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Abstract

Deep convolutional neural networks (CNNs) are state-of-the-art for semantic image segmentation, 

but typically require many labeled training samples. Obtaining 3D segmentations of medical 

images for supervised training is difficult and labor intensive. Motivated by classical approaches 

for joint segmentation and registration we therefore propose a deep learning framework that 

jointly learns networks for image registration and image segmentation. In contrast to previous 

work on deep unsupervised image registration, which showed the benefit of weak supervision via 

image segmentations, our approach can use existing segmentations when available and computes 

them via the segmentation network otherwise, thereby providing the same registration benefit. 

Conversely, segmentation network training benefits from the registration, which essentially 

provides a realistic form of data augmentation. Experiments on knee and brain 3D magnetic 

resonance (MR) images show that our approach achieves large simultaneous improvements of 

segmentation and registration accuracy (over independently trained networks) and allows training 

high-quality models with very limited training data. Specifically, in a one-shot-scenario (with 

only one manually labeled image) our approach increases Dice scores (%) over an unsupervised 

registration network by 2.7 and 1.8 on the knee and brain images respectively.

1 Introduction

Image segmentation and registration are two crucial tasks in medical image analysis. They 

are also highly related and can help each other. E.g., labeled atlas images are used via image 

registration for segmentation. Segmentations can also provide extra supervision (in addition 

to image intensities) for image registration and are used to evaluate registration results. 

Consequentially, joint image registration and segmentation approaches have been proposed. 

E.g., approaches based on active-contours [12] and Bayesian [8] or Markov random field 

formulations [7]. While these methods jointly estimate registration and segmentation results, 

they operate on individual image pairs (instead of a population of images) and require the 

computationally costly minimization of an energy function.

Deep learning (DL) has been widely and successfully applied to medical image analysis. For 

supervised image segmentation, CNN-based approaches are faster and better than classical 

methods when many labeled training samples are available [6]. DL-based registration 

achieves similar performance to optimization-based approaches but is much faster. As true 

transformations are not available, training either uses estimates from optimization-based 

methods [11] or is unsupervised [3]. Recent work [4] shows that weak supervision via 

an additional image segmentation loss between registered images can improve results over 
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unsupervised training, which relies on the images alone. In practice, obtaining segmentations 

for 3D medical images is difficult and labor intensive. Hence, manual segmentations will 

often not be available for a large fraction of image data.

We propose DeepAtlas, to jointly learn deep networks for weakly supervised registration 

and semi-supervised segmentation. Our contributions are:

• We propose the first approach to jointly learn two deep neural networks for 
image registration and segmentation. Previous joint approaches require joint 

optimizations for each image pair. Instead, we jointly learn from a population of 

images during training, but can independently use the resulting segmentation and 

registration networks at test time.

• Our joint approach only requires few manual segmentations. Our two networks 

mutually guide each other’s training on unlabeled images via an anatomy 

similarity loss. This loss penalizes the dissimilarity of the warped segmentation 

of the moving image and the segmentation of the target image. When registering 

image pairs consisting of a manually labeled image and the estimate of a labeled 

image (via its network-predicted segmentation), this loss provides anatomy 

consistency supervision for registration and forces the predicted segmentation 

to match the manual segmentation after registration.

• We evaluate our approach on large 3D brain and knee MRI datasets. Using few 

manual segmentations, our method outperforms separately learned registration 

and segmentation networks. In the extreme case, where only one manually 

segmented image is available, our approach facilitates one-shot segmentation 

and boosts registration performance at the same time.

2 Method

Our goal is to improve registration and segmentation accuracy when few manual 

segmentations are available for a large set of images by jointly learning a segmentation 

and a registration network. Fig. 1 illustrates our approach consisting of two parts: weakly-

supervised registration learning (solid blue lines) and semi-supervised segmentation learning 

(dashed yellow lines). Our loss is the weighted sum of the registration regularity loss 

ℒr , the image similarity loss ℒi , the anatomy loss ℒa  penalizing segmentation 

dissimilarity, and the supervised segmentation loss ℒsp . The losses ℒr , ℒi , ℒa  drive 

the weakly supervised learning of registration (Sec. 2.1) and the losses ℒa , ℒsp  drive the 

semi-supervised learning of segmentation (Sec. 2.2). Sec. 2.3 details the implementation.

2.1 Weakly-supervised Registration Learning

Given a pair of moving and target images Im and It, a registration network ℱR with 

parameters θr predicts a displacement field u = ℱR Im, It; θr . This then allows warping 

the moving image to the target image space, Im
w = Im ∘ Φ−1, where Φ−1 = u + id is the 

deformation map and id is the identity transform. A good map, Φ, maps related anatomical 

positions to each other. Unsupervised registration learning optimizes θr over an intensity 

similarity loss ℒi (penalizing appearance differences between It and Im
w) and a regularity 
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loss ℒr on u to encourage smooth transformations. Adding weak supervision by also 

matching segmentations between the target image St  and the warped moving image 

Sm
w = Sm ∘ Φ−1  via an anatomy similarity loss ℒa can improve registrations [4]. Weakly-

supervised registration learning is then formulated as:

θr
⋆ = argmin

θr
ℒi Im ∘ Φ−1, It + λrℒr Φ−1 + λaℒa Sm ∘ Φ−1, St ,

(1)

with weights λr, λa ≥ 0. In practice, while a large set of images are often available, few of 

them have manual segmentations. In contrast to existing work, we estimate missing moving 

or target segmentations via our segmentation network (see Fig. 1). Hence, we provide weak 

supervision for every training image pair.

2.2 Semi-supervised Segmentation Learning

The segmentation network ℱS with parameters θs takes an image I as input and generates 

probabilistic segmentation maps for all semantic classes: Ŝ = ℱS I; θs . In addition to the 

typical supervised segmentation loss ℒsp Ŝ, S  where S is a given manual segmentation, the 

anatomy similarity loss for registration ℒa Sm ∘ Φ−1, St  also drives segmentation learning 

when Sm or St are predicted via ℱS for unlabeled images. Specifically, we define these losses 

as:

ℒa = ℒa Sm ∘ Φ−1, ℱS It and ℒsp = ℒsp ℱS Im , Sm , if It is unlabeled;

ℒa = ℒa ℱS Im ∘ Φ−1, St and ℒsp = ℒsp ℱS It , St , if Im is unlabeled;

ℒa = ℒa Sm ∘ Φ−1, St and ℒsp = ℒsp ℱS Im , Sm , if Im and It are labeled;
ℒa = ℒsp = 0, if both It and Im are unlabeled .

ℒa teaches ℱS to segment an unlabeled image such that the predicted segmentation matches 

the manual segmentation of a labeled image via ℱR. In the case where the target image It is 

unlabeled, ℒa is equivalent to a supervised segmentation loss on It, in which the single-atlas 

segmentation Sm ∘ Φ−1 is the noisy true label. Note that we do not use two unlabeled images 

for training and ℒa does not train the segmentation network when both images are labeled. 

We then train our segmentation network in a semi-supervised manner as follows:

θs
⋆ = argmin

θs
λaℒa + λspℒsp , λa, λsp ≥ 0.

(2)

2.3 Implementation Details

Losses: Various choices are possible for the intensity/anatomy similarity, the 

segmentation, and the regularity losses. Our choices are as follows.

Xu and Niethammer Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Anatomy similarity and supervised segmentation loss:  A cross-entropy loss requires 

manually tuned class weights for imbalanced multi-class segmentations [9]. We use a soft 

multi-class Dice loss which addresses imbalances inherently:

ℒdice S, S⋆ = 1 − 1
K ∑

k = 1

K ∑x Sk(x)Sk
⋆(x)

∑x Sk(x) + ∑x Sk
⋆(x)

,

(3)

where k indicates a segmentation label (out of K) and x is voxel location. S and S* are two 

segmentations to be compared.

Intensity similarity loss:  We use normalized cross correlation (NCC) as:

ℒi Im
w, It = 1 − NCC Im

w, It ,

(4)

which will be in [0, 2] and hence will encourage maximal correlation.

Regularization loss:  We use the bending energy[10]:

ℒr(u) = 1
N ∑

x
∑

i = 1

d
H ui(x) F

2

(5)

where ∥ ⋅ ∥F denotes the Frobenius norm, H ui x  is the Hessian of the i-th component 

of u x , and d denotes the spatial dimension (d = 3 in our case). N denotes the number of 

voxels. Note that this is a second-order generalization of diffusion regularization, where one 

penalizes ∥ ∇ui x ∥2
2 instead of ∥ H ui x ∥F

2 .

Alternate training: It is in principle straightforward to optimize two networks according 

to Eqs. 1 and 2. However, as we work with the whole 3D images, not cropped patches, 

GPU memory is insufficient to simultaneously optimize the two networks in one forward 

pass. Hence, we alternately train one of the two networks while keeping the other fixed. 

We use a 1:20 ratio between training steps for the segmentation and registration networks, 

as the segmentation network converges faster. Since it is difficult to jointly train from 

scratch with unlabeled images, we independently pretrain both networks. When only few 

manual segmentations are available, e.g., only one, separately training the segmentation 

network is challenging. In this case, we train the segmentation network from scratch using 

a fixed registration network trained unsupervisedly. We start alternate training when the 

segmentation network achieves reasonable performance.

Networks: DeepAtlas can use any CNN architecture for registration and segmentation. 

We use the network design of [3] for registration; and a customized light 3D U-Net design 
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for segmentation with LeakyReLU instead of ReLU, and smaller feature size due to GPU 

memory limitations.

3 Experiments and Results

We show on a 3D knee and a 3D brain MRI dataset that our framework improves both 

registration and segmentation when many images with few manual segmentations are 

available: i.e. N of M images are labeled N < < M .

Baselines:

We train a baseline supervised segmentation network using only N labeled images. The 

baseline registration network is trained via Eq. 1 using all M training images with N 
images labeled; the anatomy similarity loss, ℒa, is only used for training pairs where both 

images have manual segmentations. Baseline models trained with M manual segmentations 

(i.e., with manual segmentations for all images) provide our upper performance bound. All 

baseline models are trained for a sufficient number of epochs until they over-fit. The best 

models based on validation performance are evaluated.

DeepAtlas (DA):

We initialize the joint model with the trained baseline networks. In addition to the alternately 

trained DA models, we train a network with the other network held fixed, termed Semi-
DeepAtlas (Semi-DA).

In one-shot learning N = 1  experiments, training a supervised segmentation network based 

on a single labeled image is difficult; hence, we do not compute a baseline segmentation 

model in this case. For Semi-DA, we train a segmentation network from scratch with a fixed 

registration network that is trained unsupervised N = 0 . The DA model is initialized using 

the Semi-DA segmentation network and the unsupervised registration network.

Knee MRI experiment:

We test our method on 3D knee MRIs from the Osteoarthritis Initiative (OAI) [1] and 

corresponding segmentations of femur and tibia as well as femoral and tibial cartilage [2]. 

From a total of 507 labeled images, we use 200 for training, 53 for validation, and 254 for 

testing. To test registration performance we use 10,000 random image pairs from the test 

set. All images are affinely registered, resampled to isotropic spacing of 1mm, cropped to 

160 × 160 × 160 and intensity normalized to [0,1]. In addition, right knee images are flipped 

to be consistent with left knees. For training, the loss weights are λr = 20,000, λa = 3, and 

λsp = 3 based on approximate hyper-parameter tuning. Note that when computing ℒr from 

the displacements, the image coordinates are scaled to [−1, 1] for each dimension.

Brain MRI experiment:

We also evaluate our method on the MindBooggle101 [5] brain MRIs with 32 cortical 

regions. We fuse corresponding segmentation labels of the left and right brain hemispheres. 

MindBoogle101 consists of images from multiple datasets, e.g., OASIS-TRT-20, MMRR-21 

and HLN-12. After removing images with problematic labels, we obtain a total of 85 
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images. We use 5 images from OASIS-TRT-20 as validation set and 15 as test set. We 

use the remaining 65 images for training. Manual segmentations in the N = 1 and N = 21
experiments are only from the MMRR-21 subset; this simulates a common practical 

use case, where we only have few manual segmentations for one dataset and additional 

unlabeled images from other datasets, but desire to process a different, new dataset. 

All images are 1mm isotropic, affinely-aligned, histogram-matched, and cropped to size 

168 × 200 × 169. We apply sagittal flipping for training data augmentation. We use the same 

loss weights as for the knee MRI experiment except for λr = 5,000, since cross-subject brain 

registrations require large deformations and hence less regularization.

Optimizer:

We use Adam. The initial learning rates are 1e-3 for the baseline models. Initial learning 

rates are 5e-4 for the registration network and 1e-4 for the segmentation network for Semi-

DA and DA. Learning rates decay by 0.2 at various epochs across experiments. We use 

PyTorch and run on Nvidia V100 GPUs with 16GB memory.

Results:

All trained networks are evaluated using Dice overlap scores between predictions and 

the manual segmentations for the segmentation network, or between the warped moving 

segmentations and the target segmentations for the registration network. Tabs. 1 and 2 show 

results for the knee and brain MRI experiments respectively in Dice scores (%). Fig. 4 shows 

examples of knee MRI registrations and brain MRI segmentations.

General results: For both datasets across different numbers of manual segmentations, 

Semi-DA, which uses a fixed pre-trained network to help the training of the other network, 

boosts performance compared to separately trained baseline networks. DA, where both 

networks are alternately trained, achieves even better Dice scores in most cases. Based on 

a Mann-Whitney U-test with a significance level of 0.05 and a correction for multiple 

comparisons with a false discovery rate of 0.05, our models (DA/Semi-DA) result in 

significantly larger Dice scores than the baselines for all experiments. This demonstrates that 

segmentation and registration networks can indeed help each other by providing estimated 

supervision on unlabeled data.

Knee results: On knee MRIs, our method improves segmentation scores over separately 

learned networks by about 1.2 and 0.5, and registration scores increase by about 3.1 and 

3.0, when training with 5 and 10 manual segmentation respectively. Especially for the 

challenging cartilage structures, our joint learning boosts segmentation by 1.4 and 0.7, and 

registration by 5.5 and 5.2 for N=5 and N=10 respectively.

Brain results: Dice scores for segmentation and registration increase by about 2.6 and 3.5 

respectively for the cortical structures of the brain MRIs.

One-shot learning: In the one-shot experiments on both datasets, reasonable 

segmentation performance is achieved; moreover, DA increases the Dice score over 
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unsupervised registration by about 2.7 and 1.8 on the knee and brain data respectively. 

This demonstrates the effectiveness of our framework for one-shot learning.

Qualitative results: DA achieves more anatomically consistent registrations on the knee 

MRI samples than the baseline models (Fig. 4).

4 Conclusion

We presented our DeepAtlas framework for joint learning of segmentation and registration 

networks using only few images with manual segmentations. By introducing an anatomical 

similarity loss, the learned registrations are more anatomically consistent. Furthermore, the 

segmentation network is guided by a form of data augmentation provided via the registration 

network on unlabeled images. For both bone/cartilage structures in knee MRIs and cortical 

structures in brain MRIs, our approach shows large improvements over separately learned 

networks. When only given one manual segmentation, our method provides one-shot 

segmentation learning and greatly improves registration. This demonstrates that one network 

can benefit from imperfect supervision on unlabeled data provided by the other network. 

Our approach provides a general solution to the lack of manual segmentations when 

training segmentation and registration networks. For future work, introducing uncertainty 

measures for the segmentation and registration networks may help alleviate the effect of 

poor predictions of one network on the other. It would also be of interest to investigate 

multitask learning via layer sharing for the segmentation and registration networks. This 

may further improve performance and decrease model size.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
DeepAtlas for joint learning of weakly supervised registration and semi-supervised 

segmentation. Unlabeled moving/target images are segmented by the segmentation network 

so that every training registration pair has weak supervision via the anatomy similarity loss 

which also guides segmentation learning on unlabeled images.
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Fig. 2: 
Examples of knee MRI registration (top) and brain MRI segmentation (bottom) 

results. Top: The first two columns are the moving image/segmentation and the target 

image/segmentation followed by the warped moving images (with deformation grids)/

segmentations by different models. Bottom left to right: original image, manual 

segmentation, and predictions of various models. BLi and DAi represent the baseline and 

DA models with i manual segmentations respectively.
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Table 1:

Segmentation and registration performance on 3D knee MRIs. Average (standard deviation) of Dice scores 

(%) for bones (femur and tibia) and cartilages (femoral and tibial). N of 200 training images are manually 

labeled.

N Models
Segmentation Dice (%) Registration Dice (%)

Bones Cartilages All Bones Cartilages All

0 Baseline - - - 95.32(1.13) 65.71(5.86) 80.52(3.24)

1
Semi-DA 96.43(0.85) 76.67(3.24) 86.55(1.86) - - -

DA 96.80(0.81) 77.63(3.22) 87.21(1.84) 95.76(1.01) 70.77(5.68) 83.27(3.14)

5

Baseline 96.51(1.69) 78.95(3.91) 87.73(2.37) 95.60(1.08) 68.13(5.98) 81.87(3.31)

Semi-DA 96.97(1.26) 79.73(3.84) 88.35(2.22) 96.38(0.81) 73.48(5.26) 84.93(2.89)

DA 97.49(0.67) 80.35(3.64) 88.92(2.01) 96.35(0.82) 73.67(5.22) 85.01(2.86)

10

Baseline 97.29(1.03) 80.59(3.67) 88.94(2.07) 95.77(1.02) 69.45(5.93) 82.61(3.27)

Semi-DA 97.60(0.76) 81.21(3.58) 89.40(1.99) 96.66(0.72) 74.67(5.01) 85.66(2.73)

DA 97.70(0.65) 81.19(3.47) 89.45(1.91) 96.62(0.75) 74.69(5.03) 85.66(2.75)

200 Baseline 98.24(0.34) 83.54(2.93) 90.89(1.56) 96.98(0.56) 77.33(4.34) 87.16(2.35)
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Table 2:

Segmentation and registration performance on 3D brain MRIs. Average(Standard deviation) of Dice scores 

(%) for 31 cortical regions. N of 65 training images are manually labeled.

N Models Seg Dice (%) Reg Dice (%)

0 Baseline - 54.75(2.37)

1
Semi-DA 61.19(1.49) -

DA 61.22(1.40) 56.54(2.32)

21

Baseline 73.48(2.58) 59.47(2.34)

Semi-DA 75.63(1.66) 62.92(2.14)

DA 76.06(1.50) 62.92(2.13)

65 Baseline 81.31(1.21) 63.25(2.07)
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