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Abstract 

The unprecedentedly large size of the global SARS-CoV-2 phylogeny makes any computation on the tree difficult. Lineage identification 
(e.g. the PANGO nomenclature for SARS-CoV-2) and assignment are key to track the virus evolution. It requires annotating clade roots 
of lineages to unlabeled ancestral nodes in a phylogenetic tree. Then the lineage labels of descendant samples under these clade roots 
can be inferred to be the corresponding lineages. This is the ancestral lineage annotation problem, and matUtils (a package in pUShER) 
and PastML are commonly used methods. However, their computational tractability is a challenge and their accuracy needs further 
exploration in huge SARS-CoV-2 phylogenies. We have developed an efficient and accurate method, called “F1ALA”, that utilizes the 
F1-score to evaluate the confidence with which a specific ancestral node can be annotated as the clade root of a lineage, given the 
lineage labels of a set of taxa in a rooted tree. Compared to these methods, F1ALA achieved roughly an order of magnitude faster 
yet with ∼12% of their memory usage when annotating 2277 PANGO lineages in a phylogeny of 5.26 million taxa. F1ALA allows real-
time lineage tracking to be performed on a laptop computer. F1ALA outperformed matUtils (pUShER) with statistical significance, and 
had comparable accuracy to PastML in tests on empirical and simulated data. F1ALA enables a tree refinement by pruning taxa with 
inconsistent labels to their closest annotation nodes and re-inserting them back to the pruned tree to improve a SARS-CoV-2 phylogeny 
with both higher log-likelihood and lower parsimony score. Given the ultrafast speed and high accuracy, we anticipated that F1ALA 
will also be useful for large phylogenies of other viruses. Codes and benchmark datasets are publicly available at https://github.com/
id-bioinfo/F1ALA.
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Introduction
Phylogenetics can play an important role in tracing the spread 
of emerging virus variants by integrating lineage information 
into a phylogenetic tree. During the COVID-19 pandemic, the 
Phylogenetic Assignment of Named Global Outbreak Lineages 
(PANGO lineages) has been widely utilized to categorize SARS-CoV-
2 sequences into specific lineages to assist public health control 
measures (Rambaut et al. 2020). With clade roots of these lineages 
being annotated at ancestral nodes in the tree, lineage informa-
tion of descendant samples can be efficiently determined while 
the ancestral nodes with annotations can provide the evolution 
history for the virus variants (McBroome et al. 2021). We call the 
problem of identifying and annotating the clade roots of lineages 
in a phylogeny to be ancestral lineage annotation (ALA) (Fig. 1).

Ancestral character reconstruction (ACR) can be used to infer 
evolutionary dynamics by estimating the states of ancestral nodes 

for a character of interest (e.g. ecological, phenotypic, and biogeo-
graphic traits) in a phylogenetic tree when character labels are 

given for some or all taxa (Ishikawa et al. 2019). If lineages are 

the characters of interest in ALA, an ACR method, e.g. PastML 

(Ishikawa et al. 2019), would construct ancestral states of lin-

eages, and subtrees with identical lineage states are considered 
as clusters for the annotation of corresponding lineages.

Most conventional ACR methods are not suitable for the 

ALA in a huge SARS-CoV-2 phylogeny. pUShER is currently the 
default inference pipeline for lineage assignment in SARS-CoV-2 

PANGO lineage nomenclature system (pangolin) (O’Toole 2022). 

pUShER applies its packaged tool “matUtils” to annotate PANGO 
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Figure 1. Illustration of the algorithm for ALA. Given a tree with 5 taxa (Nodes 5–9) and 4 internal nodes (Nodes 1–4) where Nodes 5–7 are labeled as 
lineage A and Nodes 8–9 are labeled as lineage B, the ALA is computed in three steps. Step1: Extract potential annotation nodes for lineages A (Nodes 
1–3 and 5–7) and B (Nodes 1, 3–4, and 8–9) [shown in the headers (black background) of the top two tables]. Step2: Determine the order of lineages for 
ancestral annotation based on the annotation confidence score (the largest F1-score for each lineage, i.e. A = 4/5 and B = 1, marked by underlines in the 
top two tables). So lineage B is assigned first and then A, as shown by ① and ② in the bottom two tables. Step3: Assign the annotation for B at Node 4 
first (middle table), then for A at Node 1. When recalculating F1-scores for potential annotation nodes of lineage A, the taxa at Nodes 8 and 9 are 
excluded from formulae (1–3) due to Nodes 8 and 9 having been already assigned to the confirmed annotation of Node 4 (bottom table). The F1-score 
tables for lineage B are the same in Step 2 and Step 3.

lineages of SARS-CoV-2 at ancestral nodes in a reference tree
(i.e. ALA problem) (McBroome et al. 2021, Turakhia et al. 2021). For 
ALA, matUtils constructs consensus sequences for all SARS-CoV-
2 sequences with the same lineage label on a given phylogenetic 
tree. It then searches for the optimal node to insert a consensus 
sequence to the tree for each lineage resulting in the lowest addi-
tional parsimony score by the phylogenetic placement method 
UShER (Turakhia et al. 2021). This optimal node is defined as the 
clade root of the lineage. However, occasions of multiple optimal 
nodes for a single consensus sequence in the ALA by matUtils were 
frequently observed, e.g., 1139 out of 1248 PANGO lineage mem-
bers in the benchmarking 100K dataset in this scenario (“Materials 
and Methods” section). Multiple optimal nodes would cause uncer-
tainty in the phylogenetic placement to determine which node 
should be considered as the clade root of a lineage. At the same 

time, the quality of consensus sequence inferred for a lineage will 
be affected by the quality of sequences belonging to this lineage. 
This observation was verified by our simulation benchmarks that 
the accuracy of matUtils dropped significantly when the error rate 
of sequences increased and the number of used sequences for ALA 
decreased (details in “Results” section). Its runtime and memory 
usage were still substantial (see Table 1 for details). 

Here, we present a novel ALA approach (F1ALA) that applies 
the F1-score (Powers 2008) to evaluate the confidence with which 
ancestral nodes in a tree can be annotated as the clade roots 
of lineages. When compared to PastML and matUtils (pUShER) 
on medium, large, and huge SARS-CoV-2 phylogenies, F1ALA 
achieved roughly an order of magnitude faster than these meth-
ods with ∼12% of their memory usage, which is able be run on a 
laptop computer even for the ALA in a 5.26M-taxa tree (Table 1). 



F1ALA  3

Table 1. Runtime and memory used for ALA.

Runtime 
(h:mm:ss) | 
Peak memory 
used (GB) 100K 660K 5.26M

F1ALA 0:00:07 |0.29 0:03:40 |1.83 0:12:41 |3.60
PastML 0:00:50 |0.68 0:25:10 |5.50 1:33:06 |29.00
matUtils (pUShER) 0:00:53 |0.47 0:28:36 |5.05 3:20:37 |27.17

Tests were run on an AMD Ryzen Threadripper PRO 5975WX server with 
32-Cores and 500 GB RAM using 8 threads. 10 repetitions of each run were 
performed and average values are presented.

F1ALA achieved high accuracies comparable to those of PastML 
and significantly outperformed matUtils (pUShER) in tests on 
empirical and simulated datasets.

The phylogenetic trees for millions of SARS-CoV-2 genome 
sequences in Global Initiative on Sharing All Influenza Data 
(GISAID; Shu and McCauley 2017) and Genome Browser (Turakhia 
et al. 2021) are constructed by the online tree updating method 
UShER (Turakhia et al. 2021), where new SARS-CoV-2 genome 
sequences are sequentially inserted into a backbone tree. How-
ever, as repeated sample insertions do not update the backbone 
tree, any error in prior insertions cannot be corrected. Hence, 
tree optimization is required to detect and correct potential 
mis-insertions using techniques, such as nearest-neighbor inter-
change or subtree-pruning-regrafting (SPR) which remain time-
consuming (Price et al. 2010). We propose a new tree refinement 
method by iteratively removing all inconsistently labeled taxa rel-
ative to their closest annotation nodes, as detected by F1ALA, 
and reinserting them back using online tree updating tools such 
as UShER and TIPars (Turakhia et al. 2021, Ye et al. 2024). This 
achieved both larger tree log-likelihood and smaller parsimony 
score for the refined tree.

Materials and methods
Algorithm for ancestral lineage annotation
To trace the spread of viral lineages, ALA is to infer the clade 
roots (as annotation nodes) for these lineages when providing 
a set of taxon names for each lineage in a rooted phylogenetic 
tree. It should ensure that taxa under these annotation nodes 
remain monophyletic for all lineages (McLennan 2010). Never-
theless, because the provided taxa from pangolin are sometimes 
non-monophyletic in a given tree (McBroome et al. 2021), simply 
using the most recent common ancestor does not yield accu-
rate inference of their clade roots. Instead, F1ALA calculates 
F1-score for unlabeled ancestral nodes and iteratively assigns a 
lineage annotation to the ancestral node with the largest F1-score 
(this ancestral node with lineage annotation is called “annotation 
node”). F1-score is a metric of predictive performance being as the 
harmonic mean of the precision and recall. A true positive (TP) is 
defined as the provided lineage label of a taxon being the same 
as its closest annotation node. Then, the precision is the num-
ber of TP taxa divided by the number of all taxa in subtrees of 
the annotation nodes, including those identified incorrectly (their 
given lineage labels different from those of their closest annota-
tion nodes), and the recall is the number of TP taxa divided by the 
number of all taxa with provided lineage labels.

In a rooted tree T, with taxon nodes V, let {Li} be all members 
of the lineages, L, and {Li,j} be the lineage labels given to a set of 

taxa {Vi,j} belonging to the lineage Li, where i = 1 : |L| and j = 1 : |Li|. 
F1ALA computes ALA in three steps; that is to determine the clade 

root CRi in tree T to annotate lineage Li (CRi becomes an annota-
tion node). The lineage label of any internal or external node in 
tree T is inferred from the lineage of its closest annotation node
(Fig. 1).

Step 1. Extract potential annotation nodes. A potential annota-
tion node of a lineage must be among the ancestral nodes of the 
taxa belonging to this lineage. A recursive function determines all 
ancestral nodes, Ni, for a lineage, Li, where Ni are all unique ances-
tral nodes for any taxon Vi,j in Li (for j = 1 : |Li|,with lineage label Li,j) 
to the root of tree T.

Step 2. Determine the order of lineages for ancestral annota-
tion. For a lineage Li, let the subtree under any potential annota-
tion node Ni,k ∈ Ni be Ti,k where k = 1 : |Ni|, then the taxa in subtree 
Ti,k are denoted as {Vi,jk

} ({Vi,jk
} ⊆ {Vi,j}). When annotating the 

clade root CAi of lineage Li at node Ni,k, we have 

Precision :Pi,k = TP/ ∣{Vi,jk
}∣ (1)

Recall :Ri,k = TP/ |Li| (2)

F1-score : Fi,k = 2 ∗ Pi,k ∗ Ri,k/(Pi,k + Ri,k) (3)

where TP is the number of taxa within subtree Ti,k that have the 
lineage label Li.

The highest F1-score Fi among all k in {Fi,k} (i.e. Fi = maxk{Fi,k}) is 
referred as the annotation confidence score for lineage Li. Smaller 
annotation confidence score for a lineage means there is more 
uncertainty about its potential annotation in tree T. F1ALA com-
putes the annotation confidence scores for all lineages L and sort 
them in descending order.

Step 3. Assign the annotation for each linage according to the 
order from Step 2. To compute the annotation for lineage Li, let 
the taxa of subtrees of previously confirmed annotation nodes for 
lineages ranking in front of Li in the sorted order be VC. Then F1ALA 
re-computes the F1-scores for any potential annotation node Ni,k ∈
Ni by excluding VC in {Vi,jk

} when calculating formulae (1–3), we 
have 

Precision : P′
i,k = TP′/ ∣{x ∈ {Vi,jk

} and x ∉ VC}∣ (4)

Recall :R′
i,k = TP′/ |Li| (5)

F1-score : F′
i,k = 2 ∗ P′

i,k ∗ R′
i,k/(P′

i,k + R′
i,k) (6)

where TP′ is the number of taxa in {x ∈ {Vi,jk
} and x ∉ VC} which 

have the lineage label Li. An example of this re-computation is 
given in the bottom table of Fig. 1.

Lineage Li is annotated at the node with the highest F1-score 
(F′

i = maxk{F′
i,k}), which is the clade root CRi of lineage Li.

Each lineage will only be annotated at a node of tree T as a 
monophyletic group. This does not guarantee all taxa in a tree are 
assigned under the annotation nodes but the assignments are gen-
erally high quality (Supplementary Table S1). This is the same case 
with matUtils (McBroome et al. 2021) and PastML (Ishikawa et al. 
2019).

Algorithm for tree refinement
Given a rooted phylogenetic tree, lineage labels and sequences 
for all or a set of taxa, the algorithm uses ancestral annotation 
information to refine the tree topology. After ancestral lineages 
are annotated by F1ALA, all taxa with labels different from their 
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closest annotation nodes are removed from the tree. The removed 
taxa are sorted in ascending order by the number of ambiguous 
nucleotides in their sequences. An online tree updating method 
(e.g. TIPars or UShER) is used to re-insert them sequentially into 
the reduced tree. This refinement process is repeated until there is 
no improvement of the accuracy of ALA or a maximum iteration 
limit is exceeded.

Benchmark datasets and programs
Three empirical 100K-, 660K-, and 5.26M-taxa SARS-CoV-2 
phylogenies were used as benchmark datasets. To form the 
100K-taxa dataset, genomes were subsampled from all lin-
eages with high sequence quality (n = 96 020; collected before 
January 2021) and a maximum likelihood phylogenetic tree 
was constructed by IQTREE2 (GTR model) (Minh et al. 2020) 
using the genome hCoV-19/Wuhan/WIV04/2019/EPI_ISL_402124 
as root [details in Ye et al. (2024)]. The 660K-taxa tree (659 
885 genomes) was downloaded from GISAID on 6 September 
2021 (Shu and McCauley 2017). PANGO lineage labels, 1248 
and 1181 unique members respectively, were extracted from 
the metadata of GISAID for the 100K and 660K datasets. For 
the 5.26M-taxa tree, 5 256 518 genomes and their PANGO lin-
eage labels were taken from http://hgdownload.soe.ucsc.edu/
goldenPath/wuhCor1/UShER_SARS-CoV-2/ on 19 February 2023 
(giving 2277 unique PANGO lineages). All taxa in the trees were 
labeled with PANGO lineages and used for ALA. Nextclade labels 

(Aksamentov et al. 2021) were not used for benchmarking since 
they are not available in GISAID metadata.

Since errors in PANGO lineages labeling SARS-CoV-2 sequences 
are a well-known problem (O’Toole et al. 2021), 70 757 taxa 
from the 100K dataset that had identical lineage labels based 
on the annotations by F1ALA, PastML, and matUtils (Fig. 2e) 
were considered as a “ground truth.” A phylogenetic tree was 
constructed using these sequences by FastTree2 v2.1.11 (double-
precision version) under the GTR GAMMA20 model using hCoV-
19/Wuhan/WIV04/2019/EPI_ISL_402124 as the root and the output 
binary tree was collapsed to a polytomous tree using the “ape” R 
package (tolerance = 1.0*E-6). The accuracy of ALA was evaluated 
when wrong lineage labels were artificially introduced to this 70 
757-taxa reference tree. PANGO lineages labeling errors (replace-
ment of the original lineage label by a false one) was randomly 
applied to 5%, 10%, 20%, and 50% of the taxa in the tree with 100 
replicates of these labeling “errors.” Independently lineage labels 
were masked for 5%, 10%, 20%, and 50% of taxa in the tree with 
100 replicates.

F1ALA was benchmarked against PastML (1.9.34) and matU-
tils (pUShER; v0.6.2) using the precision and recall metrics. A TP 
was defined as the lineage label given to a taxon being the same 
as its closest annotation node, if not, it was a false positive (FP). 
Then, precision = TP/(TP + FP) (i.e. the fraction of tips correctly clas-
sified as a specific lineage out of all tips the model predicted to 
belong to that lineage), and recall = TP/(total number of labeled 
taxa) (i.e. the fraction of tips in a linage that the model correctly 

Figure 2. Accuracy of ALA for the 100K-, 660K-, and 5.26M-taxa SARS-CoV-2 phylogenies. (a) Precision (b) Recall for ALA by F1ALA, PastML, and 
matUtils (pUShER). (c) The ALA using the 5.26M-taxa SARS-CoV-2 phylogeny by F1ALA, showing the top 50 lineages by the number of assigned taxa, 
with the Omicron lineage highlighted (branch lengths are not to scale to allow differentiation of the lineages). Annotation information (annotation 
node, distance to tree root, F1-score, and number of TPs) is shown when a mouse hovers over the nodes displayed in a browser. (d) The collapsed tree of 
2277 PANGO lineages from the 5.26M-taxa SARS-CoV-2 phylogeny. Each lineage is represented by its annotation node in the tree. Branch length shows 
the number of mutations (instead of substitution rate) (McBroome et al. 2021) and Omicron sublineages (BA.1, BA.2, BA.5, and XBB.1.5) are highlighted. 
(e) Venn diagram showing the number of individual and shared TPs (proportions over all taxa) for the annotations by F1ALA, PastML, and matUtils.

http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/
http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/
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classified out of all tips in that lineage). In addition, pairwise sin-
gle nucleotide polymorphism (SNP) distances between sequences 
within a lineage and between lineages were also used for evalu-
ation, which were calculated by snp-dists v.0.8.2 (https://github.
com/tseemann/snp-dists). A lower mean SNP distance within a 
lineage indicates a better ALA; and a larger mean SNP distance 
between lineages indicates a better ALA.

Since PastML may generate multiple clusters for a specific 
lineage, the biggest cluster was chosen to be annotated as a 
monophyletic group (McLennan 2010). PastML was run under the 
DOWNPASS model to minimize changes in ancestral states. matU-
tils was run using the annotate function with “set-overlap = 0.”

Results
Computational performance
The computational performances of F1ALA, PastML, and matU-
tils (pUShER) were compared on the 100K-, 660K-, and 5.26M-
taxa SARS-CoV-2 phylogenies (Table 1). F1ALA annotated 2277 
PANGO lineages in the 5.26M-taxa phylogeny using 12 min and 
42 s, roughly an order of magnitude faster than the other meth-
ods. F1ALA significantly optimized the memory requirement to 
be 3.6 GB, a reduction of around 88% of that in PastML, which 
allows ALA of a huge phylogeny to be run on a laptop or general
computer.

Ancestral lineage annotation of PANGO lineages
The accuracy of ALA was evaluated by precision and recall (“Mate-
rials and Methods” section) (Fig. 2a and b). F1ALA achieved the 
highest precision with the 100K-taxa and 660K-taxa phylogenies 
(higher than PastML by 4.5% and 10.0%, respectively). For the 

5.26M-taxa phylogeny, F1ALA ranked the second highest with 
99.8% precision, less than 0.2% below PastML. For recall, F1ALA 
had the best performance on the 660K-taxa phylogeny (higher 
than PastML by 2.8%) and had a difference of 0.02% and 0.1%, 
respectively, to PastML on the 100K-taxa and 5.26M-taxa phylo-
genies. matUtils (pUShER) showed the worst performance on all 
benchmarks (Supplementary Table S1).

F1ALA achieved significantly smaller mean pairwise SNP dis-
tance within a lineage and larger distance between lineages than 
other compared methods in 100K dataset (P-value < 0.01 in paired 
t-test; Supplementary Table S2). The calculation of SNP distances 
in 660K and 5.26M datasets cannot be done within 96 h using 32 
threads in an AMD EPYC 9654 Processor, due to a large pairwise 
computation requirement.

F1ALA can generate an html file to allow visualization of the 
ALA. An example using the 5.26M-taxa phylogeny is presented in 
Fig. 2c, which by default shows the 50 largest lineages. F1ALA can 
also output a lineage-collapsed tree (Fig. 2d), where each lineage is 
represented by its annotation node and the original tree topology 
is preserved.

On simulated datasets with labeling errors (Fig. 3a and b and 
Supplementary Table S3), F1ALA achieved high and robust preci-
sion and recall values for the different percentages of taxa with 
lineage labeling errors. The precision of F1ALA is significantly 
better than PastML in all settings (P-value < 0.05). The accuracy 
of matUtils (pUShER) dropped significantly when the error rate 
increased. For masked labels (part of the lineage labels of taxa 
were masked) (Fig. 3c and d and Supplementary Table S3), F1ALA 
achieved high precision and recall though those of PastML were 
significantly better (P-value < 0.05). matUtils (pUShER) performed 
more stably with masked labels, but still showed significantly 
lower precision and recall than F1ALA and PastML in all tests. 

Figure 3. Accuracy of ALA for the datasets with simulated errors. (a) Precision and (b) recall when introducing PANGO lineages labeling errors to 5%, 
10%, 20%, and 50% of taxa in the tree (100 replicates). (c) Precision and (d) recall when lineage labels were masked for 5%, 10%, 20%, and 50% of taxa in 
the tree (100 replicates). Paired t-tests were statistically significant (P-value < 0.05) for all pair-wise comparisons among F1ALA, PastML, and matUtils 
(pUShER). The whiskers represent the minimum and maximum values while the box shows the lower and upper quartiles with the median crossing 
the box.

https://github.com/tseemann/snp-dists
https://github.com/tseemann/snp-dists
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Figure 4. Accuracy of tree refinement. (a) Precision and recall for four iterations of tree refinement. Each iteration contains an ALA by F1ALA and 
online updating of the tree by TIPars or UShER. (b) Gamma20 log-likelihood and parsimony score for four iterations of tree refinement. Gamma20 
log-likelihood was calculated by FastTree2 (reoptimizing the branch lengths with a fixed topology). Tree parsimony score was calculated by UShER.
(c) and (d) Linear regression of Gamma20 log-likelihood and parsimony score against precision (c) and recall (d) using trees generated in 0–4 iterations 
of tree refinement with F1ALA + TIPars and F1ALA + UShER. All regressions, except log-likelihood on precision, are statistically significant 
(P-value < 0.05). The dashed area shows the 95% confidence interval of the regression. Large R2 values (>0.85) are marked in red. The differences of 
some points are too small to present in the graphs (overlapping), especially those from the third and fourth iterations of tree refinement. (e) Lineage 
annotation accuracy after tree refinement. “Reference” is the tree built by IQTREE2. Only one iteration of refinement by “F1ALA+X” (TIPars or UShER) is 
reported. (f) Gamma20 log-likelihood and parsimony score after tree refinement; other details as in (e).

F1ALA performed accurately given both kinds of errors, with over 
99.4% precision and recall when error rates were ≤20%. With 
errors at 50%, precision and recall decreased by less than 1% for 
labeling errors and 2% with masked labels relative to the results 
with 5% of taxa having errors.

Tree refinement
The proposed tree refinement method was tested on the 100K-
taxa dataset with four iterations (Fig. 4). The 660K- and 5.26M-
taxa SARS-CoV-2 phylogenies were not tested as calculating the 
tree log-likelihood is not practical. Using either TIPars (v1.1.0) 
or UShER (v0.6.2) to update the tree (“Materials and Methods” 
section), the lineage annotation of the phylogeny was optimized 
to higher accuracy in precision [7.1% (TIPars), 7.7% (UShER)] 
and recall (10.8%, 9.6%) (Fig. 4a), larger Gamma20 log-likelihood 
(0.5%, 0.2%) and smaller tree parsimony score (3.0%, 3.4%)
(Fig. 4b).

Linear regression of the Gamma20 log-likelihood and parsi-
mony scores against precision (Fig. 4c) and recall (Fig. 4d) for 
the original and 4 iterations of tree refinements using TIPars and 
UShER (data from Fig. 4a and b). Precision and recall explained 
99.3% and 89.1% of variance in the tree parsimony score, respec-
tively, showing that their usage as evaluation metrics can reflect 
the tree parsimony score. matOptimize (v0.6.2) (Ye et al. 2022) is 
currently applied to optimize the huge SARS-CoV-2 phylogenetic 
trees in GISAID and Genome Browser, which uses fast subtree 
pruning and regrafting (SPR) moves. Compared to our proposed 
method (using F1ALA for ALA and TIPars or UShER for online tree 
updating; denoted as “F1ALA + TIPars” and “F1ALA + UShER” in 
Fig. 4e and f), the 100K taxa tree refined by matOptimize achieved 
the highest recall in ALA (Fig. 4e) and the smallest tree parsimony 
score, but the lowest tree log-likelihood [even lower than that of 
without refinement (the reference tree) by 0.9%] (Fig. 4f). “F1ALA 
+ TIPars” improved the tree with the best log-likelihood by 0.5%.
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Discussion
ALA, particularly for pathogens affecting public health, has 
become a more pressing challenge given the extent of sequence 
data that can be obtained now. This is demonstrated by the need 
for annotation of PANGO lineages in the huge SARS-CoV-2 phy-
logenies. We present a novel and practical method, F1ALA, to 
achieve this, which was demonstrated to be highly efficient, in 
runtime and memory usage, on an extremely large phylogeny 
(Table 1) and have high accuracy on empirical and simulated 
SARS-CoV-2 datasets (Figs 2 and 3).

Lineage assignment can be seen as a multi-class classification 
problem, where precision and recall are two metrics to measure 
the quality of model predictions and how well the model did for 
the actual observations. Notably, a higher precision may come 
with a lower recall. For example, the model only returns the highly 
confident prediction such that the precision is high but with a 
low recall (only a small proportion of instances is reported). F1-
score is a trade-off between precision and recall. F1ALA applies 
F1-score to evaluate the confidence with which ancestral node can 
be annotated as the clade root of a lineage which allows to empha-
size one specific lineage since F1ALA determines annotations of 
lineages one at a time, even if there are imbalanced classes/lin-
eages, which are real cases in SARS-CoV-2. matUtils is based on 
a parsimony-based phylogenetic placement (UShER) that places 
the consensus sequence of each lineage into the tree, where the 
placed node is the clade root. PastML is a conventional ances-
tral state reconstruction method that can use either parsimony 
or maximum likelihood method.

We acknowledged there may be bias toward F1ALA because F1-
score, the harmonic mean of the precision and recall, are also used 
for metrics in ALA performance. To eliminate this potential bias, 
pairwise SNP distances between sequences within a lineage and 
between lineages were also used for evaluating ALA performance. 
The results were consistent with the performance using precision 
and recall that F1ALA achieved a significantly smaller mean pair-
wise SNP distance within a lineage and larger distance between 
lineages (Supplementary Table S2). On the other hand, the regres-
sion analysis in Fig. 4c and d shows precision and recall explained 
99.3% and 89.1% of variance in the tree parsimony score, respec-
tively, suggesting that their usage as evaluation metrics were 
practical.

Errors or omissions in the lineage labels assigned to taxa may 
introduce bias and affect the accuracy of ALA (Fig. 3). F1ALA per-
formed robustly in these cases. PANGO nomenclature labeling 
errors were introduced and labels were masked to simulate miss-
ing data, which are frequent in the real SAR2-CoV-2 sequence data 
(Shu and McCauley 2017, McBroome et al. 2021, O’Toole et al. 
2021). F1ALA and PastML performed well and comparably on these 
tests but matUtils (pUShER) was worse, particularly for labeling 
errors (Fig. 3a and b). ALA in matUtils (pUShER) relies on the con-
sensus sequence of each lineage, so labeling errors or omissions 
lead to an incorrect or inadequately specified consensus sequence 
that might lead to inaccurate phylogenetic placements (Turakhia 
et al. 2021).

F1ALA, PastML, and matUtils (pUShER) had higher precision 
and recall in 5.26M compared to 100K and 660K datasets. A pos-
sible reason is the different version of pangolin downloaded for 
the three datasets according to the timepoint to generate them. 
PANGO nomenclature system has utilized two inference pipelines 
for lineage assignment, pangoLEARN (default used in pangolin 
versions 1 to 3) (O’Toole et al. 2021) and pUShER (default in v4 
that was released in April 2022) (O’Toole 2022). pangoLEARN is 

a machine learning method while pUShER is based on phyloge-
netic placement. The PANGO lineage labels in 100K and 660K 
datasets belong to pangolin v2 (downloaded in January 2021) and 
v3 (downloaded on 6 September 2021), respectively, while those in 
5.26M are v4 (downloaded on 19 February 2023). Pangolin v2 and 
v3 are based on machining learning method for lineage assign-
ment (pangoLEARN) while v4 is based on phylogenetic placement 
method (pUShER). The ALAs in F1ALA, PastML and matUtils are 
all based on tree topology rather than machine learning which is 
expected to be more consistent with pangolin v4 than v2 and v3. 
A recent study (de Bernardi Schneider et al. 2024) demonstrated 
only 82.13% and 84.68% concordances between pangoLEARN and 
pUShER in pangolin v3.1.13 but 97.28% and 97.35% in pangolin 
v4.0.2 in their two testing datasets that are consistent with our 
results in Fig. 2. As a double check, we also applied the latest 
pangolin version v4.3.1 on the 100K and 660K datasets, and both 
F1ALA and PastML achieved significant higher precision and recall 
(Supplementary Table S4).

We have proposed a tree refinement method that utilizes the 
annotations from F1ALA in conjunction with online tree updat-
ing software (e.g. TIPars and UShER) to optimize a phylogenetic 
topology, increasing its log-likelihood and decreasing its parsi-
mony score (Fig. 4a and b). Particularly, the optimized tree using 
TIPars for tree updating achieved larger Gamma20 log-likelihood 
than that of UShER [−1 944 123 (TIPars) versus −1 950 256 (UShER)]. 
However, the tree parsimony score of UShER was smaller [184 487 
(TIPars) versus 183 762 (UShER)]. matOptimize, the commonly 
used method for tree refinement in huge SARS-CoV-2 phyloge-
nies (Ye et al. 2022), improved the tree with the smallest parsi-
mony score compared to our proposed method (F1ALA + TIPars 
or F1ALA + UShER) but the lowest log-likelihood (even lower than 
the reference tree) (Fig. 4f). This can be explained by UShER 
and matOptimize being fully parsimony-based methods that have 
limited consideration of the tree log-likelihood.

The improvement of tree refinement is mostly observed in the 
first iteration which suggests a small number of iterations are 
required (Fig. 4a and b). Updating a tree by TIPars or UShER takes 
about 21 or 2 s to insert 100 SARS-CoV-2 genomes into a 100K-
taxa phylogeny (Ye et al. 2024). These make the proposed tree 
refinement approach feasible in large trees.

After refinement of the 100K-taxa phylogeny, the precision and 
recall of ALA was approximately 95% (Fig. 4). Further investigation 
is needed to determine whether the remaining 5% of inconsis-
tently annotated taxa are positioned incorrectly in the phylogeny 
due to the tree-building method, an error in ALA or their PANGO 
lineages being inaccurately labeled.

With the rapid advancement of high-throughput sequencing 
technology and increasing recognition of the utility of genomic 
information in studying viruses, a substantial increase in the gen-
eration of new genomic sequences for various viruses is expected. 
When confronted with the huge phylogenetic tree resulting from a 
vast amount of genomic sequences, our method, F1ALA, is antic-
ipated to be useful in providing efficient and accurate ALA. For 
example, ALA by F1ALA can be used to infer lineage label for query 
samples and trace the virus evolution by the visualization of a 
lineage-collapsed tree (Fig. 2c and d) given a dataset with reference 
sequences and customized query samples, and the reconstructed 
phylogenetic tree. The detection of tips with potential mislabeled 
lineage in the phylogeny for one gene or a segment in a genome, 
using the lineage labels defined from a phylogeny for another gene 
or another segment, may provide evidence for reassortment or 
recombination.
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