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Abstract 

Background: Camonsertib is a selective oral inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase with demonstrated 
efficacy in tumors with DNA damage response gene deficiencies. On-target anemia is the main drug-related toxicity typically mani
festing after the period of dose-limiting toxicity evaluation. Thus, dose and schedule optimization requires extended follow-up to 
assess prolonged treatment effects.

Methods: Long-term safety, tolerability, and antitumor efficacy of 3 camonsertib monotherapy dosing regimens were assessed in the 
TRESR study dose-optimization phase: 160 mg once daily (QD) 3 days on, 4 days off (160 3/4; the preliminary recommended Phase II 
dose [RP2D]) and two step-down groups of 120 mg QD 3/4 (120 3/4) and 160 mg QD 3/4, 2 weeks on, 1 week off (160 3/4, 2/1w). Safety 
endpoints included incidence of treatment-related adverse events (TRAEs), dose modifications, and transfusions. Efficacy endpoints 
included overall response rate, clinical benefit rate, progression-free survival, and circulating tumor DNA (ctDNA)-based molecular 
response rate.

Results: The analysis included 119 patients: 160 3/4 (n¼ 67), 120 3/4 (n¼ 25), and 160 3/4, 2/1w (n¼27) treated up to 117.1 weeks as of 
the data cutoff. The risk of developing grade 3 anemia was significantly lower in the 160 3/4, 2/1w group compared with the prelimi
nary RP2D group (hazard ratio¼0.23, 2-sided P¼ .02), translating to reduced transfusion and dose reduction requirements. The inter
mittent weekly schedule did not compromise antitumor activity.

Conclusion: The 160 3/4, 2/1w dose was established as an optimized regimen for future camonsertib monotherapy studies offering a 
substantial reduction in the incidence of anemia without any compromise to efficacy.

Clinical Trial ID: NCT04497116.

Recent U.S. Food and Drug Administration guidance has stressed 
the need to move away from maximum tolerated dose (MTD)- 
based approaches to dose selection for targeted oncology 

therapies. MTD-based approaches (1), originated for chemother
apy agents, are based on toxicities observed during the dose- 
limiting toxicity (DLT) period (typically comprising the first 3 to 
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4 weeks of study treatment) and thus, do not take into account 
later-onset chronic toxicities, particularly relevant to oral tar
geted agents that can be administered for prolonged durations.

Ataxia telangiectasia and Rad3-related (ATR) kinase inhibitors 
are a member of the DNA damage response (DDR)-targeting class 
of small molecules currently in clinical development (2-4). 
Extensive clinical experience with these and other DDR-targeting 
agents, such as poly(ADP-ribose) polymerase (PARP) inhibitors, 
document on-target myelotoxicity as the dominant toxicity (and 
gastrointestinal toxicities for PARP inhibitors), which can be man
aged by dose holds and/or reductions and supportive care (5,6).

Camonsertib (RP-3500), a highly potent, selective, oral inhibi
tor of ATR kinase (7), demonstrated efficacy in biomarker- 
selected patients with loss-of-function alterations in ATM and 
other DDR genes (8) and displayed a safety profile consistent 
with other well-characterized DDR inhibitors (9,10). The domi
nant toxicity, critically important for long-term tolerability, was 
on-target, mechanism-based anemia in 68% of patients across all 
dose cohorts (32% grade 3) (8,11).

The first TRESR study trial milestone (Module 1 dose escala
tion) defined a preliminary monotherapy recommended Phase II 
dose (RP2D), enabling initiation of the signal-finding Phase IIa 
portion (dose expansion in prespecified tumor types and geno
types) (8). In parallel, dose optimization continued beyond the 
preliminary RP2D, including evaluation of an intermittent weekly 
dosing schedule aimed to mitigate the anemia; avoid unsched
uled dose holds, reductions, and transfusions; and enable 
patients to remain on treatment at pharmacologically active 
dose levels. Here, we describe a comprehensive approach to opti
mize the camonsertib monotherapy dose and schedule within 
the TRESR study. We report on 119 patients, followed for at least 
10 months in 3 large dose groups at therapeutic monotherapy 
doses in the Phase I and Phase IIa parts of the study. Long-term 
safety, tolerability, and antitumor efficacy profiles were charac
terized across these groups. Based on a reduced rate of grade 3 
anemia with no loss in efficacy, an intermittent weekly schedule 
(2 weeks on, 1 week off [2/1w]) was selected for future camonser
tib monotherapy studies, as an optimized regimen to support 
prolonged treatment durations.

Methods
Study design and patients
The TRESR Phase I and IIa study (NCT04497116) enrolled 154 
patients with molecularly selected advanced solid tumors treated 
with camonsertib monotherapy in dose escalation (Module 1) and 
expansion (Module 2) cohorts; dose escalation was described pre
viously (8). Three tolerated and efficacious dosing regimens were 
evaluated with expanded patient numbers to optimize the camon
sertib monotherapy dose and schedule. The results described 
herein include all 119 patients treated at: 1) 120 mg once daily 
(QD) 3 days on, 4 off (120 3/4; n¼25), 2) 160 3/4 (preliminary RP2D; 
n¼ 67 [n¼ 47 in Module 1; n¼20 in Module 2]), and 3) 160 3/4, 
2/1w (n¼27). At the September 13, 2023 data cutoff, all patients 
had at least 10 months’ follow-up or had discontinued treatment 
before 10 months. The full inclusion and exclusion criteria for 
Module 1 were described previously (8). The key eligibility require
ments for Modules 1 and 2 are provided in the Supplementary 
Methods (available online). Baseline demographics (ie, age, sex, 
race or ethnicity) were collected by the investigator.

The study was conducted in accordance with the Declaration 
of Helsinki and Council for International Organizations of 
Medical Sciences International Ethical Guidelines, applicable 

International Conference on Harmonization, Good Clinical 
Practice Guidelines, and applicable laws and regulations. All 
patients provided written informed consent to adhere to the clin
ical protocol and provided serial blood samples. The protocol was 
approved by the Institutional Review Board or Ethics Committee 
at each participating institution.

Objectives and endpoints
The primary objective of this post hoc analysis was to optimize 
camonsertib monotherapy dose and schedule based on the eval
uation of long-term safety, tolerability, pharmacokinetics, and 
preliminary antitumor efficacy in the 3 expanded dose groups.

Endpoints for long-term safety and tolerability included 
treatment-emergent adverse events (TEAEs), serious adverse events 
(SAEs), and dose interruptions and modifications due to treatment- 
related adverse events (TRAEs). Efficacy endpoints included overall 
response rate (Response Evaluation Criteria in Solid Tumors 
[RECIST] or tumor marker response), clinical benefit rate (RECIST or 
tumor marker response, or treatment duration of at least 16 weeks 
without evidence of progression), and progression-free survival 
(PFS). Molecular responses were characterized by mean variant 
allele frequency (mVAF) changes in circulating tumor DNA (ctDNA) 
samples collected longitudinally (an exploratory endpoint).

Camonsertib pharmacokinetics were assessed using a validated 
liquid chromatography with tandem mass spectrometry analysis of 
plasma camonsertib concentrations at defined timepoints; pharma
cokinetic parameters were derived using noncompartmental analy
sis and included maximal plasma concentration (Cmax), time to Cmax 

(Tmax), area under the curve (AUC), and half-life (t1/2). Time above 
the plasma concentration expected to result in 80% inhibition of 
tumor checkpoint kinase 1 phosphorylation (pCHK1 IC80) based on 
preclinical xenograft models, a pharmacokinetic driver of efficacy 
(7), was calculated and compared across the cohorts.

Statistical analysis
Baseline demographics, disease characteristics, and adverse 
events (AEs) were summarized with descriptive statistics by dose 
levels, including all patients treated at these dose levels (safety 
population). Efficacy endpoints were summarized based on 
patients with at least 1 post-baseline tumor assessment (efficacy 
population). Since the two lower doses (120 3/4 and 160 3/4, 
2/1w) had comparable average dose intensity in each cycle, the 
main comparison was pairwise comparison between each of 
these lower dose levels versus the highest dose intensity 160 3/4 
dose group. The estimated cumulative incidence rate over time 
was provided for the grade 3þ anemia, dose reductions due to 
AEs, or grade 3þ neutropenia and thrombocytopenia. The esti
mated cumulative incidence rate was based on the Fine and Gray 
method, counting early discontinuation as a competing event. 
Those patients with ongoing treatment were censored at the data 
cutoff. The relative risk of the event was estimated by the hazard 
ratio (HR) between each of the two lower dose levels versus the 
highest dose (160 3/4), under the framework of Cox proportional 
hazard models. Additional baseline predictors for the onset for 
grade 3 treatment-related anemia were explored with multivari
ate Cox regression models. Nominal P-values (2-sided) were pro
vided in all cases for hypothesis-generating purposes, with a 
significance level of .05, without adjusting for multiplicity.

ctDNA analysis
Blood was collected pretreatment and on day 1 of each cycle. 
Cell-free DNA was isolated and sequenced, using a commercially 
available targeted panel (8). Germline and variants derived from 
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clonal hematopoiesis were filtered by comparison with targeted 
matched peripheral blood mononuclear cells sequencing. 
Artifacts and suspected germline variants were removed by man
ual curation. To monitor the molecular changes in ctDNA with 
camonsertib treatment, the mVAF was calculated for each time
point; molecular response was defined as a best response of 
greater than or equal to a 50% reduction in mVAF from baseline 
(8).

Results
Camonsertib dose and schedule optimization
The TRESR study initially evaluated 2 different intermittent dos
ing schedules. The 3/4 schedule was selected over a 5-days-on, 2- 
days-off (5/2) schedule for further evaluation (8). Supplementary 
Figure 1 (available online) shows a schematic of the dose finding 
and optimization strategy.

This article focuses on 119 patients treated with camonsertib 
monotherapy within 3 large dose cohorts on the 3/4 schedule: 
160 mg QD (the initial preliminary RP2D; n¼67), and two step- 
down dose levels of 120 mg QD (n¼ 25), and 160 mg QD on a 2/1w 
schedule (n¼ 27). The expansion at the preliminary RP2D of 160 
3/4 afforded a large cohort to further characterize long-term tol
erability. Doses of more than 100 mg daily were projected as bio
logically active by pharmacokinetic and pharmacodynamic data, 
and clinical activity was confirmed at these doses (8). Baseline 

patient characteristics for the 3 dose groups are shown in  
Table 1. The most common tumor types were ovarian (n¼23), 
breast (n¼ 15), pancreatic (n¼ 14), and prostate (n¼ 14); the most 
frequent enrollment genes were ATM (n¼38), BRCA1 (n¼28), 
BRCA2 (n¼ 15), SETD2 (n¼ 10), and CDK12 (n¼ 7).

Pharmacokinetic parameters of camonsertib across the 3 dose 
groups are included in Supplementary Figure 2 (available online); 
the dose normalized Cmax, and area under the concentration- 
time curve from dosing to time t (AUC0-t) were similar across the 
groups (on both cycle 1, day 1 and 3; Supplementary Figure 2, 
Supplementary Table 1, available online). Comparable increases 
in pharmacodynamic markers (γ-H2AX and p-KAP1; associated 
with inhibition of the ATR checkpoint) were observed in paired 
biopsies taken before and during treatment at cycle 2, day 10 
across the 3 dose groups (7,8).

Safety and tolerability
The median time on treatment was 11.4 weeks (range 0.4– 
117.1 weeks), similar across the 3 dose groups. Anemia (all 
grades) was the most common on-target TRAE across the 3 dose 
groups (120 3/4: 72.0% [18/25]; 160 3/4: 70.1% [47/67]; 160 3/4, 
2/1w: 55.6% [15/27]). The incidence of grade 3 anemia was lower 
in patients treated at 160 3/4, 2/1w (11.1% [3/27]) compared with 
both continuous weekly schedules (120 3/4: 24.0% [6/25]; 160 3/4: 
41.8% [28/67]; Table 2). Figure 1, A depicts the cumulative inci
dence of grade 3 anemia development over time for the 3 dose 

Table 1. Baseline characteristics of patients in each dose group

120 3/4 160 3/4 160 3/4, 2/1w All patients
(n¼25) (n¼67) (n¼27) (N¼119)

Sex, no. (%)
Male 10 (40.0) 25 (37.3) 11 (40.7) 46 (38.7)
Female 15 (60.0) 42 (52.7) 16 (59.3) 73 (61.3)

Age, years
Median (range) 64 (39–76) 61 (36–77) 68 (30–77) 63 (30–77)
65 and older, no. (%) 12 (48.0) 23 (34.3) 16 (59.3) 51 (42.9)

ECOG status, no. (%)
0 11 (44.0) 34 (50.7) 17 (63.0) 62 (52.1)
1 14 (56.0) 33 (49.3) 10 (37.0) 57 (47.9)

Lines of prior systemic therapy, no. (%)
3 or less 12 (48.0) 45 (67.2) 20 (74.1) 77 (64.7)
4 or more 13 (52.0) 22 (32.8) 7 (25.9) 42 (35.3)

Prior platinum, no. (%) 14 (56.0) 43 (64.2) 22 (81.5) 79 (66.4)
Prior PARP inhibitor, no. (%) 8 (32.0) 24 (35.8) 10 (37.0) 42 (35.3)
Tumor type, no. (%)

Ovarian 5 (20.0) 11 (16.4) 7 (25.9) 23 (19.3)
Breast 2 (8.0) 9 (13.4) 4 (14.8) 15 (12.6)
Pancreas 0 10 (14.9) 4 (14.8) 14 (11.8)
Prostate 6 (24.0) 6 (9.0) 2 (7.4) 14 (11.8)
Othera 12 (48.0) 31 (46.3) 10 (37.0) 53 (44.5)

Enrollment gene, no. (%)
ATM 5 (20.0) 25 (37.3) 8 (29.6) 38 (31.9)
BRCA1 4 (16.0) 15 (22.4) 9 (33.3) 28 (23.5)
BRCA2 4 (16.0) 8 (11.9) 3 (11.1) 15 (12.6)
SETD2 3 (12.0) 6 (9.0) 1 (3.7) 10 (8.4)
CDK12 3 (12.0) 3 (4.5) 1 (3.7) 7 (5.9)
NBN 0 3 (4.5) 2 (7.4) 5 (4.2)
PALB2 3 (12.0) 2 (3.0) 0 5 (4.2)
Otherb 3 (12.0) 5 (7.5) 3 (11.1) 11 (9.2)

Baseline hematology, median
Hemoglobin, g/dL 11.3 11.9 11.9 11.9
Neutrophils, K/μL 3.9 4.2 3.7 4.1
Platelets, K/μL 215 257 231 231

a Other includes colorectal (n¼8), soft-tissue sarcoma (n¼8), non-small cell lung cancer (n¼7), kidney (n¼ 4), bile duct (n¼ 4), endometrial (n¼3), head 
and neck (n¼3), gastrointestinal (n¼3), and other less frequent tumor types (n¼13). 2/1w ¼ 2 weeks on, 1 week off; 120 3/4¼120 mg QD 3 days on, 4 days off; 
160 3/4¼160 mg QD 3 days on, 4 days off; ECOG ¼ Eastern Cooperative Oncology Group; K/μL ¼ thousand cells per microliter; PARP ¼ poly (ADP-ribose) 
polymerase; QD ¼ once daily.

b Other includes CHEK2 (n¼2), RAD51B (n¼2), RAD51C (n¼4), and RNASEH2 (n¼3).
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groups. The risk of developing grade 3 anemia for patients 
treated at 160 3/4, 2/1w was significantly reduced compared with 
that for patients at the same daily dose administered on the con
tinuous weekly schedule (HR 0.23, P¼ .02), whereas the decreased 
weekly dose of 120 3/4 had a moderately reduced risk of grade 3 
anemia vs 160 3/4 (HR 0.54, P¼ .18). Prolonged treatment dura
tion resulted in a continued increase in the incidence of grade 3- 
related anemia within the continuous weekly dosing groups 
(new incidences as late as 36 weeks), whereas no additional 
patients in the 160 3/4, 2/1w group developed grade 3 anemia 
after 18 weeks of therapy (Figure 1, A). Evaluation of hematologic 
parameters demonstrated that the week off treatment for 
patients in the 2/1w dosing group provided sufficient time for a 
full rebound in monocyte and reticulocyte counts before the 
start of the next dosing cycle, consistent with the lower rate of 
clinically significant anemia in that group (Supplementary 
Figure 3, available online) (12,13).

Given the heterogeneity in baseline characteristics across the 
3 dose groups, a multivariate Cox regression model was used to 
assess baseline predictors for grade 3 anemia (Supplementary 
Table 2, available online). Besides baseline hemoglobin level, 
patients who were more heavily pretreated (more than 3 prior 
regimens) had an increased risk of grade 3 anemia (HR 2.32, 
P¼ .02) compared with those less heavily pretreated. Patients 
with an Eastern Cooperative Oncology Group (ECOG) 
Performance Status score of 1 (vs 0) also had a slightly higher risk 
of grade 3 anemia (HR 1.85, P¼ .07). After adjusting for baseline 
hemoglobin, ECOG score, and number of prior regimens (more 
than 3 vs 3 or less), both the 120 3/4 (HR 0.35, P¼ .02) and 160 3/4, 
2/1w (HR 0.31, P¼ .02) groups showed a statistically significant 
decrease in anemia rates compared with the 160 3/4 group.

As a result of the reduced rate of grade 3 anemia in patients in 
the 160 3/4, 2/1w group, fewer treatment interventions were 
required, including fewer red blood cell transfusions due to grade 
3-related anemia (7.4% [2/27] in the 160 3/4, 2/1w group vs 20.0% 
[5/25] and 28.4% [19/67] in the 120 3/4 and 160 3/4 groups, respec
tively; Table 3). Furthermore, the incidence of AE-related dose 
reductions was numerically lower for patients on the 160 3/4, 

2/1w schedule (14.8% [4/27]), compared with the continuous 
weekly schedules (120 3/4: 28.0% [7/25]; 160 3/4: 37.3% [25/67];  
Table 3 and Figure 1, B).

In contrast to the lower incidence of grade 3 anemia on the 
2/1w schedule, the incidence of grade 3þ neutropenia was simi
lar in patients treated at 160 3/4 on either the continuous weekly 
(12/67; 17.9%) or 2/1w (4/27; 14.8%) schedules; patients treated at 
120 3/4 had a numerically lower incidence (2/25; 8.0%; Table 2). 
The onset of grade 3þ neutropenia or thrombocytopenia tended 
to occur earlier during treatment (in most cases, within the first 
6 weeks) compared to grade 3 anemia, which typically occurred 
at later cycles (ie, after 6 weeks; Supplementary Figure 4, avail
able online).

The most common nonhematologic TRAE across all dose 
groups was fatigue (all grades: 30.3%), which was mostly low 
grade (grade 3: 2.5%), and similar across groups (Table 2). 
Gastrointestinal toxicities were all low grade (no grade 3þ ) with 
comparable frequency (nausea or vomiting: 26.1%; diarrhea: 
16.0%) across the dose groups.

Antitumor activity
Clinical activity, determined by RECIST v.1.1 and/or tumor 
marker (eg, prostate-specific antigen, cancer antigen-125 [CA- 
125]) responses was observed in all 3 dose groups with overall 
response rates of 8.7% (120 3/4), 9.2% (160 3/4), and 19.2% (160 
3/4, 2/1w; Figures 2, A and B; Table 4; Supplementary Table 3, 
available online). Clinical benefit rates were 34.8% (120 3/4), 
36.9% (160 3/4), and 46.2% (160 3/4, 2/1w). Prolonged duration of 
treatment with RECIST v.1.1 stable disease was observed in all 3 
groups (Figure 3). In the 160 3/4, 2/1w group, 42% (11/26) of 
efficacy-evaluable patients remained on treatment for more than 
24 weeks vs 32% and 16% in the 120 3/4 and 160 3/4 dose groups, 
respectively. Patients requiring dose reductions to 120 3/4, 2/1w 
(n¼20; Supplementary Figure 5, available online) also had pro
longed treatment at the reduced dose (Supplementary Figure 6, 
available online). Median PFS was similar across the 3 groups 
(overlapping 95% confidence intervals): 13.4 (120 3/4), 16.1 (160 
3/4), and 14.7 weeks (160 3/4, 2/1w); at 24 weeks, the estimated 

Table 2. TRAE in at least 5% of patients by dose group

120 3/4 160 3/4 160 3/4, 2/1w All patients
(n¼25) (n¼67) (n¼27) (N¼119)

Preferred term

All grade Grade 3þ All grade Grade 3þ All grade Grade 3þ All grade Grade 3þ
no. (%) no. (%) no. (%) no. (%) no. (%) no. (%) no. (%) no. (%)

Any event 23 (92.0) 8 (32.0) 58 (86.6) 32 (47.8) 24 (88.9) 7 (25.9) 105 (88.2) 47 (39.5)
Anemia 18 (72.0) 6 (24.0) 47 (70.1) 28 (41.8) 15 (55.6) 3 (11.1) 80 (67.2) 37 (31.1)
Fatigue 8 (32.0) 1 (4.0) 21 (31.3) 2 (3.0) 7 (25.9) 0 36 (30.3) 3 (2.5)
Neutropenia 6 (24.0) 2 (8.0) 23 (34.3) 12 (17.9) 6 (22.2) 4 (14.8) 35 (29.4) 18 (15.2)a

Nausea or vomiting 9 (36.0) 0 17 (25.4) 0 5 (18.5) 0 31 (26.1) 0
Thrombocytopenia 4 (16.0) 1 (4.0) 13 (19.4) 6 (9.0) 8 (29.6) 0 25 (21.0) 7 (5.8) a

Decreased appetite 9 (36.0) 0 8 (11.9) 0 1 (3.7) 0 18 (15.1) 0
Diarrhea 6 (24.0) 0 8 (11.9) 0 5 (18.5) 0 19 (16.0) 0
Leukopenia 4 (16.0) 0 7 (10.4) 4 (6.0) 3 (11.1) 1 (3.7) 14 (11.8) 5 (4.2)
Dyspnea 1 (4.0) 0 7 (10.4) 0 0 0 8 (6.7) 0
Dysgeusia 2 (8.0) 0 4 (6.0) 0 0 0 6 (5.0) 0
Constipation 2 (8.0) 0 3 (4.5) 0 1 (3.7) 0 6 (5.0) 0
Rash maculo-papular 1 (4.0) 0 4 (6.0) 0 1 (3.7) 0 6 (5.0) 0
ALT or AST increased 0 0 3 (4.5) 0 2 (7.4) 0 5 (4.2) 0
Blood ALP increased 0 0 2 (3.0) 0 2 (7.4) 0 4 (3.4) 0
Weight decreased 1 (4.0) 0 0 0 2 (7.4) 0 3 (2.5) 0

a There were 5 incidences of grade 4 TRAE: 160 3/4 group: grade 4 thrombocytopenia (n¼1), grade 4 neutropenia (n¼3); 160 3/4, 2/1w group: grade 4 
neutropenia (n¼1). 2/1w ¼ 2 weeks on, 1 week off; 120 3/4¼120 mg QD 3 days on, 4 days off; 160 3/4¼160 mg QD 3 days on, 4 days off; ALT ¼ alanine 
aminotransferase; AST ¼ aspartate aminotransferase; ALP ¼ alkaline phosphatase; QD ¼ once daily; TRAE ¼ treatment-related adverse events.
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Figure 1. Cumulative incidence of grade 3 anemia and dose reductions over time. A) Treatment-related grade 3 anemia according to dose and 
schedule. B) Dose reductions due to treatment-emergent adverse events according to dose and schedule. HR and P-values presented here were not 
adjusted for other factors. 2/1w ¼ 2 weeks on, 1 week off; 120 3/4 ¼120 mg QD 3 days on, 4 days off; 160 3/4 ¼ 160 mg QD 3 days on, 4 days off; CI ¼
confidence interval; HR ¼ hazard ratio; QD ¼ once daily.

Table 3. Dose reductions and transfusions by dose group

120 3/4 160 3/4 160 3/4, 2/1w All patients
(n¼25) (n¼67) (n¼27)a (N¼119)

Duration of treatment, weeks
Mean (SD) 24.2 (26.7) 15.3 (13.5) 27.3 (34.3) 19.9 (23.1)
Median 11.4 11.4 11.1 11.4
Range 2.4–94.3 0.4–64.6 0.4–117.1 0.4–117.1

Dose reduction due to AE, no. (%) 7 (28.0) 25 (37.3) 4 (14.8) 36 (30.3)
Subjects with RBC transfusion (for grade 3 anemia), no. (%) 5 (20.0) 19 (28.4) 2 (7.4) 26 (21.8)

a One patient from the 160 3/4, 2/1w group had dose reduced to 120 3/4, 2/1w due to a medical history of grade 2 anemia (not a TRAE). 2/1w ¼ 2 weeks on, 
1 week off; 120 3/4¼120 mg QD 3 days on, 4 days off; 160 3/4¼160 mg QD 3 days on, 4 days off; AE ¼ adverse event; QD ¼ once daily; RBC ¼ red blood cell; SD ¼
standard deviation; TRAE, treatment-related AE.
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progression-free rate was the lowest for the 160 3/4 regimen, 
favoring the lower dose groups (Table 4). Due to the small sample 
size, the difference in PFS was not statistically significant. In the 
subset of patients monitorable by ctDNA (n¼ 52), mVAF reduc
tions were observed across all 3 dose groups with molecular 
response rates of 24% (120 3/4), 40% (160 3/4), and 30% (160 3/4, 
2/1w; Figure 2, C).

Across the 114 efficacy evaluable patients in the 3 camonser
tib monotherapy dose groups, responses were observed in 
patients enrolled with alterations in ATM (n¼ 4), BRCA1 (n¼3), 
RAD51C (n¼3), SETD2 (n¼2), and BRCA2 (n¼ 1; Table 5; 
Supplementary Table 3, available online). Consistent with prior 
results (8), RECIST responses in patients with tumors harboring 
ATM alterations occurred later (median: 33.1 weeks) compared to 
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patients with BRCA-altered tumors (median: 11.9 weeks); this 
updated dataset includes 2 patients with gATM (1 pancreatic, 1 
stomach) enrolled in the Phase IIa portion of the study with ini
tial responses at 30 and 33 weeks, respectively (Figure 3, Table 5, 
Supplementary Table 3, available online). Responses in tumors 
harboring genomic alterations in RAD51C and SETD2 were nota
ble given the underrepresentation of these genotypes in the 
study. Three out of 4 patients with RAD51C-altered tumors had a 
RECIST 1.1 (1 complete response, 1 unconfirmed partial 
response) or CA-125 (n¼1) response; 4/4 had clinical benefit 
(treatment durations: 23, 38, 67, and 117þ weeks). Two out of 9 
patients with SETD2-altered tumors had a RECIST 1.1 response, 
and 4/9 had clinical benefit (3 with treatment durations of more 
than 35 weeks [range 35–78]).

Discussion
We present a novel and comprehensive dose-finding strategy for 
the oral ATR inhibitor camonsertib, from the Phase I and IIa 
TRESR trial. After choosing a preliminary RP2D (160 3/4 on a con
tinuous weekly schedule) based on the observation of DLTs dur
ing the dose-escalation phase, a comprehensive dose- 
optimization analysis was conducted (Supplementary Table 4 
and Supplementary Figure 7, available online, highlight the dif
ferences between this analysis and the previously reported anal
yses in Yap et al.) (8). Further enrollment at the preliminary RP2D 
proceeded with concurrent analysis of long-term tolerability and 
efficacy against 2 alternative dose options of lower dose inten
sity: a reduced daily dose or introduction of 1 week off treatment 
each cycle.

Safety, tolerability, and antitumor activity data were compre
hensively assessed in 119 patients (114 efficacy evaluable) in 
these 3 dose groups after a follow-up time of at least 10 months. 
A camonsertib monotherapy dose of 160 mg QD 3/4 administered 
on a 2/1w schedule demonstrated substantial tolerability 
improvement, reduction of related grade 3 anemia, blood trans
fusions, and dose modifications, compared with the 160 mg QD 
3/4 continuous weekly schedule. The modified schedule did not 
impact the rates of the lower-grade nonhematologic toxicities 
(eg, fatigue, gastrointestinal toxicity).

Although the 2 alternative dose groups were not directly com
pared, the 120 3/4 group had similar requirements for dose 
reductions as the preliminary R2PD of 160 3/4. The rebound in 

monocytes and reticulocytes, indicative of bone marrow recov
ery, during the week off treatment may explain the lower rates of 
anemia for the 2/1w schedule.

Our strategy to critically evaluate both the dosage and sched
ule, and to assure the final decision based on long-term follow- 
up, aligns with the US Food and Drug Administration guidelines 
(Project Optimus), which encourages robust dose-finding in early 
clinical development to optimize safety and tolerability (1).

The Methodology for the Development of Innovative Cancer 
Therapies Taskforce guidelines recommend shifting from an 
RP2D definition that is frequently close to the MTD to a recom
mended dose range that considers the target population, drug 
mechanisms of action, and longitudinal toxicity endpoints (14).

For molecular targeted therapies, a “more is better” paradigm 
may not apply, with several examples of agents in clinical prac
tice used at lower doses than those established in registration tri
als requiring dose optimization in retrospective evaluation or 
post-registration studies (15).

Here, we report comparable antitumor activity but different 
toxicity profiles in the 3 active dose groups of camonsertib mono
therapy. We propose the intermittent weekly dose schedule as it 
results in better camonsertib tolerability with no decrease in 
antitumor activity in the population studied. To avoid dose 
reductions of camonsertib to levels with unexplored biological 
activity, we provide comprehensive safety and activity data for 
the 3 active groups to tailor both dose and schedule for patients. 
Based on these data, treatment personalization within the active 
dose range could include 120 3/4 for patients with a predominant 
toxicity of neutropenia; escalation to 160 3/4 could be an 
approach for patients who tolerate camonsertib without clini
cally significant anemia and may benefit from a higher-intensity 
dose.

To further enable a personalized approach, we developed a 
nomogram based on early hematological changes to predict the 
degree of hemoglobin decline by week 4 (13). This tool may aid 
clinicians with dose and schedule adjustments to avoid blood 
transfusions and unscheduled dose interruptions (13).

Limitations of this study include the heterogenous patient 
population and lack of randomization, which are typical charac
teristics of Phase I trials. Patients treated within the 3 dose 
groups had heterogeneous baseline characteristics and clinical 
history, including previous lines of treatment and exposure to 
PARP inhibitors or platinum chemotherapy agents. Accounting 

Table 4. Efficacy summary across the 3 dose groups

Endpoint or category

120 3/4 160 3/4 160 3/4, 2/1w All patients
(n ¼ 23) (n ¼ 65) (n ¼ 26) (n ¼ 114)

Best response by RECIST v1.1, no. (%)
cCR 0 0 1 (3.8) 1 (0.9)
cPR 1 (4.3) 3 (4.6) 3 (11.5) 7 (6.1)
uCR or uPR 0 3 (4.6) 0 3 (2.6)

Overall response (RECIST only), no. (%, 95% CI) 1 (4.3, 0.1 to 21.9) 6 (9.2, 3.5 to 19.0) 4 (15.4, 4.4 to 34.9) 11 (9.6, 4.9 to 16.6)
Overall response (RECIST or tumor marker),  

no. (%, 95% CI)
2 (8.7, 1.1 to 28.0) 6 (9.2, 3.5 to 19.0) 5 (19.2, 6.6 to 39.4) 13 (11.4, 6.2 to 18.7)

Clinical benefit,a no. (%, 95% CI) 8 (34.8, 16.4 to 57.3) 24 (36.9, 25.3 to 49.8) 12 (46.2, 26.6 to 66.6) 44 (38.6, 29.6 to 48.2)
Medianb PFS, weeks (95% CI) 13.4 (7.00 to 37.00) 16.1 (11.43 to 17.71) 14.7 (6.14 to 27.29) 14.7 (12.14 to 17.71)
PFS at 24 weeks, % (95% CI) 38.9 (18.0 to 59.5) 25.2 (14.5 to 37.4) 45.0 (25.3 to 62.8) 33.1 (24.0 to 42.5)
Molecular response (ctDNA reduction of 50% or more)

Evaluable ctDNA for monitoring 17 25 10 52
Molecular response, response/evaluable (%) 4/17 (23.5) 10/25 (40.0) 3/10 (30.0) 17/52 (32.7)

a Defined as overall response, or duration of treatment of at least 16 weeks without progressive disease. 2/1w ¼ 2 weeks on, 1 week off; 120 3/4¼120 mg QD 
3 days on, 4 days off; 160 3/4¼160 mg QD 3 days on, 4 days off; CA-125¼ cancer antigen 125; cCR ¼ confirmed complete response; CI ¼ confidence interval; cPR ¼
confirmed partial response; ctDNA ¼ circulating tumor DNA; PFS ¼ progression-free survival; PSA ¼ prostate-specific antigen; QD ¼ once daily; RECIST ¼ Response 
Evaluation Criteria in Solid Tumors; uCR, unconfirmed complete response; uPR ¼ unconfirmed partial response.
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for baseline heterogeneity, Cox regression models showed an 
independent association of the alternative camonsertib doses 
with a lower risk of grade 3 anemia, supporting the implementa
tion of the alternative dosing schedule.

Given the heterogeneity of tumor types, genotypes, and 
other features such as allelic status, conclusions regarding 
superiority in efficacy for any of the 3 dose groups cannot be 
made. Herein, we extend the results previously reported (8) by 
evaluating antitumor activity in an expanded patient popula
tion treated at the preliminary RP2D and 2 efficacious step- 

down doses. Additional late responses (at 30 and 33 weeks) 
were reported in patients with gATM. Although the patient 
numbers were small, the clinical benefit for patients with less 
common genomic alterations, namely RAD51C and SETD2, 
became apparent. As reported in Yap et al. (8), tumors with 
biallelic loss remained associated with longer PFS and duration 
of treatment. The robustness of the efficacy signal at the 
selected dose of 160 3/4, 2/1w is being confirmed in later phase 
trials and more homogeneous patient populations 
(NCT04589845, NCT03337698).
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Figure 3. Swim plot of duration of treatment and responses to camonsertib by dose group. 2/1w ¼ 2 weeks on, 1 week off; 120 3/4 ¼120 mg QD 3 days 
on, 4 days off; 160 3/4 ¼ 160 mg QD 3 days on, 4 days off; CR ¼ complete response; PR ¼ partial response; QD ¼ once daily.
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In conclusion, based on the lower risk of grade 3 anemia (the 

dominant camonsertib toxicity) and the preservation of antitu

mor activity, the camonsertib monotherapy dose of 160 3/4 

administered on a 2/1w schedule was selected as the optimized 

regimen for future pivotal studies.
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