same cell type across modalities (see “Methods”
section). This score was not relevant in the context of cell lines as no
additional heterogeneity is expected.

Regarding scRNA-scATAC integration (Fig. 3b), scConfluence is
the best-performing method, in three out of four evaluation scores
(Purity, Transfer accuracy, and connectivity). Concerning FOSCTTM,
scGLUE has the best performances, immediately followed by scCon-
fluence andUniport. Allmethods performbetter on PBMC 10X thanOP
Multiome. This is not surprising as OP Multiome contains more cell
populations and strong batch effects, corresponding to several donors
and sequencing sites. Of note, on this dataset, scConfluence performs
best for batch correction. Indeed, the graph connectivity score

Fig. 3 | Cell embeddingbenchmark in gold-standard scRNA-surface protein and
scRNA-scATAC datasets. a Schematic representation of the benchmarking pro-
cess; b Purity, Transfer accuracy, Connectivity, and FOSCTTM scores for the six
benchmarked methods (scConfluence, Seurat, Liger, MultiMAP, Uniport, and
scGLUE) in two scRNA-scATAC datasets profiled from PBMC and bone marrow.
Error bars in the plots specify the standard deviation across n = 5 random initi-
alization seeds for eachmethod and they are centered on the median result. Inside
bar plots, small dark stars represent individual seed results. Source data are pro-
vided as a Source Data file; c UMAP visualizations of scConfluence’s cell embed-
dings in the samedatasets as (b).Cells are coloredbasedon theirmodality of origin,

their cell type annotation, or their batch of origin (when multiple batches are
present in the data), respectively;d Same scores andmethods as (b), but computed
on the two scRNA-surface protein datasets of the benchmark profiled from bone
marrow. Error bars in the plots specify the standard deviation across n = 5 random
initialization seeds for each method and they are centered on the median result.
Inside bar plots, small dark stars represent individual seed results. Source data are
provided as a Source Data file.; e UMAP visualizations of scConfluence’s cell
embeddings on the two scRNA-surface protein datasets with cells colored
according to the same rules as (c).
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captures both the mixing of cells from different modalities and dif-
ferent batches. Overall, for scRNA-scATAC integration, scConfluence is
the method achieving the best compromise between producing a
biologically meaningful integrated cell embedding and aligning cells
profiled from scRNA and scATAC. In Fig. 3c, UMAP visualizations
illustrate the quality of the integration results obtained by scCon-
fluence, with respect to the mixing of the modalities, the correction of
batch effects, and the alignment of annotated cell types. For all other
methods see Supplementary Figs. 2 and 3.

In scRNA and surface protein integration (Fig. 3d), scConfluence
largely outperformed the state-of-the-art based on all four metrics on
both datasets. On BMCITE, the relative improvement of scConfluence
with respect to the secondbest is 9% in purity, 45% in transfer accuracy
(corresponding to over 30% of the cells better classified by our
method), and 66% in FOSCTTM. The performance gap is smaller onOP
Cite, but still sizable with a relative improvement of 10% in purity, 10%
in transfer accuracy (corresponding to over 5% of the cells better
classifiedbyourmethod), and 50% in FOSCTTM.Theobserved gapcan
be explained by the need of state-of-the-art methods for a large
number of connections between the features of different modalities.
This is not the case when integrating scRNA and surface protein data.
For instance, in BMCITE, only 23 features are connected between the
twomodalities. As a consequence, most state-of-the-art methods have
to subset the scRNA features to 23 protein-coding genes, thus dis-
carding most of the information contained in the data. Moreover,
scGLUE also struggles to align modalities since its prior feature graph
contains thousands of nodes but only 23 edges. In addition, on OP
CITE, scConfluence performs best for batch correction based on graph
connectivity.

The quality of our integration is highlighted by the UMAP visua-
lizations in Fig. 3e. While on BMCITE the modalities are completely
mixed, on OP Cite a non-perfect mixing can be observed for a few cell
types/states (e.g. reticulocytes, erythroblasts, and lymphoid progeni-
tors). However, the integration of OP Cite data is a particularly chal-
lenging task, where a good tradeoff needs to be found between
overlapping cells from different data modalities, correcting batch
effects in each modality, and defining a biologically meaningful inte-
grated cell embedding (i.e. organizing cells according to cell types and
states). Based on the evaluation in Fig. 3d, scConfluence is themethod
achieving the best tradeoff. All other state-of-the-art methods suffer
more in at least one of these objectives (Supplementary Figs. 4 and 5).
For instance, LIGER completely overlaps the two modalities but pro-
vides integrated cell embeddings less biologically coherent than
scConfluence.

Finally, scConfluence, as most of the methods, proves the ability
to capture substructure inside cell types (see Supplementary Fig. 6)
with cell type FOSCTTM scores significantly below the baseline of 0.5.
This proves that embedding methods can highlight cellular hetero-
geneity at a finer resolution than cell types.

scConfluence robustly integrates scRNA and smFISH from the
mouse cortex, predicting genes with relevant spatial patterns
The phenotypic behavior of a cell, i.e. the cell state, results from the
joint activity of the molecular regulation inside the cell and the influ-
ence of neighboring cells. Working with gene expression across space
(e.g. in tissue context) is thus crucial to better characterize cell states.
However, the possibility to jointly measure at single-cell and high-
throughput resolution both spatial position andgene expression is still
rare50. At the same time, other existingdata have important limitations.
On one hand, spatial high-plex imaging data (e.g. smFISH51–53,
starMAP54) are limited by the possibility of onlymeasuring a few genes
(~100–1000 genes)55. On the other hand, scRNA sequencing allows to
sequence the full transcriptome but breaks tissues apart thus losing
the spatial information1. Integrating these two types of data is thus the

best opportunity we have to shed light on the role of spatial context in
cell state definition.

With this aim, we applied scConfluence to integrate two gold-
standard datasets profiled from the mouse somatosensory cortex:
(i) smFISH data of 33 selectedmarker genesmeasured in 4530 cells56;
(ii) Smartseq2 data of ~20k genes (including the 33 of the previous
dataset) measured across 3005 cells57. As shown in Fig. 4a, two out-
puts of scConfluence have been considered: (i) cell embeddings,
whose quality is evaluated based on the same criteria used above
(except for FOSCTTM since the data is unpaired) and (ii) imputations
of the expression levels of unmeasured genes in the smFISH
experiment. scConfluence’s results are here compared with the same
state-of-the-art methods as before, with the only addition of GimVI58

which was specifically designed for scRNA and spatial high-plex
imaging data.

Regarding the quality of cell embeddings, scConfluence outper-
forms all state-of-the-art methods according to cell type purity,
transfer accuracy and graph connectivity (Fig. 4b, c, Supplementary
Fig. 7). Thus, scConfluence proved again the ability to leverage a small
number of common features to perform diagonal integration.
Regarding the smFISH imputations, scConfluence enables us to pre-
dict features acrossmodalities by connecting the smFISHencoderwith
the scRNA decoder. Indeed, the scRNA decoder can take as input a cell
embedding from anymodality and output its estimated scRNA profile.
To evaluate the quality of the imputations, as done in58, we created
multiple scenarios holding out ~10% of the smFISH genes (see “Meth-
ods” section). The proximity between the imputed and the ground-
truth smFISHmeasurementswas then calculatedbasedon average and
median Spearman correlations (aSCC and mSCC), as in ref. 29. The
Spearman correlation is a natural choice for this task29,58 since it is less
sensitive to outliers and focuses on the monotonic relationship (not
necessarily linear) between pairs of observations. This is particularly
relevant since we are interested in rewarding imputations that reflect
the ground-truth’s pattern of expression rather than its absolute
values. As shown in Fig. 4d, gene imputation is very challenging, as
aSCC andmSCCvalues are relatively low even for themost performant
methods (median score around 0.1–0.2). Overall, according to both
mSCC and aSCC, scConfluence is among the best-performing meth-
ods. In Fig. 4e, the quality of the imputations of scConfluence can be
assessed also visually for the genes Sox10, Kcnip2, Plp1 (all other genes
are available in Supplementary Fig. 8). The results suggest that
scConfluence captures the major patterns of spatial variation in the
ground-truth. In particular, Sox10, and Plp1 exhibit higher expression
in oligodendrocytes, see ref. 56 for brain region annotation. Kcnip2
displays higher expression in pyramidal neurons (both in the hippo-
campus and upper layers) and in inhibitory neurons from the caudo-
putamen. scConfluence can infer expression in those regions but fails
to capture the layered structure in pyramidal neurons. Nevertheless, in
comparison, GimVI which was designed specifically for imputation
fails to impute major patterns of spatial variation as shown in Sup-
plementary Fig. 9.

In addition, for the genes measured in scRNA but not in the
smFISH data, scConfluence predicted some interesting spatial pat-
terns (Fig. 4F). In particular, for Pnoc, Hapln2, and Cux2, known
markers of inhibitory neurons, oligodendrocytes, and upper
neuronal layers respectively, scConfluence imputed smFISH
profiles coherent with existing studies57,59. Finally, scConfluence also
suggests additional genes having interesting spatial patterns: Scgn,
highly expressed in the excitatory neurons from layers 4 and 6,
Synpr, highly expressed in the region corresponding to the caudo-
putamen, and Olah, highly expressed in hippocampal and layer 6
neurons. These last results prove the ability of scConfluence to
provide new relevant biological hypotheses to be followed up
experimentally.
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scConfluence integrates highly heterogeneous scRNA, scATAC,
and cyTOF leveraging their complementarity to improve cell
type identification in PBMCs
A crucial challenge in biology is to take advantage of the com-
plementarity between different data modalities to achieve a better
understanding of cellular heterogeneity. While this is easier to achieve
when the data are profiled from the same set of cells (e.g. 10X Multi-
ome, CITE-seq), it becomes more challenging on unpaired data. Here,
we bring this challenge to its extreme by performing diagonal

integration of three PBMC single-cell omics data profiled from differ-
ent cells, different donors, and by different laboratories. The aim is to
test to which extent scConfluence takes advantage of the com-
plementarity between different data modalities despite the significant
across-dataset variations.

We thus applied scConfluence to the diagonal integration of three
human PBMC datasets extracted in highly heterogeneous settings: (i)
Seq-Well-based scRNA-seq dataset of 16,627 cells60; (ii) 10X Genomics
scATAC-seq (Chromium platform) dataset of 21,261 cells61 and (iii)

Fig. 4 | Cell embeddings and gene imputations resulting from scRNA and
smFISH integration in mouse somatosensory cortex. a Schematic representa-
tion of the integration and imputation process; b Purity, Transfer accuracy, and
Connectivity scores of the seven benchmarked methods (scConfluence, Seurat,
Liger, MultiMAP, Uniport, and scGLUE, GimVI). Error bars in the plots specify the
standard deviation across n = 5 random initialization seeds for each method and
they are centered on the median result. Inside bar plots, small dark stars represent
individual seed results. Source data are provided as a Source Data file; c UMAP
visualizations of scConfluence’s cell embeddings colored by the modalities of ori-
gin and their cell type annotations; d Boxplots of average and median Spearman

correlation coefficients (aSCC andmSCC) between real and imputed smFISH genes
across n = 11 imputation scenarios (no statistical methodwas used to predetermine
sample size). In the boxplots, the center line, box limits, and whiskers denote the
median, upper and lower quartiles, and 1.5× interquartile range, respectively. Black
dots over the boxplots correspond to individual data points. Source data are pro-
vided as a Source Data file; e Spatial pattern of expression of scConfluence’s
imputations (bottom) on three held-out smFISH genes and their ground-truth
pattern of expression (top). Spearman correlations between the ground-truth and
imputed counts are written at the bottom. f scConfluence’s imputed spatial pattern
of expression of six scRNA genes not measured in the smFISH experiment.
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single-cell resolution mass cytometry (Helios CyTOF system) dataset
where 48 proteins were measured in 43,232 cells62. This configuration
is particularly challenging for diagonal integration as in most real
applications thedifferentmodalitieswouldhavebeen extracted froma
single group of donors in comparable conditions, a situation char-
acterized by much lower biological and technical variations.

For each of the three datasets, cell type annotations were pro-
vided in their original publication. Strong discrepancies could be
observed in the depth of annotation of most of the cell types. For
example, B cells in scATAC are divided into naive, memory, and
plasma; in CyTOF instead, they are divided into naive, memory, and
double negative, and in scRNA they are merged in a single B cell
population. In addition, some cell types were modality-specific, for
example, MAIT T cells for CyTOF, and plasma cells for scATAC data.
Such discrepancies might be due to the absence of such cell types in

some modalities, to their misclassification, or to differences in anno-
tation depth in the original studies.

scConfluence successfully integrated all three modalities in a
common latent space where cells were organized according to cell
types and states independently from their modality of origin (see
Fig. 5b–e). Indeed, as it can be already observed from the UMAP of the
threeomics integration (Fig. 5b–d), cells fromdifferentmodalities, and
corresponding to the same cell type annotation overlap in the latent
space. In addition, once clustering cells in the integrated latent space
(Fig. 5f), the obtained clusters are consistent with the annotations of
each modality (see Fig. 5g–i). However, our integrative analysis also
provides additional information (Fig. 5f–i). The cells annotated as B
cells in scRNA are split into three clusters from the three omics inte-
gration (Fig. 5g, clusters: 0, 1, 2). In scATAC (Fig. 5h), these three
clusters correspond to cells annotated asmemory, naive, and plasmaB

Fig. 5 | Tri-omics integration and subclustering of PBMC data. a Schematic
representation of the integration; b UMAP visualization of all the integrated cell
embeddings colored by their modality of origin; c–e UMAP visualization of
scConfluence’s integrated cell embeddings plotted one modality at a time and
colored by their cell type annotation of origin. The red circles highlight B cells
which are already sub-annotated in scATAC and CyTOF. The blue circles highlight
monocytes that are already sub-annotated in scRNA and CyTOF; f UMAP visuali-
zation of all the integrated cell embeddings colored based on inferred cluster

annotations. Additional plots are provided for ATAC monocytes and RNA B cells
which have been subclustered. The significance of the overlap between the marker
genes obtained from scRNA and scATAC for each subcluster (Fisher’s exact test) is
plotted. The dashed vertical line corresponds to FDR =0.01. No alignment sig-
nificance score is reported for cluster 6 as it only contains cells from the scATAC
experiment. Source data are provided as a Source Data file; g–i Sankey diagrams
displaying the comparison between cell annotations in their original publication
and in our integrative analysis. Source data are provided as a Source Data file.
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cells. Similar conclusions can be derived from the CyTOF annotation
(Fig. 5i).We can thus assume that the cells classified in scRNA as cluster
0–2 alsocorrespond respectively tomemory, naive, andplasmaBcells.
However, clustering the scRNA cells on their own would have not
allowed us to identify plasma cells (see Supplementary Fig. 10).
scConfluence’s integration thus had a crucial role in re-annotating the
scRNA B cell cluster into appropriate subpopulations. We then further
verifiedwhether this subclustering of B cells in scRNA corresponds to a
real biological signal or to the random splitting of scRNA B cells driven
by the artificial mixing of cells across modalities. With this aim, we
identified the differentially expressed genes in clusters 0–2 for both
scRNA and scATAC-derived gene activity, separately. CyTOF was
excluded from this analysis because of the low number of features
(only 48 proteins).We then tested the significance of their intersection
(see “Methods” section, Fig. 5f, Supplementary Table 2), finding an
overlap of 30 genes (corresponding to a −log10FDRof 19) for cluster 0,
12 genes for cluster 1 (corresponding to a −log10FDR of 10) and 232
genes for cluster 2 (corresponding to a −log10FDR of 37). All of them
being well beyond the standard FDR threshold of 0.01 proves that
clusters 0–2 share the same differentially expressed genes in scRNA
and scATAC. In addition, the common differentially expressed genes
contain knownmarkers ofmemory, naive, andplasmaBcells:AIM2 and
RALGPS222 formemoryB cells;BTG1, TCL1A, and YBX322 for naive B cells
and MCL163 for plasma B cells. Taken together these results thus con-
firm that the splitting of scRNA cells annotated as B cells into three
subclusters (0–2), is not the result of an artificial modality alignment,
but corresponds to real biological signals not identified in the previous
unimodal scRNA analysis60.

B cells are not the only example of cell populations benefitting
from single-cell multi-omic integration. Monocytes are also anno-
tated differently across single-cell omics data. Indeed, the scRNA
study clusters them into classical and non-classical; CyTOF divides
them into classical, non-classical, and intermediate; scATAC
splits them into Mono 1 and Mono 2. scConfluence’s integration of
these three omics data divides monocytes into three clusters (4, 5,
and 6), 4 and 5 having a good correspondence with classical and non-
classical monocytes, respectively (see Fig. 5g, i). As shown in Fig. 5i,
intermediate monocytes tend to cluster in the shared latent space
together with non-classical monocytes (cluster 5), probably due to
the fact that the clustering algorithm is splitting cell populations into
discrete groups while this is a continuum of cells. In addition, the
Mono 2 population of scATAC is split into clusters 4 and 5, thus
containing both classical and non-classical monocytes. On the
opposite, cluster 6 only corresponds to Mono 1 from scATAC, pos-
sibly representing a different state of monocytes not fitting within
the classical/non-classical subdivision. To confirm such conclusions,
we ran the same statistical test as earlier (Fig. 5f, Supplementary
Table 3) and found an intersection of differentially expressed genes
between scRNA and scATAC of 226 genes for cluster 4 (corre-
sponding to a −log10FDR of 48) and 80 genes for cluster 5 (corre-
sponding to a −log10FDR of 39). In addition, the shared differentially
expressed genes contained CD14, a known marker of classical
monocytes, for cluster 4 and CD16, a known marker of non-classical
monocytes, for cluster 5. Concerning cluster 6, composed only of
scATAC cells, the overexpression of CD2 and CCR7 (log2 fold change
of 5.61 and 5.40, respectively) could be observed, possibly suggest-
ing that cluster 6 is a group ofmonocytes transitioning into Dendritic
Cells64,65 (see Supplementary Table 4).

Finally, our integration revealed the mislabeling of a subset of
cells annotated as Natural Killer (NK) cells in the original publication.
Indeed, these cells formed a distinct subcluster (cluster 8) in which
both markers of CD8 T cells (CD3E) and NK cells (NCAM1) were
expressed, as shown in Supplementary Fig. 11. This enabled us to
identify them as NKT cells, a heterogeneous group of T cells that share
properties of both T cells and NK cells66.

scConfluence integrates scRNA and neuronal morphologies
highlightingmorphological heterogeneity in neuronal cell types
of mouse motor cortex
The experiments above were focused on molecular data (e.g. tran-
scriptomics, epigenomics, and proteomics), but single-cell analysis can
also benefit from other data modalities, such as imaging. A classical
situation where imaging data play a key role is the study of neurons.
Indeed, morphology imaging data provide a different classification of
neocortical neurons with respect to scRNA data. An example of classi-
fication based on manual annotation of morphologies divides mouse
neocortical interneurons into 15 groups67 representing different sub-
groups of Martinotti, neurogliaform, basket, single-bouquet, bitufted,
bipolar, double-bouquet, chandelier cell, shrub, horizontally elongated,
pyramidal and deep-projecting. On the other hand, in scRNA mouse
motor cortex neurons have been classified into 90 populations68, cor-
responding to different subpopulations of Lamp5, Sncg, Vip, Sst, Pvalb
pyramidal tract, near-projecting, Cortico Thalamic (CT), Extra Tele-
ncephalic (ET) and Intra Telencephalic neurons (IT). The integration of
these two data modalities has thus a crucial role in unraveling neural
heterogeneity and its associated biological functions69. This is an
extremely challenging task that could not be tackled by the other state-
of-the-art methods, as no natural connection exists between the pixels
of an image and the features of scRNA data (i.e. genes).

We considered a dataset of 1214 adult mouse primary motor
cortex cells profiled with Patch-seq, providing scRNA-seq, neuronal
morphologies, and electrophysiology measurements. The dataset is
classified, based on scRNA, into Lamp5, Sncg, Vip, Sst, Pvalb, CT, ET,
and IT neurons extracted from layers 1, 2/3, 5, and 670. Out of the 1214
cells, only 625 cells were profiled for both scRNA and morphologies,
while for the remaining 589 cells only scRNA was available. This is not
surprising as Patch-seq is difficult to master, thus implying the pro-
duction of data containing somemodalities andmissing others, typical
scenario of interest for diagonal integration. As shown in Supple-
mentary Fig. 12a, cells from scRNA perfectly organize according to the
cell labels obtained in ref. 70. On the contrary, Supplementary Fig. 12b
shows that the scRNA labels do not fully capture the heterogeneity
present in the morphology data, thus further suggesting that this
modality contains complementary information. We thus investigated
the role of such complementarity, by integrating with scConfluence
the 625 available morphologies together with the 589 scRNA profiles
(Fig. 6a). Since scRNA-seq profiles are available for both groups of cells
(Fig. 6a), we can use the measured genes as the connected features to
build the Y matrices. These measurements are ideal to compute a
reliable transport plan across the modalities as they come from the
same sequencing technology and dataset.

The cells in scConfluence’s shared latent space were broadly
organized according to the previously defined scRNA populations
(Fig. 6b). At the same time, morphological heterogeneity could be
detected in some of these populations. For example, as shown in
Fig. 6c, excitatory neurons (CT, ET, IT) are organized into three mor-
phological categories: “tufted”, “untufted” and “other” based on the
visual inspection of their apical dendrites71. Most of the CT neurons are
untufted and other, ET neurons are mainly tufted, finally, IT neurons
result in a continuum progression from tufted to untufted. This pro-
gression seems associated with their layer of origin. For example,
tufted IT neurons tend to be from layers 2/3 and 5, while untufted IT
neurons aremostly from layer 6. Such morphological heterogeneity is
extremely relevant as the geometry of tuft dendrites has an impact on
the integrative properties of excitatory neurons72–74. In addition, we
observe a higher expression of the Transcription Factor Fezf2 in tufted
IT neurons from layer 5 (see Fig. 6d). This result is concordant with the
hypothesis that Fezf2 expression is required for the maintenance of
tuftness in IT neurons75,76. However, we also observe tufted cells not
expressing Fezf2 as well as untufted cells expressing Fezf2, thus raising
the possibility that other factors might be involved in such a process.
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Focusing then on all IT neurons, both the expression of Fezf2 and the
length of apical dendrites display a continuous gradient along the
same one-dimensionalmanifold (Fig. 6d). In agreement with this, both
Fezf2 activity and length of apical dendrites have been independently

found to be highly correlated with calcium signaling77,78, which is
connected todendritic excitability through calciumelectrogenesis79,80.
Our observation has particular biological relevance as it could repre-
sent not only a simple association but a causal effect of Fezf2 on the

Fig. 6 | Integration of scRNA-seq and neuronal morphologies in the mouse
primary motor cortex. a Schematic representation of the integration; b UMAP
visualizations of the integrated cell embeddings colored by theirmodality of origin,
their cell type annotations, and their cortical layers of origin; c UMAP visualization
of the integrated cell embeddings colored by their morphological labels which are
only available for excitatory neurons. The terms ‘tufted’ and ‘untufted’ correspond
to visual inspection of the neurons’ apical dendrites; some examples of neuronal
morphologies are displayednext to the UMAPplot;d Pattern of expression of Fezf2
in IT neurons. The boxplots on the left shows the distribution of expressionof Fezf2

in untufted (n = 29) and tufted (n = 31) IT neurons from layer 5. The center line, box
limits, and whiskers denote the median, upper and lower quartiles, and 1.5× inter-
quartile range, respectively. Black dots over the boxplots correspond to individual
data points. Source data are provided as a Source Data file. The UMAP plot of IT
neurons shows the correlated pattern of variation of Fezf2 expression (corre-
sponding to the size of the points) and the height of apical dendrites (corre-
sponding to the color gradient); e Heatmap representing the depth profiles of Sst
neurons’ axons perpendicular to the pia. Cells have been sorted basedon the depth
of their soma.
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morphology of IT neurons resulting in a regulation of dendritic
excitability. This hypothesis is supported by the fact that Fezf2 has
been already shown to play a key role in the determination of the
function, dendritic morphology, and molecular differentiation of CT
neurons81.

Furthermore, Somatostatin-expressing neurons (Sst), which are
known to be morphologically diverse82, seem to be organized
according to their layer of origin, with layer 2/3, layer 5, and layer 6
moving from left to right in the last UMAP plot of Fig. 6b. This laminal
organization is associatedwith amorphological patternof variation, as
shown by the axonal depth profiles in Fig. 6e. In layer 2/3 we observe a
higher presence of Martinotti cells extending their axons up to layer 1.
Indeed, Martinotti cells are known to make contact in layer 1 with the
distal tuft dendrites of pyramidal cells83. On the other hand, deeper
layers contain more non-Martinotti cells which seem to often target
neurons inside their own layer.

Discussion
The impressive abundance of unpairedmultimodal single-cell data has
motivated a growing body of research into the development of inte-
grationmethods. However, the state-of-the-art suffers from twomajor
drawbacks: (i) the loss of biological information due to across-
modalities feature conversion and (ii) the presence of populations
only profiled in one data modality.

We introduced scConfluence, a method for single-cell diagonal
integration combining uncoupled autoencoders with regularized
Inverse Optimal Transport (rIOT) on weakly connected features.
scConfluence produces informative cell embeddings in a shared latent
space by leveraging the complementarity of multiple modalities pro-
filed from different groups of cells. This aim is achieved by using
autoencoders on the full data matrices, allowing simultaneous
dimensionality reduction and batch correction of different unpaired
data modalities, together with rIOT on connected features to align
cells in the shared latent space. This approach allows scConfluence to
leverage prior knowledge without discarding the modality-specific
features which also provide relevant biological information.

Unlike the state-of-the-art, scConfluence does not rely on the
assumption that most features are strongly connected across mod-
alities. Indeed, as soon as such connections allow us to compute
meaningful relative distances between cell populations the integration
will be successful. This can be achieved even when there are few
connected features, as in smFISH-scRNA integration, or when such
connections arenot perfect, as for proteins and scRNA integration84. In
addition, the use of unbalanced Optimal Transport allows us to
account for the presence of cell populations not shared across
modalities.

We extensively benchmarked scConfluence in several scRNA-
surface protein and scRNA-scATAC integration problems proving that
it outperforms the state-of-the-art. We then explored scConfluence’s
ability to tackle complex and crucial biological questions. First, we
integrated with scConfluence scRNA and smFISH profiled frommouse
somatosensory cortex and we imputed spatial patterns of expression
for Scgn, Synpr, and Olah relevant for future biological investigations.
Second, scConfluence’s integration of scRNA-seq, scATAC-seq, and
CyTOF in highly heterogeneous human PBMC datasets refined the
classification of B cells andMonocytes. Finally, through the integration
of neuronal morphological images with scRNA-seq from the mouse
primary motor cortex, scConfluence shed light on the combined
impact of Fezf2 expression and apical dendrite morphology on infor-
mation processing in Intra Telencephalic neurons.

A challenging aspect for scConfluence and all the state-of-the-art
is the need to properly deal with rare cell populations. Indeed, rare
populations are harder to detect as they are under-represented in
parameter estimation. This is even more challenging for methods
relying onmini-batch gradient descent (such as scConfluence, scGLUE,

and Uniport). Indeed, rare populations are much less likely to be
simultaneously sampled from each modality in the mini-batches. At
the same time,mini-batchoptimization is necessary to scale tomillions
of cells. In addition, scConfluence, asmuch as all other state-of-the-art
diagonal integration methods, relies on connections between features
of different modalities. Such connections are not always available, as
for example when integrating electrophysiology measurements with
gene expression profiled from different neurons.

One of the main advantages of scConfluence is its modularity,
allowing the users to choose their preferred unimodal dimensionality
reduction method. For the modalities analyzed in this paper (scRNA-
seq, scATAC-seq, CyTOF, smFISH, Patch-seq) ad-hoc autoencoders are
proposed. However, for new modalities the users can choose whether
to use a classical fully connected autoencoder with the L2 loss or a
more tailored solution available in the literature. Such a tailored
solution could be a novel autoencoder architecture or even any
parametric dimension reduction model that can be optimized with
stochastic gradient descent. Future developments could further
improve the performances of scConfluence by plugging-in more
advanced dimensionality reduction models recently developed or
soon-to-be developed.

Regarding future perspectives, while this work is focused on
unpaired multimodal data, paired multimodal data also starts to
increasingly accumulate. We can thus expect a relevant need for
methods able to jointly integrate these two types of multimodal data.
In this setting, paired data would represent a very reliable prior
knowledge to guide the alignment of unpaired cells. In addition, they
could possibly bring new biological information, not already encoded
in the single data modalities. Future developments of scConfluence
should be aimed at tackling this intriguing emerging challenge.

Methods
Notations
For two vectors u 2 Rnu and v 2 Rnv , we use the notations:

u� vð Þij = uivj and u� vð Þij =ui + vj . For two matrices U 2 Rn ×d

and V 2 Rn×d of identical dimensions, we’ll use the scalar product
notation h,i to denote the Frobenius inner product U,Vh i=Pi,jUijV ij .

Optimal transport
Optimal Transport (OT), as defined by Monge85 and Kantorovich86,
aims at comparing twoprobability distributions by computing theplan
transporting one distribution to the other with a minimal cost.

While the OT theory has been developed in the general case of
positive measures, our application only involves point clouds which
are uniform discrete measures

Pn
i= 1

1
nδai

where the set of ai is the
support of the point clouds. Therefore, to avoid adding unnecessary
complexity in the notations we will denote the probability measures
just as the set of positions a.

The classical OT distance, also known as theWasserstein distance,
between two point clouds a 2 Rn1 ×d and b 2 Rn2 ×d is defined as:

OT a,b, cð Þ= min
P2Π n1,n2ð Þ

P, c a,bð Þ� �
ð2Þ

Where Π n1,n2

� �
= fP 2 Rn1 ×n2

+ s:t:P= 1
n1
1,PT = 1

n2
1g and c is a ground

cost function used to compute the pairwise dissimilarity matrix

c a,bð Þ= c ai,bj

� �
1≤ i≤n1,1 ≤ j ≤n2

2 Rn1 ×n2
+ that encodes the cost of trans-

porting mass from one point (e.g. cell) to another. In this uniform
discrete case, the coupling P 2 Π n1,n2

� �
is a matrix that represents

how themass in the point cloud a is moved from one point to another
in order to transform a into b.

As real data often contains outliers to whichOT is highly sensitive,
a more robust extension of OT called unbalanced OT33 has been
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developed.

OTτ a,b, cð Þ= min
P2Π n1 ,n2ð Þ

P, c a,bð Þ� �
+ τD P1

1
n1

���� 1
	 


+ τD PT1
1
n2

���� 1
	 


ð3Þ

where τ is a positive parameter controlling the looseness of the
relaxation.

In this formulation, the hard constraint on the marginals of the
optimal plan is replaced with a soft penalization D which measures
the discrepancy between themarginals of the transport planP and the
uniform distributions on a and b. While setting τ = +1 recovers the
balancedOT problem (Eq. 2), using τ<+1 allows the transport plan to
discard outliers and deal with unbalanced populations. Indeed, in
(Eq. 3), unbalanced OT achieves a tradeoff between the constraint
to conserve the mass by transporting all of a onto b and the aim to
minimize the cost of transport. When an outlier is too costly to
transport, it is therefore discarded from the plan. A classical choice for
D is the Kullback–Leibler divergence. It is defined for two discrete
probability distributions represented as vectors of probabilities p and
q as KL pjqð Þ=Pipi log

pi
qi

� �
. The Total Variation (TV) distance defined

as TV p,qð Þ= pi � qi

�� �� is also frequently used. The main difference
between those two options is that when using TV, each point is either
fully transported or discarded while using KL leads to transporting for
eachpoint a fraction of themasswhich smoothly decreases as the cost
of transport increases. We use both in different parts of our methods
(see “Optimal Transport solvers”).

Adding an entropic regularization to the objective function of
(Eq. 2) results in a new optimization problem noted as OTε a,b,cð Þ,
where ε is a positive parameter quantifying the strength of the reg-
ularization.

OTε a,b, cð Þ= min
P2Π n1 ,n2ð Þ

P, c a,bð Þ� �
+ εKL Pja� bð Þ ð4Þ

While setting ε=0 recovers the unregularizedOT problem (Eq. 2),
using ε>0 makes the problem ε-strongly convex. It can be solved
computationally much faster than its unregularized counterpart with
the GPU-enabled Sinkhorn algorithm87.

This entropic regularization can be used in the same fashion in
(Eq. 3) to obtain the following problem:

OTτ
ε a,b, cð Þ= min

P2Π n1 ,n2ð Þ
P, c a,bð Þ� �

+ εKL Pja� bð Þ+ τD P1j 1
n1

1
	 


+ τD PT1j 1
n2

1
	 
 ð5Þ

While OTτ
ε provides a scalable (thanks to the Sinkhorn algorithm)

and robust (thanks to the unbalanced relaxation) way to estimate the
distance between point clouds, it shouldn’t be used as is for machine
learning applications. Indeed, it suffers fromabiaswhen ε>0 and is not
a propermetric formeasures. In particular, OTτ

ε a,a,cð Þ>0. To solve this
issue, a debiased version of (Eq. 5) has been introduced as the unba-
lanced Sinkhorn divergence44:

Sτε a,b,cð Þ=OTτ
ε a,b,cð Þ � 1

2
OTτ

ε a,a,cð Þ � 1
2
OTτ

ε b,b,cð Þ ð6Þ

The Sinkhorn divergence Sτε on the other hand is very well suited
to define geometric loss functions for fitting parametric models in
machine learning applications. Not only is it robust and scalable but it
also verifies crucial theoretical properties such as being positive,
definite, convex, and metrizing the convergence in law.

To designate optimal transport problems, we’ll use the unified
notations OTτ

ε and Sτε for all cases with τ = +1 referring to the
balanced case and ε=0 referring to the unregularized case.

scConfluence
scConfluence takes as inputs data fromM modalities withM ≥ 2 where
each modality’s data comes in the form of a matrix X pð Þ 2 Rn pð Þ × d pð Þ

where the n pð Þ rows correspond to cells and the d pð Þ columns are the
features that are measured in the p th modality (e.g. genes, chromatin
peaks, proteins). For each modality the vector s pð Þ whose entries are
the batch indexes of the cells in X pð Þ is also available. Additionally, for

all pairs of modalities p,p0ð Þ, we have access to Y p,p0ð Þ 2 Rn pð Þ ×d p,p0ð Þ
and

Y p0 ,pð Þ 2 Rn p0ð Þ ×d p,p0ð Þ
which correspond to X pð Þ and X p0ð Þ translated to a

common feature space. Themethod to obtainY p,p0ð Þ for eachmodality
is detailed later in “Building the common features matrix” section.

ScConfluence leverages all these inputs simultaneously but in dif-
ferent components to learn low-dimensional cell embeddings Z pð Þ 2
Rnp ×dz in a shared latent space of dimensiondz . For eachmodalityp, we
use one autoencoder AE pð Þ on X pð Þ with modality-specific architectures
and reconstruction losses LAEp

, see the “Training details” section.
While variational autoencoders have become widely popular in

single-cell representation learning, we decided not to use them.
Indeed, variational autoencoders are trained by optimizing the ELBO
which contains two terms, one for the reconstruction of the data and
one which is the Kullback–Leibler divergence between the variational
posterior and the prior distribution. This second term has been found
to aimat a goal conflictingwith the reconstruction and to lead toworse
inference abilities88. With this in mind, we used classical autoencoders
with an additional regularization. In our architecture, the encoder still
outputs parameters of a Gaussian with diagonal covariance as a var-
iational model would, but instead of forcing this distribution to be
close to an uninformative Gaussian prior, we simply add a constant
(0.0001) to the outputted standard deviation of the posterior dis-
tribution so that our model does not converge to a deterministic
encoder during training. This stochasticity in the encoder acts as a
regularization against overfitting as it forces the decoder to learn a
mapping that is robust to small deviations around latent embeddings.

To handle batch effects within modalities, the batch information
s pð Þ is used as a covariate of the decoder as done in existing
autoencoder-based methods for omics data35. Conditioning the
decoding of the latent code on its batch index allows our AEs to
decouple the biological signal from the sample-level nuisance factors
captured in different batches.

Meanwhile, the Y p,p0ð Þ matrices are leveraged to align cells across
modalities using Optimal Transport. For each pair of modalities p,p0ð Þ,
we use the Pearson similarity (see Implementation details) to compute
the cost matrix ccorr Y p,p0ð Þ,Y p0 ,pð Þ

� �
. Indeed, while the squared L2 dis-

tance is classically used inOT, the Pearson similarity hasbeen shown to
better reflect differences between genomic measurements89. Using
this cost matrix, we derive the unbalanced Optimal Transport Plan
P p,p0ð Þ which reaches the optimum in OT~τ

~ε Y p,p0ð Þ,Y p0 ,pð Þ,ccorr
� �

. P p,p0ð Þ

thus provides a partial plan to match corresponding cells from dif-
ferent modalities in the latent space. Using the unbalanced relaxation
of OT to compute P p,p0ð Þ enables scConfluence to efficiently deal with
cell populations present only in onemodality. Indeed, cell populations
that are not shared across modalities will have a higher transport cost
and aremore likely to be part of themass discarded by the unbalanced
OT plan. Once P p,p0ð Þ is obtained, it provides a correspondence map
between modalities which determines which embeddings should be
brought closer in the latent space. Since diagonal integration’s goal is
to embed closely cells that are biologically similar, we enforce a loss
term whose specific goal is this:

L p,p0ð Þ
IOT = P p,p0ð Þ, cL2 Z pð Þ,Z p0ð Þ

� �D E
ð7Þ

where cL2 is the squared L2 distance such that cL2 Z pð Þ,Z p0ð Þ
� �

=
jjZ pð Þ

i � Z p0ð Þ
j jj2

2

� �
1≤ i ≤n pð Þ ,1≤ j ≤n p0ð Þ .
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MinimizingL p,p0ð Þ
IOT leads to reducing the distance only between the

cell embeddings which are matched by P p,p0ð Þ. We add to this loss a
regularization termwhich reduces the global distance between the set
of embeddings in Z pð Þ and those in Z p0ð Þ. This allows us to make sure
that we do not only juxtapose corresponding cell populations from
different modalities, but that they overlap in the shared latent space.
To enforce this regularization, we use the unbalanced Sinkhorn
divergence (Eq. 6) as both its computational and theoretical properties
make it an ideal regularization function for our goal.

All those different objectives contribute together to the following
final loss which we optimize over the parameters of the neural net-
works AE pð Þ with stochastic gradient descent:

L=
XM
p=1

λpLAEðpÞ +
X

1≤p<p0≤M

λIOT Pðp,p0 Þ, cL2 ZðpÞ,Zðp0 Þ
� �D E

+ λrS
τ
ε ZðpÞ,Zðp0 Þ, cL2

� � ð8Þ

Where the λp, λIOT and λr are positive weights controlling the con-
tribution of each different loss terms.

Connection to regularized Inverse Optimal Transport
Our final loss (Eq. 8) can be decomposed in two main objectives, on
one side the reconstruction losses whose goal is to extract the max-
imum amount of information out of each modality, on the other side
the alignment loss Lalign Z pð Þ,Z p0ð Þ

� �
, whose goal is to align cells across

modalities in the shared latent space.

Lalign Z pð Þ,Z p0ð Þ
� �

= λIOT P p,p0ð Þ, cL2 Z pð Þ,Z p0ð Þ
� �D E

+ λrS
τ
ε Z pð Þ,Z p0ð Þ,cL2

� �
ð9Þ

There is an intimate connection between Lalign Z pð Þ,Z p0ð Þ
� �

and the
theory of Inverse Optimal Transport (IOT).

Regularized Inverse Optimal Transport (rIOT)32 refers to the pro-
blem of learning a pairwise dissimilarity matrix C from a given trans-
port planP 2 Π n1,n2

� �
, with a certain regularizationonC. Inour case, it

can be formalized as the following convex optimization problem:

rIOTε Pð Þ= min
a,b

KL PjQε a,bð Þ� �
+R a,bð Þ ð10Þ

where Qε a,bð Þ is the balanced optimal transport plan achieving the
optimum in OT+1

ε a,b, cL2

� �
and R is a user-defined regularization. In

our case, we want this regularization to force points coupled by P to
completely overlap.

We prove that in the particular case of balanced plans, which cor-
responds to setting ~τ = +1 and τ = +1 in our method, and with the

regularizing function R a,bð Þ= 1
εOT+1

ε a,b,cL2

� �
+ λr

ελIOT
S+1
ε a,b,cL2

� �
,

minimizing Lalign with respect to Z pð Þ and Z p0ð Þ is equivalent to solving

rIOTε P p,p0ð Þ
� �

. More formally, we prove that:

argmin
Z pð Þ ,Z p0ð ÞLalign Z pð Þ,Z p0ð Þ

� �
= argmin

Z pð Þ ,Z p0ð ÞKL PjQε Z pð Þ,Z p0ð Þ
� �� �

+R Z pð Þ,Z p0ð Þ
� �

ð11Þ

The proof of Eq. (11) uses the following lemma (See Supplemen-
tary Note 1).

Lemma: Let a and b be two point clouds of size n1 and n2

respectively. Given P 2 Π n1,n2

� �
and denoting asQε a,bð Þ the balanced

entropic optimal transport plan achieving the optimum in

OT +1
ε a,b,cL2

� �
, the following equality holds:

KL PjQε a,bð Þ� �
= P, log Pð Þ� �

+
1
ε

P,cL2 a,bð Þ
D E

� 1
ε
OT+1

ε a,b,cL2

� �
� 1

ð12Þ

Using the lemma (Eq. 12) and the definition of R we prove (Eq. 11)
by rewriting rIOTε P p,p0ð Þ

� �
as:

rIOTε P p,p0ð Þ
� �

= min
Z pð Þ ,Z p0ð Þ

P p,p0ð Þ, logP p,p0ð Þ
D E

+
1
ε

P,cL2 Z pð Þ,Z p0ð Þ
� �D E

� 1
ε
OT+1

ε Z pð Þ,Z p0ð Þ,cL2

� �
� 1

+
1
ε
OT+1

ε Z pð Þ,Z p0ð Þ,cL2

� �
+

λr
ελIOT

S+1
ε Z pð Þ,Z p0ð Þ,cL2

� �	 


= min
Z pð Þ ,Z p0ð Þ

P p,p0ð Þ, logP p,p0ð Þ
D E

+
1
ε

P p,p0ð Þ,cL2 Z pð Þ,Z p0ð Þ
� �D E

+
λr

ελIOT
S+1
ε Z pð Þ,Z p0ð Þ,cL2

� �
� 1

= min
Z pð Þ ,Z p0ð Þ

P p,p0ð Þ, logP p,p0ð Þ
D E

+
1

ελIOT
Lalign Z pð Þ,Z p0ð Þ

� �
� 1

ð13Þ

Bynoticing in (Eq. 13) that neither hPðp,p0 Þ, logPðp,p0 Þi nor the scaling
factor 1

ελIOT
depends on ðZðpÞ,Zðp0 ÞÞ, we obtain (Eq. 11).

Training details
Neural network architectures. The encoders and decoders are three-
layer neural networks with ReLU activation functions inspired by the
architecture of the scVI VAE. We used a latent dimension of 16 for all
datasets but adapted the number of neurons in hidden layers to the
dimensionality of the datasets (see Supplementary Table 5). On scA-
TAC and scRNA datasets which contained thousands of features, we
did a first dimension reduction with PCA and used the 100 principal
components as inputs of the encoder while the decoder outputted a
reconstruction in the original feature spaces which were compared
with the data prior to the PCA projection. For proteomic and smFISH
modalities which contained much fewer features, we reduced the
number of layers of both encoders and decoders to two. We used the
same decoder architecture as scVI with the Zero Inflated Negative
Binomial (ZINB) likelihood for the reconstruction loss on scRNA data.
For other modalities, however, we replaced the scVI decoder with a
simple fully connectedmulti-layer perceptron and used the squared L2
distance as the reconstruction loss.

Optimal transport solvers. We used the Python package POT to
compute the plans P p,p0ð Þ with the function ot.partial.partial_wasser-
stein. This implementation of unbalanced optimal transport uses the
Total variation distance for the penalization of marginals. It is para-
meterized by the Lagrangian multiplierm associated with ~τ to control
the unbalancedness of the plan. m is a parameter between 0 and 1
which quantifies how much mass is transported by the optimal plan.
The use of TV to penalize the unbalanced relaxation allows P p,p0ð Þ to
completely ignore cell populations that are identified to have no
equivalent in other modalities. We set by default m=0:5 which pro-
duces robust performances when prior information about the level of
unbalanceness of the data is not available, see Supplementary Fig. 13. If
additional information is available,m can be set accordingly to obtain
better results, a higher value being better for situations where the data
is more balanced across modalities. We use no entropic regularization
in the computation of P p,p0ð Þ (~ε =0) as POT’s CPU implementation was
already fast enough on ourmini-batches for us to afford to avoid using
an approximation.
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For the unbalanced Sinkhorn divergence we used the Python
package Geomloss90 which has very efficient GPU implementations
with a linear memory footprint. Indeed, while it cannot take as input a
custom costmatrix as POT does, when the cost function is the squared
L2 distance (as is the case for our regularization term) Geomloss uses
KeOps91 to implement efficient operations with a small memory foot-
print and automatic differentiation. Geomloss uses the KL to penalize
the unbalanced relaxation. We used the following hyperparameters:
“p” = 2, “blur” =0.01 (which corresponds to ε =0:0001), “scaling” = 0.8,
“reach” =0.3 (which corresponds to τ =0:09).

Training hyperparameters. All models were optimized using the
PyTorch lightning library. We used the ADAMW optimizer92 with a
learning rate of 0.003. The batch size was set to 256 times the number
of modalities. 20% of the dataset was held-out for validation and an
early stopping was triggered when the validation loss didn’t improve
for 40 epochs. As commonly done in the state-of-the-art29,31,35, we then
use all samples (both train and validation) after training to compute
cell embeddings and evaluation metrics. In our task, the goal is to
encode the whole given dataset on which the model was trained.
Unseen samples and generalizability are not relevant for this problem
since the models we train are not meant to be then used on different
datasets at inference time. There is no information leakage either since
the ground-truth information (i.e. cell type labels and pairing infor-
mation) used to evaluate the methods are not used during training. λp
was set to 1.0 for all modalities except for ATACwhere it was set to 5.0
due to the larger amount of content measured in the ATAC modality
and this was the case for all datasets without further need for tuning.
For λIOT which controls the impact of the IOT term inside the full loss,
the default value was set to 0.01. Nonetheless, this term can be tuned
depending on the reliability andquality of the connected features used
to compute the IOT loss term. Indeed, in situations where stronger
connections were available across modalities, e.g. when comparing
gene expression measurements to gene expression measurements in
themouse cortex datasets, we increased the value of this parameter to
0.05 but we would not recommend using values outside of the [0.01,
0.1] range. The λr hyperparameter controls the importance of the
Sinkhorn regularization term whose goal is to force corresponding
populations across modalities to overlap in the latent space. Theore-
tically, the best value for λr is the lowest which allows a complete
overlapping of cells across modalities. We found 0.1 to be a good
default value for this hyperparameter but decreased it to 0.03 when
integrating 3 modalities at a time since we are summing three reg-
ularization terms in this case. We wouldn’t recommend using a value
outside of the [0., 0.5] range. See our documentation for more details
on those hyperparameters at https://scconfluence.readthedocs.io/en/
latest/.

Computational runtime. See Supplementary Table for a comparison
of the computation times of the different methods on the PBMC 10X
dataset (where approximately 10k cells were profiled for both mod-
alities). Overall, scConfluence’s running time is comparable with the
state-of-the-art. It is indeed slower than the three CPU methods
(Seurat, liger, and MultiMAP). Nonetheless, these methods operate on
the full dataset in one go and therefore can’t be applied to very large
datasets. On the other hand, scConfluence is faster than the other two
neural network-based methods, all three being much more scalable
due to their mini-batch approach.

Outputs of scConfluence
Once the scConfluence model is trained, it can be used to obtain
mainly two kinds of output. Firstly, the trained encoders from each
modality are used to encode all cells in the integrated latent space.
Those cell embeddings can then be used for any downstream analysis
such as clustering. Secondly, themodel can be used to impute features

across modalities by composing the encoder of one modality with the
decoder of another modality. While this can be very useful, users
should keep in mind that this technique doesn’t provide exact
“translations” and because of that, this approach is not cycle-con-
sistent, as shown in Supplementary Fig. 14.

Data preprocessing
Details of the different datasets used are available in the Supplemen-
tary Table 1. Additionally, the proportions of cell types present in each
modality for unpaired datasets are available in Supplementary
Figs. 15–18.

scRNA preprocessing. We performed quality control filtering of cells
on the proportion of mitochondrial gene expression, the number of
expressed genes, and the total number of counts (using Muon’s fil-
ter_obs). Quality control filtering of genes was performed on the
number of cells expressing the gene (using Muon’s filter_var). We then
kept a copy of the raw counts data before applying the log-
normalization which consists of normalizing counts for each cell so
that they sum to 10,000 (using Scanpy’s normalize_total) and then log
transforming them (using Scanpy’s log1p). To subselect genes we took
the union between the set of 3000 most variable genes in the nor-
malized counts (using Scanpy’s highly_variable_genes with flavor = ‘

seurat’) and the set of 3000 most variable genes in raw counts (using
Scanpy’s highly_variable_genes with flavor = ‘seurat_v3’). Finally, the
log-normalized counts were used to compute the first 100 principal
components which served as the input of the decoder while we kept a
copy of the raw counts to evaluate the output of the decoder using the
ZINB likelihood (except for the Patch-seq datasetwherewe used a fully
connected decoder with the squared L2 loss on the log-normalized
counts).

scATAC preprocessing. We performed quality control filtering of
cells on the number of open peaks and the total number of counts
(using Muon’s filter_obs). Quality control filtering of peaks was per-
formed on the number of cells where the peak is open (using Muon’s
filter_var). We didn’t apply any further subselection of the peaks after
the quality control. Cells were normalized using the TF-IDF normal-
ization (usingMuon’s tfidf). Finally, the first 100 principal components
of the normalized data were used as input to the encoder while the
unreduced TF-IDF normalized data was used to evaluate the output of
the decoder with a squared L2 loss.

Protein preprocessing (in Cite-seq and CyTOF). Since the number of
measured proteins is small and this data is less noisy than scRNA or
scATAC, no quality control or feature selection was performed. We
normalized the data using Muon’s implementation of the Center Log
Ratio technique. This processed data was used for both the encoder
and the decoder (with a squared L2 loss).

smFISHpreprocessing.Weperformedquality controlfiltering of cells
on the proportion of mitochondrial gene expression, the number of
expressed genes, and the total number of counts (using Muon’s fil-
ter_obs). Quality control filtering of genes was performed on the
number of cells expressing the gene (using Muon’s filter_var). For the
smFISH gene counts we used the same normalization technique as in
the original study: we normalized by both the total number of mole-
cules of all genes in each cell and the sum of each gene over all cells.
This processed data was used for both the encoder and the decoder
(with a squared L2 loss).

Patch-seq morphologies preprocessing. We retrieved the neuronal
morphologies as 3D point clouds stored in.SWC files and did not have
to do any quality control since only high-quality morphologies could
be reconstructed. We then used the NeuroM package93 to load the
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morphologies and project them onto the xy-plane (which is actually
the xz plane since y and z were switched in the raw files) while coloring
each point according to its neuronal compartment type (dendrites in
red, axons in blue and soma in black). We then input those images in
Google’s Inception v3 pre-trained deep neural network to extract
features by retrieving the output of the last layer (with 2,048 dimen-
sions). We then concatenated all these feature vectors in amatrix. This
processed data was used for both the encoder and the decoder (with a
squared L2 loss).

Building the common features matrix. The first step to construct the
cross-modality cost matrices consisted in obtaining the Y p,p0ð Þ and
Y p0 ,pð Þ matrices.

With scRNA and scATAC data, this consisted in obtaining the gene
activity matrix and subsetting the two matrices to the set of com-
mon genes. We obtained the gene activities using different techni-
ques depending on the metadata available for each dataset. For the
cell lines data we used Maestro26, for the Multiome PBMC data we
used Signac25, the gene activities for the Open problems Multiome
dataset had been already computed by the authors with Signac, and
for the tri-omics PBMC dataset we ran the R script provided by the
authors on the GitHub repository of their study https://github.com/
GreenleafLab/10x-scATAC-2019/blob/master/code/04_Run_Cicero_
v2.R using Cicero94.
With scRNA and Protein data, this consisted in manually inspecting
the genecards website to find for each protein its associated coding
gene and then subsetting the RNA and Protein data to the pairs
available in both modality’s features.
With scATAC and Protein, we did the same as with RNA and Protein
after obtaining the gene activities from ATAC.
With RNA and smFISH, since all genes measured in the smFISH
experiment were also measured in the scRNA dataset we simply
subset the scRNA genes to keep only the common genes.
With RNA and Patch-seq morphologies, since for both groups of
cells we had access to the scRNA measurements we could directly
use those as common features.

Building the biological cost matrix. Having obtained the converted
datamatricesY p,p0ð Þ andY p0 ,pð Þ, we then applied to eachmodality’s data
(ATAC gene activities were treated as RNA) the same preprocessing as
described earlier. We then scaled both Y matrices (except for the
Patch-seq sincewewerecomparing scRNAdata from the samedataset)
and computed the cost matrix by using the correlation distance
between each pair of cells from the two modalities using scipy’s cdist.

Baselines
Seurat. We compare scConfluence to Seurat v3 as the v3 refers to the
version aimed at tackling diagonal integration. In practice, we used the
R package Seurat v4.3.0 which finds anchor pairs between cells from
different modalities by searching for Mutual Nearest Neighbors after
having reduced the dimension of the data with Canonical Correlation
Analysis (CCA). Before running theCCA, allmodalities are converted to
the same features so we followed the same protocol as described
above in “Building the common features matrix” section, as it coin-
cides with the indications described in the tutorials available in the
Seurat documentation. We ran the Seurat method with default para-
meters, except for the Protein and smFISH datasets where we set the
latent dimension to 15 since the default number of latent dimensions
was close to or even higher than the number of featuresmeasured. For
gene imputation in the scRNA-smFISH experiment, we used the
TransferData function as indicated in the documentation.

LIGER. We compare scConfluence to Liger using the R package rliger
v1.0.0. Liger relies on integrative non-negative matrix factorization
(NMF) to perform diagonal integration and also requires as a first step

to convert all modalities to common features. We did this step in the
same way as for Seurat. For all datasets except the cell lines, we ran
Liger with default parameters. On the cell lines simulated experiment,
using the default setting of 30 latent dimensions resulted in the
embeddings from different modalities being completely separated.
Since the latent dimensions can be interpreted as clusters in NMF we
used this to set the number of latent dimensions to 3 which greatly
improved Liger’s results. We could not tune other baselines similarly
for this experiment as the dimension of their latent space can’t be
interpreted similarly and this did provide a competitive advantage to
liger since we used the knowledge that there were 3 main clusters in
the dataset (which usually can’t be known when integrating new
datasets). For the Protein and smFISH datasets we set the latent
dimension to 15 since the default number of latent dimensions was
close to or even higher than the number of features measured. For
gene imputation in the scRNA-smFISH experiment, we used a knn
regression with the scRNA embeddings serving as reference to predict
the expression levels of held-out genes for smFISH embeddings.

MultiMAP. We compare scConfluence to MultiMAP using the Python
packageMultiMAP v0.0.1. MultiMAP is a generalization of the popular
UMAP method95 to the unpaired multimodal setting. MultiMAP com-
bines intra-modality distances with prior knowledge-based cross-
modality distances to recover geodesic distances between all cells on a
single latent manifold which can then be projected on R2 for visuali-
zation. Intra-modality distances are computed based on low-
dimensional projections of the data after preprocessing. We fol-
lowed the documentation for this step although dimension reduction
was not necessary for smFISH and proteomic datasets where the
number of features was already lower than a hundred. To compute
distances across modalities we converted pairs of modalities to a
common feature space we did as described above in “Building the
common features matrix” section, as it coincides with the indications
described in the tutorials available in the MultiMAP documentation.
MultiMAP was run with default parameters on all datasets. For gene
imputation in the scRNA-smFISH experiment, we used knn regression
with the scRNA embeddings serving as a reference to predict the
expression levels of held-out genes for smFISH embeddings.

Uniport. We compare scConfluence to Uniport using the Python
package Uniport v1.2.2. Uniport uses one encoder which takes as input
cells from all modalities converted to common features while using
modality-specific decoders to reconstruct each modality’s features. It
also leverages unbalanced Optimal Transport in the latent space to
force different modalities to mix in the latent space. For feature con-
version, we proceed as described above in “Building the common
features matrix” section, as it coincides with the indications described
in the tutorials available in theUniport documentation.We ranUniport
with default parameters on all datasets. For gene imputation in
the scRNA-smFISHexperiment, weused the scRNAdecoder tomap the
embeddings of smFISH cells to the scRNA domain as described in the
Uniport documentation.

scGLUE. We compare scConfluence to scGLUE using the Python
package scglue v0.3.2. scGLUE simultaneously trains one variational
autoencoder per modality and one graph variational autoencoder
which learns feature embeddings based on a prior knowledge-based
guidance graph containing connections between features from dif-
ferent modalities. We followed scGLUE’s documentation to construct
the guidance graph for scRNA and scATAC integration. For scRNA and
Protein integrationwhere no documentation was available, we created
a graph where each coding gene was linked to its associated protein.
For scRNA and smFISH integration, we created a graph with links
between each smFISH-measured gene and the same gene in the scRNA
data.We ran scGLUEwithdefault parameterson all datasets, except for
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the Protein and smFISH datasets where we set the latent dimension to
15 since the default number of latent dimensions was close or even
higher than the number of features measured. For gene imputation in
the scRNA-smFISHexperiment, weused the scRNAdecoder tomap the
embeddings of smFISH cells to the scRNA domain as in other
autoencoder-based methods.

GimVI. We compare scConfluence to GimVI using the Python package
scvi-tools v0.16.4. GimVI is only applicable to scRNA and smFISH inte-
gration and simultaneously trains one autoencoder permodality while
enforcing mixing between modalities in the latent space with a dis-
criminative neural network trained in an adversarial way.We ranGimVI
with default parameters and performed gene imputation as described
in its documentation: we used the scRNA decoder to map the
embeddings of smFISH cells to the scRNA domain.

Evaluation metrics
We used several scoring functions to assess the quality of the
embeddings provided by eachmethod throughout the benchmarking.
All methods were run with five different random seeds and we repor-
ted themedian score, except for Seuratwhich contains no randomness
and could therefore be run with one seed only. Apart from FOSCTTM,
all metrics are based on the k-nearest neighbor graph of embeddings.
To give a complete overview of the performance of the methods, we
computed those metrics with k taking all values in f5,10,15,20,35,50g.
Those metrics are therefore displayed as curves whose x-axis corre-
sponds to the values of k.

For the MultiMAPmethod whose output is not an embedding but
a graph whose edge weights represent similarities between integrated
cells, we can use this graph to compute nearest neighbors. Addition-
ally, for the OP Multiome and OP Cite datasets which contained more
than 60,000 cells per modality, we evaluated the methods after
the training using a subset of 20,000 cell embeddings as the metrics
were too expensive to compute on the full results of eachmethod. We
suppose in the following that only twomodalities are being integrated,
as is the case for all benchmarked datasets.

Notations. For each cell i from the pth modality, we denote as N pð Þ
k ið Þ

the k nearest neighbors of the cell’s embedding z pð Þ
i in the integrated

latent space. ci denotes the cell type label of cell i.

Purity. The purity score measures the average proportion of an inte-
grated cell’s k-nearest neighbors that share the sample’s cell type
annotation20. It thus varies between 0 and 1 with a higher score indi-
cating a stronger performance.

The score can be written as 1
n1 +n2

Pn1
i = 1

jft2Nð1Þ
k
ðiÞjct = cigj
k +

	
Pn2

j = 1
jft2Nð2Þ

k
ðjÞjct = cj gj
k



.

Transfer accuracy. The transfer accuracy is the accuracy of a k-nearest
neighbor classifier using one modality as a reference and the other
modality as a query. Since bothmodalities canbe the reference and the
query, we compute the results of both classifications and report the
average of the two scores.

Graph connectivity. The graph connectivity metric assesses how well
cells with the same cell type label are connected in the kNN graph
representation of the embeddings47. This score can be used to detect
whether there exist discrepancies in the integrated latent space
between cells from different modalities or experimental batches. For
each different cell type c, we denote as Gk cð Þ the subset of the inte-
grated kNN graph containing only cells with label c. We compute for
each cell type c the score sc equal to the size of the largest connected
component in Gk cð Þ divided by the number of cells with label c. The
final graph connectivity score is the average of the cell type scores sc.

FOSCTTM. The Fraction Of Samples Closer Than the True Match
(FOSCTTM) metric has been used before to evaluate diagonal inte-
grationmethods onpairedmultimodal datasetswhere bothmodalities
are measured in the same cells31,38,46. Since this metric is only designed
for paired datasets we can suppose that there are exactly n cells for
each modality and that they are ordered such that the ith cell in the
first modality is the true match of the ith cell in the second modality.
FOSCTTM aims at comparing for every cell from modality p the dis-
tance to its true match and the distance to all other cells in the
opposite modality which we denote as p0 (since p 2 f1,2g, p0 = 3� p).

It is classically defined as:

FOSCTTM=
1
2n

Xn
i = 1

rð1Þi
n

+
rð2Þi

n
ð14Þ

where r pð Þ
i = j 2 1::n½ � s:t:d z pð Þ

i , z p0ð Þ
j

� �
<d z pð Þ

i , z p0ð Þ
i

� �n o��� ���
However, in this paper,we compute it in a slightly differentway. In

the previous formula (Eq. 14), we replace r pð Þ
i with

~r pð Þ
i = j 2 1::n½ � n if g s:t:d z pð Þ

i ,z pð Þ
j

� �
<d z pð Þ

i , z p0ð Þ
i

� �n o��� ���. This means that
rather than only assessing how close the true match of a cell’s
embedding is compared to cells from the oppositemodality, we assess
how close the true match of the cell’s embedding is compared to all
cells from both modalities.

With this formula, we can simultaneously evaluate whether the
mixing of the twomodalities in the shared latent space is complete and
verify that corresponding populations are accurately matched across
modalities. Other metrics originally designed to assess batch effect
correction are often used to evaluate the mixing of modalities such as
the batch entropy of mixing96 but these don’t penalize artificial align-
ments. The complete overlapping of cells from different modalities
only matters if those cells are biologically equivalent and this is
assessed by our modified formulation of the FOSCTTM.

Cell type FOSCTTM. Additionally, we reported in Supplementary
Fig. 6 one other version of the FOSCTTM metric called “cell type
FOSCTTM” which only considers cells from the same cell type.

This additional metric allows us to measure whether paired
embeddings are closer to each other than other cells from the same
cell type, thus enabling us to find out whether the integration learns
sub-cell type structures. More formally, the cell type FOSCTTM is
defined as:

celltypeFOSCTTM=
1
2n

Xn
i= 1

r̂ 1ð Þ
i + r̂ 2ð Þ

i

2
Pn

k = 11 ci = ckð Þ
ð15Þ

where r̂ pð Þ
i = r pð Þ

i + j 2 1::n½ � n if g s:t:d z pð Þ
i ,z p0ð Þ

j

� �
<d z pð Þ

i ,z p0ð Þ
j

� �
and

n���
ci = cjgj.

Gene imputation
Both the scRNA-seq and smFISH datasets were downloaded using the
scvi-tools helper functions load_cortex() and load_smfish() which select
only the overlapping cell types to ensure the consistency of the
imputation task.We thendivided the 33 genesmeasured in the smFISH
experiment into eleven disjoint groups of 3 genes. Each of these
groups corresponded to a different scenario where the three genes
were removed from the smFISH data and held-out and then imputed
by each method.

Considering the prior knowledge used to connect features across
modalities was very reliable (as we could map genes in the smFISH
experiment with themselves in the scRNA-seq without any errors) we
increased the weight of the IOT loss λIOT from 0.01 to 0.05 in this
experiment.

For both methods which were autoencoder based, Uniport and
scGLUE, we used the same technique as us to perform the imputation.
For all other methods, we used knn regression using the scRNA-seq
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embeddings as a reference to predict the expression levels of held-out
genes in smFISH embeddings.

We used the Spearman correlation to quantify the similarity
between the imputed values of a gene across all cells with the ground-
truth held-out values. It is defined as the Pearson correlation between
the rank values of those two vectors. As in the benchmarking section,
we ran each method on each scenario with five initialization seeds
(except Seurat which contains no stochasticity). For each gene in each
scenario, we kept the median Spearman correlation across the five
seeds. We then reported one score per imputation scenario and plot-
ted the eleven scores as a violin plot. We can aggregate the Spearman
correlation of the three genes forming each scenario using the average
or the median therefore we report both the average and median
Spearman correlations (aSCC and mSCC).

For the visualization of the imputations, we made use of the
recorded 2D positions of the smFISH cells to plot the cells as they are
located in the tissue. To better visualize spatial patterns of the impu-
tations, we used the histogram equalization technique on the imputed
values.

Tri-omics integration
We removed very rare cell types (containing less than 0.5% of the
whole dataset) from all three datasets. this resulted in the removal of
ATAC “Immature NK”, “Basophil”, “Naive CD8 T2” and “Naive CD4
T2“cells as well as CyTOF “Plasmablasts”, “cDC1”, “CLA+HLADR+NK
cells”, “Activated gd T cells”, “Unclassified”, “HLADR+CD38− CD4
T cells”, “Cytotoxic CD4 T cells”, “DN T cells” and “Activated CD4
T cells”.

We clustered the cell embeddings from all modalities using
Scanpy’s Louvain with a resolution of 0.5.

We then focused on the B cells and monocyte clusters which we
reclustered with a resolution of 0.2.

To assess whether the subclusters we found were correctly
aligned across modalities we used the same methods as described in
scGLUE31 except that we only used scRNA and scATAC-derived gene
activities. Indeed, including the CyTOF data in this analysis would have
resulted in removing toomany features tobe able todesign a statistical
test with sufficient power. For each of the two populations we sub-
clustered (B cells and monocytes), we tested for significant overlap in
cell type marker genes. For both gene expression and gene activities,
the cell type markers were identified using Scanpy’s one-versus-rest
Wilcoxon rank-sum test with the following criteria: FDR <0.05 and log
fold change >0. The significance ofmarker overlapwas determined by
Fisher’s exact test.

Patch-seq
We removed the cells that were labeled as “unclassified” or which
belonged to rare cell types (there were less than 15 cells labeled either
as “Scng” or “NP”).

For the scRNA modality, we didn’t use the scVI decoder with a
ZINB loss but rather just a fully connected decoder with an L2 loss on
the log-normalized counts as it fitted better the data. Similarly to the
smFISH/scRNA experiment, we increased the weight of the IOT loss
λIOT to 0.05. Indeed our prior knowledge about connections between
features across modalities consisted in connecting each gene with
itself as scRNA measurements were available for both modalities.
However, in contrast with the smFISH experiment where only a few
dozen of genes had been measured in both modalities, here all genes
couldbe connected,making the prior informationmuch stronger than
in previous cases. This resulted in the Sinkhorn regularization not
being necessary to obtain a good mixing of the two modalities, hence
we set λr to0.Moreover, the sets of cells from the twomodalities being
actually two independent subsets from the exact same dataset, we
could expect very little heterogeneity between the cell populations

present in each modality and increased the transported mass para-
meter m from 0.5 to 0.75 in this experiment.

Statistics and reproducibility
The detailed statistical tests were indicated in figures or associated
legends where applicable. No statistical method was used to pre-
determine sample size. No data were excluded from the analyses.
Complete randomization was performed for allocating groups. Our
study does not involve group allocation that requires blinding.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. Cell lines.
We retrieve a scCATseq (RNA +ATAC) dataset with 205 cells from
three cancer cell lines (HCT116, HeLa-S3, K562). Data is available in the
Supplementary Materials of the original publication15. PBMC 10X. We
retrieve a 10X Genomics Multiome (RNA +ATAC) dataset available at
https://www.10xgenomics.com/datasets/pbmc-from-a-healthy-donor-
no-cell-sorting-10-k-1-standard-2-0-0. OP Multiome and OP Cite. We
retrieve aMultiome (RNA +ATAC) and a Cite-seq bonemarrowdataset
from the Open Problems challenge49. The GEO accession number is
GSE194122 and the data is available at https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE194122. BMCITE. We retrieve a CITE-seq
(RNA +ADT) bone marrow dataset from Stuart et al.27, the GEO
accession number is GSE128639 and the data is available at https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128639. Smartseq
cortex. We retrieve a scRNA-seqmouse somatosensory cortex dataset
from Zeisel et al.57 using scvi-tools’s helper function scvi.data.cortex.
The data is available at https://storage.googleapis.com/linnarsson-lab-
www-blobs/blobs/cortex/expression_mRNA_17-Aug-2014.txt. smFISH.
We retrieve an osmFISH mouse somatosensory cortex dataset from
Codeluppi et al.56 using scvi-tools’s helper function scvi.data.cortex.
The data is available at http://linnarssonlab.org/osmFISH/osmFISH_
SScortex_mouse_all_cells.loom. 3omics RNA. We retrieved a scRNA-
seq dataset of PBMCs from a COVID study60 and selected cells from all
healthy patients. The GEO accession number is GSE150728 and the
data is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE150728. 3omics ATAC. We retrieve a scATAC-seq dataset of
PBMCs and Bone marrow cells from an hematopoietic study in which
we select the four batches of PBMCs (“PBMC_Rep1”, “PBMC_Rep2”,
“PBMC_Rep3”, “PBMC_Rep4”). The GEO accession number is
GSE129785 and the data is available at https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE129785. 3omics CyTOF. We retrieve a
CyTOF dataset of PBMCs from a COVID study in which we select an
experimental batch of healthy cells (Batch B). The data is available at
https://doi.org/10.5281/zenodo.5139560 under the name “CBD-KEY-
CYTOF-WB.tar.gz”. Patch neurons. We retrieve a Patch-seq dataset of
mouse primary motor cortex cells70. The scRNA counts are available
with GEO accession number GSE163764 at https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE163764 and neuronal morphological
reconstructions are available at https://download.brainimagelibrary.
org/3a/88/3a88a7687ab66069/. Source data are provided with
this paper.

Code availability
Package. The Python package for scConfluence is hosted at https://
github.com/cantinilab/scconfluence97. It can be installed easily by
running pip install scconfluence. Reproducibility. Code to reproduce
the experiments and figures is available at https://github.com/
cantinilab/scc_reproducibility.
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