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Abstract
Background: Primary bilateral macronodular adrenal hyperplasia (PBMAH) is a rare cause of Cushing’s syndrome. Individuals with PBMAH and 
glucose-dependent insulinotropic polypeptide (GIP)-dependent Cushing’s syndrome due to ectopic expression of the GIP receptor (GIPR) typically 
harbor inactivating KDM1A sequence variants. Primary unilateral macronodular adrenal hyperplasia (PUMAH) with concomitant glucocorticoid and 
androgen excess has never been encountered or studied.
Methods: We investigated a woman with a large, heterogeneous adrenal mass and severe adrenocorticotropic hormone-independent 
glucocorticoid and androgen excess, a biochemical presentation typically suggestive of adrenocortical carcinoma. The patient presented 
during pregnancy (22nd week of gestation) and reported an 18-month history of oligomenorrhea, hirsutism, and weight gain. We undertook an 
exploratory study with detailed histopathological and genetic analysis of the resected adrenal mass and leukocyte DNA collected from the 
patient and her parents.
Results: Histopathology revealed benign macronodular adrenal hyperplasia. Imaging showed a persistently normal contralateral adrenal 
gland. Whole-exome sequencing of 4 representative nodules detected KDM1A germline variants, benign NM_001009999.3:c.136G > A: 
p.G46S, and likely pathogenic NM_001009999.3:exon6:c.865_866del:p.R289Dfs*7. Copy number variation analysis demonstrated an 
additional somatic loss of the KDM1A wild-type allele on chromosome 1p36.12 in all nodules. RNA sequencing of a representative nodule 
showed low/absent KDM1A expression and increased GIPR expression compared with 52 unilateral sporadic adenomas and 4 normal 
adrenal glands. Luteinizing hormone/chorionic gonadotropin receptor expression was normal. Sanger sequencing confirmed heterozygous 
KDM1A variants in both parents (father: p.R289Dfs*7 and mother: p.G46S) who showed no clinical features suggestive of glucocorticoid 
or androgen excess.
Conclusions: We investigated the first PUMAH associated with severe Cushing’s syndrome and concomitant androgen excess, suggesting 
pathogenic mechanisms involving KDM1A.
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Significance

Adrenal tumors, mostly benign and non-functioning, are detected in 5% of the general population. The detection of an ad-
renal mass with concomitant glucocorticoid and androgen excess is considered highly suggestive of adrenocortical carcin-
oma. Macronodular adrenal hyperplasia typically involves both adrenal glands with associated glucocorticoid excess. In an 
exploratory study, we investigated a previously unencountered case of primary unilateral macronodular adrenal hyperplasia 
(PUMAH) with concomitant glucocorticoid and androgen excess. We identified a germline KDM1A variant as previously 
reported in primary bilateral macronodular adrenal hyperplasia and glucose-dependent insulinotropic polypeptide- 
dependent Cushing’s syndrome. This study expands the phenotypic spectrum of inactivating KDM1A variants by describing 
the first case of PUMAH with combined cortisol and androgen excess, associated with a KDM1A variant. These findings are 
essential considerations in the workup of patients with adrenal masses.

Introduction
Adrenocortical tumors can be benign or, more rarely, malig-
nant and in either case can present with or without tumor- 
associated steroid excess. The likelihood of malignancy 
increases with the size of the tumor, and the detection of a 
large tumor with concomitant adrenocorticotropic hormone 
(ACTH)-independent glucocorticoid and androgen excess 
is considered highly suggestive of adrenocortical carcinoma 
(ACC).1

Primary bilateral macronodular adrenal hyperplasia 
(PBMAH) is the cause of endogenous Cushing’s syndrome in 
<2% of cases.2 In clinical practice, PBMAH is usually diag-
nosed when investigating patients with clinically overt cortisol 
excess and bilateral adrenal incidentalomas. PBMAH with 
dysregulated cortisol secretion is most often sporadic, but 
can be associated with germline sequence variants most com-
monly in ARMC5.3 The frequency of the detection of germline 
ARMC5-inactivating mutations varies with the severity of cor-
tisol excess, being higher with more severe hypercortisolism4-7

and, in the presence of a family history, as high as 80% if clearly 
familial and 15%-25% if apparently sporadic6-10.

In patients with PBMAH, cortisol excess can also be driven by 
an aberrant expression of G-protein-coupled receptors (GPCRs) 
in adrenal lesions.11,12 It includes stricto sensu ectopic expression 
of a variety of GPCRs, for example, glucose-dependent insulino-
tropic polypeptide receptor (GIPR; gastric inhibitory polypep-
tide receptor), or an overexpression of eutopic receptors, for 
example, arginine vasopressin receptor type 1a (AVPR1a) or lu-
teinizing hormone/chorionic gonadotropin receptor (LHCGR).

Herein, we investigated a woman who presented during 
pregnancy with concomitant severe cortisol and androgen ex-
cess in the presence of a large unilateral adrenal mass with a 
normal appearance of the contralateral adrenal gland. 
Surprisingly, the excised specimen revealed PUMAH; the 
contralateral adrenal gland was radiologically normal. We 
undertook detailed histological, genetic, and functional ana-
lyses to study this previously unencountered presentation.

Case vignette
A previously healthy 33-year-old woman presented with a 
3-year history of primary infertility. She had been diagnosed 
with polycystic ovary syndrome based on an 18-month history 
of irregular cycles, facial hirsutism, polycystic ovarian morph-
ology on ultrasound, and mildly raised serum testosterone. 
After attempts of ovulation induction by metformin, ovarian 
drilling, and clomiphene, she eventually conceived following 
in vitro fertilization (IVF), which resulted in a singleton 
pregnancy.

At 22-week gestation, she presented with clinically symptom-
atic gestational diabetes, hypertension, and hypokalemia. Florid 
clinical features of Cushing’s syndrome, including facial pleth-
ora, thick violaceous striae, and thin bruised skin, were noticed, 
which retrospectively were present over the last 18 months. 
Random serum cortisol was 1550 nmol/L (reference 172-497), 
late-night salivary cortisol 18.4 nmol/L (reference <2.6), and 
plasma ACTH <3 ng/L (reference 0-50), consistent with 
ACTH-independent glucocorticoid excess. There was concomi-
tant adrenal androgen excess with a highly increased serum 
DHEAS (dehydroepiandrosterone sulfate) (33.7 µmol/L; refer-
ence 2.6-13.6), while the level of serum androstenedione was 
in the high-to-normal range (7.0 nmol/L; reference 0.9-7.5) 
and that of testosterone was mildly increased (3.1 nmol/L; refer-
ence <1.9) (Table S1). Our laboratory does not provide 
pregnancy-specific reference ranges for serum androgens, but 
DHEAS is well-known to decrease significantly by mid preg-
nancy.13 A multi-steroid profiling analysis of 24-h urine by 
gas chromatography–mass spectrometry (GC–MS)14 confirmed 
combined glucocorticoid and androgen excess with a highly in-
creased excretion of DHEAS, cortisol, and cortisol metabolites 
(Figure 1A). The urinary steroid metabolome also revealed a 
pattern of precursor metabolites typically observed in ACC, 
the so-called malignant steroid fingerprint in urine,14,15 with a 
highly increased excretion of the key markers pregnenediol 
(5PD), pregnenetriol (5PT), tetrahydro-11-deoxycorticosterone 
(THDOC), and pregnanetriol (PT) (Table 1, Figure 1A). 
Imaging showed a 7-cm right adrenal mass with signal dropout 
in magnetic resonance imaging out-of-phase sequences and het-
erogeneous appearance on unenhanced computed tomography 
(CT) (Figure 1B and C). Of note, no previous abdominal im-
aging was undertaken during the previous workup for infertil-
ity. The tumor displaced the kidney but without renal vascular 
involvement. No other abnormalities in the abdomen or chest 
were detected; the contralateral adrenal gland was of normal 
size and appearance.

The patient was urgently admitted to the antenatal ward and 
treated with metyrapone, labetalol, and insulin to improve fetal 
viability for delivery at 28-week gestation. However, fetal 
growth arrest and poor placental blood flow prompted an 
emergency cesarean section at 26 weeks. The newborn baby 
girl cried at birth but could not tolerate respiratory support, 
and neonatal death occurred 2 h after birth.

Two months after delivery, the patient underwent an un-
eventful laparoscopic right adrenalectomy and was discharged 
on oral hydrocortisone. Surprisingly, the histopathological re-
view of the 7-cm mass revealed macronodular adrenal hyper-
plasia. Postoperative biochemical investigations showed low 
serum cortisol and androgen levels and a normalization of 
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the urine steroid metabolome (Figure 1A, Table 1, and 
Table S1).

Clinical signs and symptoms of glucocorticoid excess re-
solved postoperatively, and regular menstrual periods re-
sumed within 2 weeks. An unenhanced abdomen CT scan 
performed 2 months postoperatively showed no cause for con-
cern and a normal left adrenal gland.

Three months post adrenalectomy, the patient spontan-
eously conceived. Urinary steroid excretion showed a 
pregnancy-typical increase in excretion of the progesterone 
metabolite pregnanediol (PD), as seen in the first pregnancy. 
However, in contrast to the first pregnancy, there was no evi-
dence of glucocorticoid and adrenal androgen excess and no 
reemergence of the “malignant steroid fingerprint” in urine, 

Figure 1. Representation of urine steroid metabolomics, imaging, and histopathological studies. A) A heatmap showing the patient’s 24-h urine steroid 
metabolite excretion measured longitudinally by GC–MS at presentation and during further follow-up as compared to a reference range derived from 24-h 
urine samples collected by 73 healthy, nonpregnant women. Six urinary steroid metabolites typically found increased in patients with ACC14 are 
highlighted by red arrows. B) A magnetic resonance imaging (MRI) scan (T1, left; T1 with contrast, right) of the abdomen shows the right adrenal mass and 
normal left gland. C) A staging CT scan shows the heterogeneous right adrenal mass. No other lesions elsewhere were detected. D) and E) Coalescent 
hyperplastic nodules composed of foamy–clear and eosinophilic cells with foci of myelolipomatous metaplasia (D, hematoxylin–eosin 12.5×) and 
internodular relatively atrophic changes (E, reticulin staining 12.5×).
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with persistently normal levels of the key markers (Figure 1A). 
A healthy baby girl was born at 38-week gestation. An unen-
hanced CT scan of the abdomen undertaken 24 months post 
adrenalectomy continued to show a normal left adrenal gland.

Methods
We undertook detailed histopathological, genetic, and function-
al analysis to study this previously unencountered presentation.

Immunohistochemistry
Formalin-fixed, paraffin-embedded (FFPE) slides of lesion tis-
sue were deparaffinized twice in xylol for 10 min, followed by 
rehydration in 100%, 90%, 80%, and 70% ethanol and dis-
tilled water. Nuclei were stained using Mayer’s hematoxylin 
for 5 min and rinsed in running tap water for 5 min, and the 
cytoplasm was stained using eosin for 2 min, followed by a 
wash step in distilled water. Subsequently, the slides were 
washed 3 times with 100% ethanol. The slides were dried at 
56 °C for 20 min and preserved in Entellan mounting medium. 
A microscopy analysis was performed using a Leica Aperio 
slide scanner (20× objective) and processed with Aperio 
Image Analysis software (as shown in Figure S1).

DNA and RNA isolation
Four representative adrenal nodules were carefully selected ac-
cording to their macroscopic and microscopic characteristics 
for further investigations and named T1-T4 (as shown in 

Figure S2). The nodular tissue was selected and marked for 
DNA isolation. The high quality of the FFPE tissue was con-
firmed with an epithelial/stroma ratio of 9:1 and 100% vital 
epithelial lesion cells. For whole-exome sequencing (WES), 
genomic DNA was isolated from all 4 FFPE nodules using 
the QIAamp DNA FFPE Tissue Kit (QIAGEN) and from 
patient- and parents-matched leukocytes by using the 
Maxwell RSC Blood DNA Kit (Promega). In addition, RNA 
from 1 representative FFPE lesion tissue was isolated for 
RNA sequencing using the miRNeasy FFPE Kit (QIAGEN). 
DNA and RNA concentrations were determined by using a 
Nanodrop spectrophotometer (Thermo Fisher).

WES and RNA sequencing
For library preparation, the Twist Human Core + RefSeq +  
Mitochondrial Panel Kit (Twist Bioscience) was used for 
WES of DNA from the FFPE lesions and the matched control 
sample. The KAPA RNA HyperPrep Kit with RiboErase 
(HMR/Globin, Roche) was applied for RNA sequencing. 
Subsequently, sequencing analyses were performed on a 
NovaSeq6000 (Illumina) with a read length of 100 bp.

Data analysis for WES
An initial quality assessment of all fastq files was performed 
using FastQC, v0.11.9.17 Low-quality reads and adapter se-
quences were trimmed with TrimGalore, v0.6.4,18 powered 
by Cutadapt, v2.8.19

Table 1. Analysis of the 24-h urine steroid metabolome in the patient at initial presentation with a large adrenal tumor at gestational week 24.

Urinary steroid metabolites 24-h Urinary steroid metabolite  
excretion in the PUMAH  

patient (μg/24 h)

Female 
Reference 

Range (μg/24 h)

Range observed in 45 patients  
with adrenocortical  

carcinoma

Androsterone (An) 767 859 (176-2257) 1130 (515-2445)
Etiocholanolone (Et) 4384 974 (255-2564) 3671 (1171-7372)
11-Hydroxyandrosterone (11OHAn) 4357 328 (119-774) 623 (346-1921)
Dehydroepiandrosterone (DHEA) 24 432 172 (11-1972) 612 (98-18273)
16α-Hydroxy-dehydroepiandrosterone (16aDHEA) 5126 289 (29-1573) 653 (169-3168)
Pregnenetriol (5PT) 2206 114 (30-390) 1901 (554-7865)
Pregnenediol (5PD) 8916 140 (44-536) 3128 (848-14308)
Tetrahydro-11-dehydrocorticosterone (THA) 213 76 (34-183) 112 (56-195)
Tetrahydrocorticosterone (THB) 312 84 (31-172) 147 (61-380)
5α-Tetrahydrocorticosterone (5aTHB) 379 164 (41-335) 155 (77-356)
Tetrahydro-11-deoxycorticosterone (THDOC) 592 13 (5-111) 103 (36-222)
3α,5β-Tetrahydroaldosterone (3a5bTHAldo) 129 30 (13-57) 24 (11-48)
Pregnanediol (PD) 16 999 160 (62-1286) 839 (364-2657)
3α,5α-17-Hydroxypregnanolone (3a5a17HP) 33 5 (1-36) 19 (11-44)
17-Hydroxypregnanolone (17HP) 1730 47 (18-331) 511 (299-1021)
Pregnanetriol (PT) 3568 293 (104-853) 511 (299-1021)
Pregnanetriolone (PTONE) 148 7 (3-63) 32 (10-99)
Tetrahydro-11-deoxycortisol (THS) 1197 56 (22-149) 2151 (334-4703)
Cortisol (F) 2256 44 (24-78) 245 (95-701)
6β-Hydroxycortisol (6bOHF) 4633 103 (47-222) 356 (187-1530)
Tetrahydrocortisol (THF) 10 426 1035 (455-1648) 2836 (1373-5234)
5α-Tetrahydrocortisol (5aTHF) 556 748 (178-1597) 852 (450-1711)
α-Cortol (a-cortol) 2286 201 (101-384) 557 (279-1589)
β-Cortol (b-cortol) 1393 301 (135-708) 740 (316-1341)
11β-Hydroxyetiocholanolone (11OHEt) 1688 235 (40-606) 366 (149-1668)
Cortisone (E) 645 72 (37-130) 164 (83-364)
Tetrahydrocortisone (THE) 13 908 2100 (1035-3658) 3701 (1909-6852)
α-Cortolone (a-cortolone) 3671 848 (472-1459) 1840 (868-2853)
β-Cortolone (b-cortolone) 1605 424 (187-904) 677 (458-1312)
11-Oxoetiocholanolone (11oxoEt) 1305 271 (59-626) 484 (232-1903)

The 7 steroids typically increased in patients with ACC14 are followed in bold and were all increased above the reference range derived from 73 healthy, 
nonpregnant women16 and similar to the range previously observed in 45 patients with ACC.14 Multisteroid profiling in 24-h urine was carried out by GC–MS.
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The trimmed reads were mapped to the human reference 
genome (hg19) using the Burrows–Wheeler Aligner, v0.7.17,20

and sorted and indexed using Picard, v2.25.0: http:// 
broadinstitute.github.io/picard/ and SAMtools, v1.10,21 respect-
ively. Duplicates were marked with Picard. Base recalibration 
was executed with GATK, v4.0.9.0. GATK, v3.8,22 was used 
for coverage calculations. Germline variants including substitu-
tions and small indels were called using GATK HaplotypeCaller, 
v4.0.9.0. Somatic substitutions and small indels were covered by 
at least 20 reads, and the alternative allele was covered by at least 
8 reads and comprised at least 10% of all reads. Somatic substitu-
tions and small indels that were called by at least 2 out of 4 callers, 
namely GATK-Mutect2, v4.1.9.0, VarScan, v2.4.4,23 Strelka, 
v2.9.2,24 and Scalpel v0.5.4,25 in at least one of the nodules 
were visually inspected using IGV, v2.1226 in all nodules. 
Variants were annotated with ANNOVAR, v2019-10-24.27

Variants that alter the protein sequence or affect a splice site 
were considered for downstream analysis if they are rare in the 
population (below a frequency of 1% in the publicly available 
databases 1000 genomes, v2015aug_all, Exome Aggregation 
Consortium [ExAC, v03] without tumor samples, as well as the 
gnomAD exome [v2.0.1] and gnomAD_genome [v2.0.1] collec-
tion). The ACMG classification was carried out with Franklin 
https://franklin.genoox.com/clinical-db/home.28 Finally, we used 
the WES data to detect and visualize copy number variations 
(CNVs) with control-FREEC, v11.6,28 with a matched control 
to discern somatic variants from germline variants.

Data analysis for RNA sequencing (transcriptome)
Analysis of the transcriptome sequencing data was performed 
as we described previously.29 Additional samples from tissue 
of 52 adrenocortical adenomas (ACAs) and 4 normal adrenal 
glands (NAGs) from our previous study (deposited at 
EGAS00001004533) were used for comparison of the expres-
sion profile. These included 26 cortisol-producing adenomas 
associated with overt Cushing’s syndrome, 17 cortisol- 
producing adenomas associated with mild autonomous corti-
sol secretion, and 9 endocrine-inactive adenomas.

Sanger sequencing
Primers used to amplify the regions of interest of KDM1A and 
MC2R genes are listed in Table S2. For the polymerase chain 
reaction (PCR), 50 ng of genomic DNA in a final volume of 
20 µL containing 2.5 mM of MgCl2, 0.2 µM of each primer, 
and 200 µM of dNTPs (my-Budget 5× PCR master mix, 
BioBudget) was used for 30 cycles.

For KDM1A frameshift and MC2R p.M255I, denaturation 
at 94 °C for 20 sec, annealing at 58 °C for 30 sec, and elongation 
at 72 °C for 30 sec were performed. For KDM1A p.G46S, an 
annealing temperature of 62 °C was used. One microlitre of 
the PCR product was applied in an additional nested PCR using 
primer pair KDM1A_GS_F2 und KDM1A_GS_R.

Direct sequencing of the PCR products was performed using 
the QuickStart Cycle Sequencing Kit (ABSciex) on a CEQ8000 
DNA Analyzer (ABSciex). PCR primers were used for sequen-
cing. Sequencing results were analyzed with the GenomeLab 
Genetic Analysis System (ABSciex).

Urinary steroid metabolome profiling by GC–MS
The urinary steroid metabolome of the patient was examined 
at her first presentation to us mid-pregnancy and then again 

during follow-up prior to and following delivery and subse-
quent adrenalectomy and again during the subsequent 
complication-free second pregnancy. Steroid profiling was 
undertaken by GC–MS as previously described.14

Functional validation of MC2R variant
Human embryonic kidney (HEK293) cells (ATCC® 
CRL-1573™) were reverse-transfected using polyethylenei-
mine (Polysciences) with the pGLO-22f biosensor (Promega) 
as well as 3xHA wild-type (WT) MC2R (cDNA) or 3Xha 
M255I (GenScript) and MRAP-3xFlag and plated in white- 
walled, white-bottom 96-well plates (Corning) coated with 
poly-D-lysine (Merck). Forty-eight hours post-transfection, 
the media were aspirated and the cells were washed with assay 
buffer: 1× Hank’s Balanced Salt Solution (HBSS), 24 mM 4- 
(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 
0.1% (w/v) bovine serum albumin (BSA), 3.96 mM 

NaHCO3, 1 mM MgSO4, and 1.3 mM CaCl2, and replaced 
with 90 μL of an identical buffer supplemented with 0.45 mg/ 
mL of firefly D-luciferin (Nanolight Technology) and equili-
brated for 1 h at 28 °C. Bioluminescence was measured on 
the BMG CLARIOstar Plus plate reader (BMG LabTech). Six 
basal readings were taken before the addition of ligand; an 
average of these basal reads was used to calculate the fold in-
crease before treatment for data analysis. Readings were taken 
for ∼30 min, with a 1-sec integration time and no lens. Data 
were calculated as fold change from the average basal values, 
the area under the curve for the basal normalized values was 
taken and plotted as a concentration–response curve, and the 
percentage was referenced to the non-treated (0%) and max-
imal concentration of ACTH[1-24] (1μM). Data were fit to a 
4-parameter logistic fit in GraphPad prism.

Ethics
The study conducted complied with the Declaration of 
Helsinki. Ethical approval was obtained from the local ethics 
committee (PrimeAct study IRAS 261291). Written informed 
consent for data and sample collection, genetic analysis, and 
publication was obtained from the patient and her parents.

Results
Histopathology
The pathological examination showed a 7-cm right nodular 
adrenal mass with multiple nodules larger than 1 cm, pre-
dominantly composed of foamy–clear cells with multifocal 
myelolipomatous metaplasia. It revealed several coalescent 
non-pigmented nodules, relative internodular atrophy, and 
lack of necrosis, nuclear atypia, atypical mitotic figures, or 
vascular invasion. Without a histologically normal cortex, 
these findings support macronodular cortical hyperplasia and 
fulfill the criteria for adrenal cortical nodular hyperplasia.30,31

The combined macroscopic and microscopic appearance 
defined tumor-like macronodular adrenal hyperplasia30-32

(Figure 1D and E and Figure S1).

Routine genetic analysis
Targeted next-generation sequencing (Twist custom capture 
v8/Illumina NextSeq500) of the patient’s germline DNA 
was carried out by the Birmingham Women’s Hospital 
Department of Clinical Genetics. The routine, nationally pre-
defined panel (National Genomic Test Directory unique code 
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R160, version 6, January 2024) available for patients with 
nodular adrenal hyperplasia includes ARMC5, PDE11A, 
PDE8B, and PRKAR1A; no pathogenic variant was detected 
in any of those genes.

High-throughput molecular analysis

Overview of WES results
Tissue DNA was isolated from FFPE material from 4 represen-
tative adrenal nodules (T1-T4, Figure S2). CNV patterns were 
similar in all evaluated nodules, suggesting that they are clo-
nally related (Figure S3). We detected 2 non-synonymous som-
atic variants shared in all tumors, 1 somatic mutation present in 
T1 only and 1 somatic mutation shared in T2 and T4. None of 
these variants showed a possible, probable, or likely pathogenic 
role. Table S3 provides the list of the detected somatic variants.

WES analysis revealed rare potentially pathogenic germline 
variants
We detected several germline variants known to ClinVar, the 
majority with no suspected links with the patient’s phenotype. 
However, germline variants in 2 genes were selected for further 
investigations due to their potential role as candidate drivers. 
First, we observed 2 relevant variants in the gene encoding for 
KDM1A (lysine-specific histone demethylase 1A). These were 
1 missense variant in exon 1 (NM_001009999.3:c.136G>A: 
p.G46S [55.4%], conflicting pathogenicity in ClinVar, benign 
according to ACMG guidelines) and 1 truncating (frameshift) 
variant in exon 6 (KDM1A:NM_001009999.3:exon6: 
c.865_866del:p.R289Dfs*7 [45.5%], unknown to ClinVar, 
likely pathogenic according to ACMG guidelines), which 
causes a premature stop codon (Figure S4). They were ob-
served in all 4 representative nodules and reference DNA. 
The location at the cDNA and protein level of both variants 
is shown in Figure 2A and B. Inactivating germline mutations 
in KDM1A associated with loss of heterozygosity at locus 1p 
have been recently described in nearly 90% of PBMAH asso-
ciated with ectopic expression of the glucose-dependent insu-
linotropic polypeptide (GIP; gastric inhibitory polypeptide) 
receptor, leading to food-dependent Cushing’s syndrome.33,34

Therefore, we investigated this further and interestingly ob-
served an additional somatic loss of the KDM1A gene locus 
1p36.12 in the WT allele in all 4 nodules T1-T4 (Figure 2C).

Moreover, we detected a germline missense variant in exon 
2 of MC2R, the gene encoding for the ACTH receptor 
(NM_000529.2:c.765G>A:p.M255I [51.5%], uncertain in 
ClinVar, variant of unknown significance according to 
ACMG guidelines; Figure S4A and B and Table S3).

Germline variants validated by Sanger sequencing
We further confirmed the patient’s germline variants in 
KDM1A and MC2R using Sanger sequencing. Additionally, 
we investigated leukocyte DNA from the patient’s parents to 
search for germline alterations in the selected genes. We de-
tected the germline KDM1A p.R289Dfs*7 variant in the fa-
ther and the KDM1A p.G46S and MC2R p.M255I variants 
in the mother.

RNA-sequencing analysis implicates KDM1A as a potential 
driver gene
We performed RNA-sequencing (RNA-seq) analysis on 1 rep-
resentative adrenal nodule. We compared the transcriptome 

result with a dataset available from a previous publication on 
adrenocortical tumors composed of 52 ACAs and 4 NAGs.29

Genetic inactivation of KDM1A in PBMAH associated with 
GIP-dependent Cushing’s syndrome has been previously 
linked to loss of KDM1A and ectopic expression of GIPR, 
at both mRNA and protein levels.33,34 Importantly, we dem-
onstrated deficient mRNA expression of KDM1A and high ex-
pression of GIPR in our patient compared with our dataset of 
ACAs and NAGs (Figure 2D). These results suggest a similar 
2-hit pathogenic mechanism as described in PBMAH associ-
ated with the GIP-dependent Cushing’s syndrome.

Only 1 previously collected sample from a cortisol- 
producing adenoma with severe Cushing’s syndrome showed 
higher GIPR expression levels than our patient. This was 
from a 35-year-old woman from a published cohort,35 previ-
ously classified as showing no known driver genes at WES. 
We re-analyzed the genomic profile of that patient (variant 
calling in RNA-seq dataset) and found a frameshift variant 
in exon 21 of KDM1A (NM_001009999.3:c.2532_2538del: 
p.A846Efs*35 [85.1%]), which had not been detected at ini-
tial WES analysis.

We also looked at mRNA expression of other genes poten-
tially involved in PBMAH associated with aberrant expres-
sion of GPCRs. For most of these GPCRs, the patient’s T4 
sample showed expression levels similar to the ACAs, includ-
ing ectopic receptors ADRB1, GNRHR or eutopic receptors 
AVPR1a, AGTR1, LHCGR, and HTR4, and GCGR 
(Figure 3). However, we found high mRNA expression of 
kisspeptin receptor (KISS1R) in 2 samples: the patient pre-
sented in this report and the above-described patient with a 
cortisol-producing adenoma associated with severe CS and 
high GIPR expression.35

Functional analysis of the MC2R variant
We undertook functional experiments to test the potential bio-
logical role of the newly described germline MC2R p.M255I 
variant. We employed a kinetic cAMP accumulation assay 
using HEK293 cells transiently transfected with WT MC2R 
or the M255I mutation, MRAP, and the pGLO-22f cAMP 
biosensor. These data indicated that while the variant did 
not have a significantly different pEC50 in response to 
ACTH[1-24], it had a considerably higher maximal concentra-
tion–response (Figure S5A and B).

We also looked at the MC2R expression in our RNA-seq 
dataset and observed similar expression in the tumor sample 
from our patient compared with a subgroup of adenomas 
with different hormonal patterns (Figure S4C).

Evaluation of GIP-dependent Cushing’s syndrome
Considering the post-adrenalectomy genetic findings, we as-
sessed the potential presence of GIP-dependent Cushing’s syn-
drome. Preoperatively, the patient had a profound phenotype 
of Cushing’s syndrome with onset of symptoms 18 months 
prior to the IVF pregnancy. There was no suggestion that 
symptoms were food dependent or related to pregnancy.

The patient has 3 siblings: 40-year-old brother and 37- and 
31-year-old sisters, all of whom had no symptoms or signs of 
glucocorticoid or androgen excess. A detailed family history 
assessment did not identify disorders that have been associated 
with KDM1A mutations, such as multiple myeloma, mono-
clonal gammopathy of uncertain significance, or other 
tumors.36-41 Clinical assessment of her parents (father 70 
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years old and mother 69 years old) did not reveal features of 
glucocorticoid or androgen excess.

The patient was not assessed for GIP-dependent Cushing’s syn-
drome during the first pregnancy as this was not clinically sus-
pected and the clinical course was highly suggestive of ACC. 
However, we were able to undertake an assessment after the sur-
gical removal of the adrenal mass, measuring serum cortisol and 
plasma ACTH before and after an oral challenge with 75 g 
glucose; hydrocortisone was paused for 24 h prior to the test. 
Fasting serum cortisol was 243 nmol/L (reference 172-497) with 

ACTH 99.0 ng/L (reference 0-50) and glucose 4.1 mmol/L (refer-
ence 3.5-11). At 2 h after the administration of oral glucose, cor-
tisol was 183 nmol/L (reference 172-497) with ACTH 64.0 ng/L 
(reference 0-50) and glucose 6.1 mmol/L (reference 3.5-11), ex-
cluding GIP-dependent cortisol secretion by the contralateral ad-
renal gland but does not rule out the presence of GIP-dependent 
cortisol excess before the removal of the adrenal mass. In patients 
with GIP-dependent Cushing’s syndrome, fasting cortisol is nor-
mal or even low from the hypothalamic pituitary–adrenal axis 
suppression by the postprandial hypercortisolemia.42

Figure 2. KDM1A alterations at genetic and transcriptomic analyses of representative adrenal nodules. A) An IGV visualization of the KDM1A: 
NM_001009999.3:c.136G>A:p.G46S and KDM1A:NM_001009999.3:exon6:c.865_866del:p.R289Dfs*7 germline variants in blood (DNA_B) and all 4 
nodules (DNA_T1-T4). B) A lollipop plot showing the location of the KDM1A germline mutations on a linear KDM1A protein and its domains. 
C) A visualization of the log2-transformed normalized copy number (cn) profile for all nodules on chromosome1. The normal copy number status is 
depicted in green; copy number loss is depicted in blue. The position of the gene KDM1A is marked by the dashed gray line. D) An investigation of KDM1A 
and GIPR expression by transcriptome sequencing in 26 CS-cortisol-producing adenoma (CS-CPAs), 17 adenomas with mild autonomous cortisol 
secretion (MACS-CPAs), 9 endocrine-inactive adenomas (EIAs), 4 NAGs, and nodule 4 of the patient (PrAC11), respectively.
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Importantly, the adrenal insufficiency persists, and the 
patient remains dependent on glucocorticoid replacement 
(hydrocortisone 20 mg/day in divided doses). ACTH stimula-
tion test undertaken 24 months post-adrenalectomy showed 
0-min cortisol 228 nmol/L with ACTH 68 ng/L (reference 
0-50) and 30-min post-ACTH stimulation cortisol 312 nmol/L 
(an adequate response is >450 nmol/L).

Discussion
We investigated the first case of PUMAH; uniquely, the patient 
presented with combined cortisol and androgen excess. 
Through comprehensive genetic and functional analysis, we 
showed the presence of germline alterations in KDM1A—as-
sociated with increased GIPR expression—representing a po-
tential pathogenic driver. KDM1A variants had previously 
been described in patients presenting PBMAH with food- 
dependent Cushing’s syndrome; none of them had shown evi-
dence of androgen excess.

Androgen excess and even more so concomitant androgen 
and cortisol excess in the presence of an adrenal mass are con-
sidered highly suggestive for ACC.1 Only 2 previous reports 
describe combined cortisol and androgen excess in the context 
of a benign adrenal entity, 1 describing a case of PBMAH43

and 1 in a patient with a unilateral adrenal adenoma.44 In 2 
further cases, isolated adrenal androgen excess was described 
in the context of PBMAH.45,46 These cases were studied prior 
to the identification of the role of KDM1A inactivation in this 
context, and therefore, whether they harbored KDM1A var-
iants is not known.

In our case, we uniquely observed combined cortisol and an-
drogen excess in the context of unilateral macronodular ad-
renal hyperplasia, with persistently normal appearance of 
the contralateral adrenal gland. The hormonal pattern, sever-
ity of the clinical presentation, and large size of the adrenal le-
sion led us to initially suspect underlying ACC, with a 
heterogeneous appearance on unenhanced CT indicative of 
an indeterminate adrenal mass.

Although when faced with such a presentation the clinician 
should always consider ACC as the underlying entity until 
proven otherwise, this work highlights that sizeable unilateral 
masses with concomitant glucocorticoid and androgen secre-
tion are not always malignant. Furthermore, distinguishing 
hyperplastic and neoplastic processes can be challenging in se-
lected cases. The critical pathological finding in our case was 
the tumor-like presentation of multiple macronodular cortical 
hyperplasia with the contralateral adrenal gland being radio-
logically normal. It is possible that in our patient the second 
somatic 1p deletion occurred in 1 adrenal, but not in the se-
cond adrenal gland, suggesting that a long-term monitoring 
is required to check for eventual asynchronous development 
of contralateral nodular hyperplasia and associated cortisol 
excess. Some patients with PBMAH may present with unilat-
eral lesions,8,47 which, however, then invariably progress to 
clear evidence of bilateral adrenal involvement. In our case, 
the contralateral adrenal remained radiologically entirely nor-
mal 24 months after adrenalectomy. However, long-term 
follow-up is warranted.

In patients with PBMAH, clinical investigations have 
frequently shown abnormal cortisol secretion because of il-
legitimate membrane receptor expression.12 Among these re-
ceptors, ectopic adrenal GIPR expression is best described in 
patients with PBMAH with food-dependent Cushing’s syn-
drome (hence now better termed GIP-dependent Cushing’s 
syndrome). N’Diaye et al.48 reported asynchronous develop-
ment of GIP-dependent macronodular adrenal hyperplasia 
with a cortisol increase demonstrated after an oral glucose 
load following resection of the adrenal mass.42 However, in 
contrast to our case, the contralateral adrenal harbored a 
small (<1 cm) unresected nodule and there was no evidence 
of concomitant androgen excess. In our case, we excluded 
GIP-dependent cortisol secretion from the contralateral ad-
renal gland but were not able to assess this during the first 
pregnancy and prior to the removal of the adrenal mass.

The likely pathogenic KDM1A frameshift germline variant 
(p.R289Dfs*) identified in our patient and the concomitant 
somatic loss of 1p36 in all nodules studied are in line with 
2-hit inactivation of KDM1A, consistent with the tumor sup-
pressor gene model of tumorigenesis. Recent studies identified 
the inactivation of the KDM1A gene as responsible for ectopic 
adrenal GIPR expression in virtually all GIP-dependent 
PBMAH with Cushing’s syndrome.33,34 In the context of 

Figure 3. RNA-seq (transcriptome) data showing mRNA expression 
levels of selected relevant genes (ADRB1, AGTR1, AVPR1a, GCGR, 
GNRHR, HTR4, KISS1R, and LHCGR) in one of the representative 
nodules (T4) and an available dataset from ACAs, including 43 
cortisol-producing adenomas (CPAs, 26 associated with overt Cushing’s 
syndrome, CS-CPAs, and 17 with mild autonomous cortisol secretion, 
MACS-CPAs), 9 endocrine-inactive adenomas (EIAs), and 4 NAGs.29
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PBMAH, KDM1A acts as a tumor suppressor gene with a germ-
line pathogenic variant associated with somatic loss of heterozy-
gosity. The likely pathogenic KDM1A variant, p.R289Dfs*7, 
was also detected in the father but without features of 
Cushing’s syndrome. Noteworthy, there was clear sexual di-
morphism in the development of GIP-related Cushing’s syn-
drome reported by Vaczlavik et al.,34 Chasseloup et al.,33 and 
the literature42 overall with women representing the vast major-
ity of cases.

Undertaking transcriptome analysis, we observed an almost 
absent expression of KDM1A, while GIPR expression was 
highly increased at mRNA level but without somatic or germ-
line variants in this gene. This profile resembles the molecular 
pattern reported in GIP-dependent Cushing’s syndrome and 
corroborates a pathogenic role of these changes that have 
not been reported outside the context of PBMAH prior to 
our case.

It is recognized that in some adrenal lesions, excessive ster-
oid production may be regulated by various aberrant recep-
tors.11 Of note, despite the potential aggravation of the 
clinical phenotype during pregnancy reported in our case, 
we could not see any increase in LHCGR gene expression in 
the investigated tumor tissue. However, we observed an in-
creased mRNA expression of KISS1R; kisspeptin has previ-
ously been shown to stimulate adrenal androgen release by 
the NCI-H295R ACC cell line and human fetal adrenal cells.49

Moreover, KISS1R overexpression has been observed in 
PBMAH associated with GIP-dependent Cushing’s syn-
drome33 and in a patient presenting with combined adrenal 
cortisol and aldosterone excess.50 Interestingly, a recent paper 
found significantly higher circulating kisspeptin levels in preg-
nancies affected by fetal growth restriction;51 it is tempting to 
speculate whether increased kisspeptin signaling in the case of 
our patient aggravated the fetal growth restriction; however, it 
is safe to assume that cortisol excess represented the major 
pathogenic factor.

Finally, we also observed a novel germline M225I variant in 
the MC2R gene. A gain-of-function MC2R mutation (F278C) 
was previously identified in a single case of ACTH-independent 
Cushing’s syndrome.52 We provide in vitro evidence that 
the M255I variant has an increased signal potential only 
at maximal (supraphysiological) concentration–response. 
Moreover, the mRNA expression level of MC2R in the hyper-
plastic adrenal tissue appears low. Therefore, considering the 
clinical context, that is, unilateral adrenal disease and 
ACTH-independent steroid excess, we are not sufficiently 
convinced that this variant significantly contributed to the 
phenotype.

A limitation of this work is the data derivation from a single 
patient with PUMAH. A major strength is the extensive ex-
perimental approach studying a rare case and providing novel 
insights as well as expanding the clinical spectrum associated 
with inactivating KDM1A mutations.

In conclusion, we investigated the first case of a patient with 
primary unilateral macronodular adrenocortical hyperplasia, 
PUMAH, associated with cortisol and androgen co-secretion 
and suggest pathogenic mechanisms involving KDM1A.
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