
GradICON: Approximate Diffeomorphisms via Gradient Inverse 
Consistency

Lin Tian*,1, Hastings Greer*,1, François-Xavier Vialard2,3, Roland Kwitt4, Raúl San José 
Estépar5, Richard Jarrett Rushmore6, Nikolaos Makris5, Sylvain Bouix7, Marc Niethammer1

1UNC Chapel Hill

2LIGM, Université Gustave Eiffel

3MOKAPLAN, INRIA Paris

4University of Salzburg

5Harvard Medical School

6Boston University

7ÉTS Montréal

Abstract

We present an approach to learning regular spatial transformations between image pairs in the 

context of medical image registration. Contrary to optimization-based registration techniques and 

many modern learning-based methods, we do not directly penalize transformation irregularities 

but instead promote transformation regularity via an inverse consistency penalty. We use a neural 

network to predict a map between a source and a target image as well as the map when swapping 

the source and target images. Different from existing approaches, we compose these two resulting 

maps and regularize deviations of the Jacobian of this composition from the identity matrix. 

This regularizer – GradICON – results in much better convergence when training registration 

models compared to promoting inverse consistency of the composition of maps directly while 

retaining the desirable implicit regularization effects of the latter. We achieve state-of-the-art 

registration performance on a variety of real-world medical image datasets using a single set of 

hyperparameters and a single non-dataset-specific training protocol. Code is available at https://

github.com/uncbiag/ICON.

1. Introduction

Image registration is a key component in medical image analysis to estimate spatial 

correspondences between image pairs [14, 53]. Applications include estimating organ 

motion between treatment fractions in radiation therapy [25, 37], capturing disease 

progression [64], or allowing for localized analyses in a common coordinate system [19].
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Many different registration algorithms have been proposed over the last decades in medical 

imaging [10, 41, 44, 63, 64] and in computer vision [21, 33]. Contributions have focused 

on different transformation models (i.e., what types of transformations are considered 

permissible), similarity measures (i.e., how “good alignment” between image pairs is 

quantified), and solution strategies (i.e., how transformation parameters are numerically 

estimated). The respective choices are generally based on application requirements as 

well as assumptions about image appearance and the expected transformation space. In 

consequence, while reliable registration algorithms have been developed for transformation 

models ranging from simple parametric models (e.g., rigid and affine transformations) 

to significantly more complex nonparametric formulations [41, 44, 63] that allow highly 

localized control, practical applications of registration typically require many choices and 

rely on significant parameter tuning to achieve good performance. Recent image registration 

work has shifted the focus from solutions based on numerical optimization for a specific 

image pair to learning to predict transformations based on large populations of image pairs 

via neural networks [10, 15, 17, 34, 35, 56, 57, 68]. However, while numerical optimization 

is now replaced by training a regression model which can be used to quickly predict 

transformations at test time, parameter tuning remains a key challenge as loss terms for 

these two types of approaches are highly related (and frequently the same). Further, one also 

has additional choices regarding network architectures. Impressive strides have been made 

in optical flow estimation as witnessed by the excellent performance of recent approaches 

[34] on Sintel [7]. However, our focus is medical image registration, where smooth and 

often diffeomorphic transformations are desirable; here, a simple-to-use learning-based 

registration approach, which can adapt to different types of data, has remained elusive. In 

particular, nonparametric registration approaches require a balance between image similarity 

and regularization of the transformation to assure good matching at a high level of spatial 

regularity, as well as choosing a suitable regularizer. This difficulty is compounded in a 

multi-scale approach where registrations at multiple scales are used to avoid poor local 

solutions.

Instead of relying on a complex spatial regularizer, the recent ICON approach [23] uses only 

inverse consistency to regularize the sought-after transformation map, thereby dramatically 

reducing the number of hyperparameters to tune. While inverse consistency is not a new 

concept in image registration and has been explored to obtain transformations that are 

inverses of each other when swapping the source and the target images [11], ICON [23] has 

demonstrated that a sufficiently strong inverse consistency penalty, by itself, is sufficient for 

spatial regularity when used with a registration network. Further, as ICON does not explicitly 

penalize spatial gradients of the deformation field, it does not require pre-registration (e.g., 

rigid or affine), unlike many other related works. However, while conceptually attractive, 

ICON suffers from the following limitations: 1) training convergence is slow, rendering 

models costly to train; and 2) enforcing approximate inverse consistency strictly enough 

to prevent folds becomes increasingly difficult at higher spatial resolutions, necessitating a 

suitable schedule for the inverse consistency penalty, which is not required for GradICON.
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Our approach is based on a surprisingly simple, but effective observation: penalizing 

the Jacobian of the inverse consistency condition instead of inverse consistency directly1 

applies zero penalty for inverse consistent transform pairs but 1) yields significantly 

improved convergence, 2) no longer requires careful scheduling of the inverse consistency 

penalty, 3) results in spatially regular maps, and 4) improves registration accuracy. These 

benefits facilitate a unified training protocol with the same network structure, regularization 

parameter, and training strategy across registration tasks.

Our contributions are as follows:

• We develop GradICON (Gradient Inverse CONsistency), a versatile regularizer 

for learning-based image registration that relies on penalizing the Jacobian of 

the inverse consistency constraint and results, empirically and theoretically, in 

spatially well-regularized transformation maps.

• We demonstrate state-of-the-art (SOTA) performance of models trained with 

GradICON on three large medical datasets: a knee magnetic resonance image 

(MRI) dataset of the Osteoarthritis Initiative (OAI) [46], the Human Connectome 

Project’s collection of Young Adult brain MRIs (HCP) [60], and a computed 

tomography (CT) inhale/exhale lung dataset from COPDGene [47].

2. Related work

Nonparametric transformation models & regularization.

There are various ways of modeling a transformation between image pairs. The most 

straightforward nonparametric approach is via a displacement field [59]. Different 

regularizers for displacement fields have been proposed [32], but they are typically 

only appropriate for small displacements [44] and cannot easily guarantee diffeomorphic 

transformations [2], which is our focus here for medical image registration. Fluid 

models, which parameterize a transformation by velocity fields instead, can capture 

large deformations and, given a suitably strong regularizer, result in diffeomorphic 

transformations. Popular fluid models are based on viscous fluid flow [12, 13], the large 

deformation diffeomorphic metric mapping (LDDMM) model [5], or its shooting variant 

[41, 63]. Simpler stationary fluid approaches, such as the stationary velocity field (SVF) 

approach [1, 61], have also been developed. While diffeomorphic transformations are 

not always desirable, they are often preferred due to their invertibility, which allows 

mappings between images to preserve object topologies and prevent foldings that are 

physically implausible. These models have initially been developed for pair-wise image 

registration where solutions are determined by numerical optimization, but have since, with 

minimal modifications, been integrated with neural networks [4, 52, 68]. In a learning-based 

formulation, the losses are typically the same as for numerical-optimization approaches, but 

one no longer directly optimizes over the parameters of the chosen transformation model but 

1i.e., penalizing deviations from ∇ Φθ
AB ∘ Φθ

BA − Id = 0 instead of deviations from Φθ
AB ∘ Φθ

BA − Id = 0.
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instead over the parameters of a neural network which, once trained, can quickly predict the 

transformation model parameters.

Fluid registration models are computationally complex as they require solving a fluid 

equation (either greedily or via direct numerical integration [42], or via scaling and 

squaring [1]), but can guarantee diffeomorphic transformations. In contrast, displacement 

field models are computationally cheaper but make it more difficult to obtain diffeomorphic 

transformations. Solution regularity can be obtained for displacement field models by adding 

appropriate constraints on the Jacobian [24]. Alternatively, invertibility can be encouraged 

by adding inverse consistency losses, either for numerical optimization approaches [11] or 

in the context of registration networks as is the case for ICON [23]. Similar losses have also 

been used in computer vision to encourage cycle consistencies [6, 22, 67, 69] though they 

are, in general, not focused on spatial regularity. Most relevant to our approach, ICON [23] 

showed that inverse consistency alone is sufficient to approximately obtain diffeomorphic 

transformations when the displacement field is predicted by a neural network. Our work 
extends this approach by generalizing the inverse consistency loss to a gradient inverse 
consistency loss, which results in smooth transformations, faster convergence, and more 
accurate registration results.

Multi-scale image registration.

Finding good solutions for the optimization problems of image registration is challenging, 

and one might easily get trapped in an unfavorable local minimum. In particular, this might 

happen for self-similar images, such as lung vessels, where incorrect vessel alignment might 

be locally optimal. Further, if there is no overlap between vessels, a similarity measure 

might effectively be blind to misalignment, which is why it is important for a similarity 

measure to have a sufficient capture range2.

Multi-scale approaches have been proposed for optimization-based registration models [39, 

55, 58, 70] to overcome these issues. For these approaches, the loss function is typically first 

optimized at a coarse resolution, and the image warped via the coarse transformation then 

serves as the input for the optimization at a finer resolution. This helps to avoid poor local 

optima, as solutions computed at coarser resolutions effectively increase capture range and 

focus on large-scale matching first rather than getting distracted by fine local details. Multi-

scale approaches have also been used for learning-based registration [16, 18, 29, 36, 45, 52] 

and generally achieve better results than methods that only consider one scale [4]. These 

methods all use sub-networks operating at different scales but differ in how the multi-scale 

strategy is incorporated into the network structure and the training process. A key distinction 

is if source images are warped as they pass through the different sub-networks [16, 23, 

29, 45] or if sub-networks always start from the unwarped, albeit downsampled, source 

image [18]. The former approach simplifies capturing large deformations as sub-networks 

only need to refine a transformation rather than capturing it in its entirety. However, these 

methods compute the similarity measure and the regularizer losses at all scales, which 

2Note that keypoint approaches [26] and approaches based on optimal transport [51] can overcome some of these issues. However, in 
this work, we focus on the registration of images with grid-based displacement fields.
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requires balancing the weights of the losses across all scales and for each scale between the 

similarity measure and the regularizer. Hence, there are many parameters that are difficult to 

tune. To side-step the tuning issue, it is common to rely on a progressive training protocol 

to avoid tuning the weights between losses at all scales. We find that our multi-resolution 

approach trains well when the loss and regularizer are applied only at the highest scale: 

the coarser components are effectively trained by gradients propagating back through the 

multi-scale steps.

3. Gradient Inverse Consistency (GradICON)

3.1. Preliminaries

We denote by IA:Ω ℝ and IB:Ω ℝ the source and the target images in our registration 

problem. By ΦAB:ℝd ℝd we denote a transformation map with the intention that 

IA ∘ ΦAB IB. The map ΦAB is a diffeomorphism if it is differentiable, bijective and 

its inverse is differentiable as well3. Optimization-based image registration approaches 

typically solve the optimization problem

τ* = arg min
τ

ℒsim IA ∘ φτ
−1, IB + λℒreg τ ,

(1)

where ℒsim ⋅ , ⋅  is the similarity measure, ℒreg ⋅  is a regularizer, τ are the transformation 

parameters, and λ ≥ 0. In learning-based registration, one does not directly optimize over the 

transformation parameters of φ−1, but instead over the parameters θ of a neural network Φθ

that predicts φ−1 given the source and target images. Such a network is trained over a set of 

image pairs I = Ii
A, Ii

B
i = 1
N  by solving

θ* = arg min
θ

1
N ∑i = 1

N ℒsim Ii
A ∘ Φθ, i

AB, Ii
B + λℒreg Φθ, i

AB

(2)

with Φθ, i
AB as shorthand for Φθ Ii

A, Ii
B  denoting the output of the network given the i-th input 

image pair. By training with Ii
A, Ii

B  and Ii
B, Ii

A  the loss is symmetric in expectation. For ease 

of notation, we omit the subscripts i or θ in cases where the dependency is clear from the 

context.

3Basically, we are interested in properties of ΦAB Ω , as this is the region that can affect the image similarity, but since many maps 

(e.g., translations) carry points outside of Ω, ΦBA must be defined at those points for ΦAB ∘ ΦBA to be defined on all of Ω. In 

practice, this is achieved for a displacement field D by ΦAB ≔ x + interpolate D, clip x, 0, 1 d
.
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3.2. Regularization

Picking a good regularizer ℒreg is essential as it implicitly expresses the class of 

transformations one considers plausible for a registration. Ideally, the space of plausible 

transformations should be known (e.g., based on physical principles) or learned from the 

data. As nonparametric image registration (at least for image pairs) is an ill-posed problem 

[20], regularization is required to obtain reasonable solutions.

Regularizers frequently involve spatial derivatives of various orders to discourage spatial 

non-smoothness [32]. This typically requires picking a type of differential operator (or, 

conversely, a smoothing operator) as well as all its associated parameters. Most often, 

this regularizer is chosen for convenience and not learned from data. Instead of explicitly 

penalizing spatial non-smoothness, ICON [23] advocates using inverse consistency as a 

regularizer, which amounts to learning a transformation space from data in the class of 

(approximately) invertible transforms. When implementing inverse consistency, there is a 

choice of loss. The ICON approach penalizes the sum-of-squares difference between the 

identity and the composition of the maps between images IA, IB  and IB, IA , i.e., the 

regularizer has the form ℒreg
ICON = ∥ Φθ

AB ∘ Φθ
BA − Id ∥2

2, where Id denotes the identity transform. 

In [23], it is shown that this loss has an implicit regularization effect, similar to a sum-of-

squares on the gradient of the transformation, i.e., an H1 type of norm. In fact, it turns out 

that regular invertible maps can be learned without explicitly penalizing spatial gradients. 

Inspired by this observation, we propose to use the Jacobian ∇  of the composition of the 

maps instead, i.e.,

ℒreg
GradICON = ∇ Φθ

AB ∘ Φθ
BA − I F

2 ,

(3)

where I the identity matrix, and ∥ ⋅ ∥F
2  is the squared Frobenius norm integrated over Ω. 

As we will see in Sec. 5, this loss equally leads to regular maps by exerting another 

form of implicit regularization, which we analyze in Sec. 3.3. To understand the implicit 

regularization of the ICON loss, one makes the modeling choice Φθ
AB = ΦAB + εnAB such 

that ΦBA ΦAB = Id, i.e., the output of the network is inverse consistent up to a white noise 

term n with parameter ε > 0 (artificially introduced to make the discussion clear). This 

white noise can be used to prove that the resulting maps are regularized via the square of 

a first-order Sobolev (semi-) norm. Further, [23] empirically showed that an approximate 

diffeomorphism can be obtained without the white noise when used in the context of 

learning a neural registration model: if inverse consistency is not exactly enforced, as 

suggested above, the inconsistency can be modeled by noise, and the observed smoothness is 

explained by the theoretical result. In our analysis, we follow a conceptually similar idea.

3.3. Analysis

Implicit H1 type regularization.—Since the GradICON loss of Eq. (3) is formulated 

in terms of the gradient, it is a natural assumption to put the white noise on the Jacobians 
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themselves rather than on the maps, i.e., ∇Φθ
AB = ∇ΦAB + εN where N is a white noise. 

This model of randomness is motivated by the stochastic gradient scheme on the global 
population that drives the parameters of the networks. At the level of maps, we write 

Φθ
AB = ΦAB + εn where N = ∇n. Since integration is a low-pass filter, the noise n applies to 

the low frequencies of Φθ
AB. In addition, we expect the low frequencies of the noise to be 

dampened by the similarity measure between IA ∘ ΦAB and IB. Hence, we hypothesize that 

∥ n ∥ ≪ ∥ ∇n ∥, which will be used only once in our analysis. This comparison means that 

our estimates of the gradient ∇n and n on our grid satisfy this inequality. We assess this 

hypothesis Appendix A.1. We start by rewriting the GradICON regularizer, by applying the 

chain rule, as

ℒreg
GradICON = ∥ ∇ΦAB Φθ

BA + ε∇nAB Φθ
BA .

∇ΦBA + ε∇nBA − I ∥F
2 ,

(4)

using ∇Φθ
AB = ∇ΦAB + ε∇nAB and still omitting the integral sign. We now Taylor expand the 

loss w.r.t. ε and in particular expand the ∇ΦAB Φθ
BA  term from Eq. (4) as

∇ΦAB Φθ
BA = ∇ΦAB ΦBA + ε∇2ΦAB ΦBA nBA + o ε .

(5)

where ∥ n ∥ ≪ ∥ ∇n ∥ implies that the approximation

∇ΦAB Φθ
BA = ∇ΦAB ΦBA + o ε

(6)

holds as it is only compared with ∇n in the expansion. Using the first-order approximation 

∇nAB Φθ
BA ≈ ∇nAB ΦBA , see Appendix A.1, and simplifying Eq. (4), we obtain

ℒreg
GradICON ≈ ε2 ∇nAB ΦBA ∇ΦBA + ∇ΦAB ΦBA ∇nBA

F

2
,

(7)

as ∇ΦAB ΦBA = ∇ΦBA −1
 (and selecting the first-order coefficients in ε). Expanding the 

square then yields

ℒreg
GradICON ≈ ε2 ∇nAB ΦBA ∇ΦBA

F

2
+ ∇ΦBA −1∇nBA

F

2
+2 ∇nAB ΦBA ∇ΦBA, ∇ΦBA −1∇nBA

F

.
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(8)

Under the assumption of independence of the white noises ∇nAB and ∇nBA, the contribution 

of the last term in Eq. (8) vanishes in expectation. We are left with the following loss, at 

order ε2, now taking expectation,

E ℒreg
GradICON ≈ ε2E ∇nAB ΦBA ∇ΦBA

F

2
+ ∇ΦBA −1∇nBA

F

2
.

(9)

Note that the expectation is explicit due to the white noise assumption; thus, Eq. (9) can be 

further simplified to

E ℒreg
GradICON ≈ ε2 ∇ΦAB −1 Det ∇ΦAB

F

2
+ ∇ΦBA −1

F

2
.

(10)

Eq. (10) amounts to an L2 regularization of the inverse of the Jacobian maps on ΦAB and 

ΦBA which explains why we call it H1 type of regularization, see Appendix A.1; yet, strictly 

speaking, it is not the standard H1 norm [40].

Comparison with ICON [23].—Interestingly, our analysis shows that GradICON is an 

H1 type of regularization as for ICON, although we could have expected a second-order 

regularization from the model. Such higher-order terms appear when taking into account the 

magnitude of the noise n in the expansion. While there are several assumptions that can be 

formulated differently, such as the form of the noise and the fact that it is white noise for 

given pairs of images IA, IB , we believe that Eq. (10) is a plausible explanation of the 

observed regularity of the maps in practice. Importantly, since this regularization is implicit, 

GradICON, as well as ICON can learn based on a slightly more informative prior than this 

H1 regularization which relies on simplifying assumptions.

Why GradICON performs better than ICON.—In practice, we observe that learning a 

registration model via the GradICON regularizer of Eq. (3) shows a faster convergence than 

using the ICON regularizer, not only in the toy experiment of Sec. 5.4 but also on real data. 

While we do not yet have a clear explanation for this behavior, we provide insight based on 

the following key differences between the two variants.

First, a difference by a translation is not penalized in the GradICON formulation, but 

implicitly penalized in the similarity measure, assuming images are not periodic. Second, 

using the Jacobian in Eq. (3) correlates the composition of the map between neighboring 

voxels. In a discrete (periodic) setting, this can be seen by expanding the squared norm. To 
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shorten notations, define ψ x : = ΦAB ΦBA x – Id considered as a discrete vector. Then, Eq. 

(3) is the sum over voxels ∑i
ψ xi + δ − ψ xi

2

δ2 , which can be rewritten as

ℒreg
GradICON = 2‖ψ‖L2

2

δ2 1 − ψ ⋅ , ψ ⋅ + δ
‖ψ‖L2

2 ,

(11)

where δ is the (hyper-)parameter for the finite difference estimation of the gradient. This 

shows that the GradICON regularizer includes more correlation than the ICON regularizer, 

which would only contain the first factor in Eq. (11). Lastly, it is known [9] that gradient 

descent on an H1 energy rather than L2 energy is a preconditioning of the gradient flow, 

emphasizing high-frequencies over low-frequencies. In our case, however, high-frequencies 

are the dominant cause of folds. Consequently, as GradICON penalizes high frequencies 

but allows low frequencies of the composition of the maps to deviate from identity, this is 

beneficial to avoid folds4. Overall, GradICON is more flexible than ICON while retaining the 
non-folding behavior of the resulting maps.

4. Implementation

To learn a registration model under Eq. (3), we use a neural network that predicts the 

transformation maps. In particular, we implement a multi-step (i.e., multiple steps within 

a forward pass), multi-resolution approach trained with a two-stage process, followed by 

optional instance optimization at test time. We will discuss these parts next.

4.1. Network structure

To succinctly describe our network structure, we hence-forth omit θ and represent a 

registration neural network as Φ (or e.g. Ψ). The notation ΦAB (shorthand for Φ IA, IB ) 

represents the output of this network (a transform from ℝd ℝd) for input images IA and 

IB. To combine such registration networks into a multistep, multiscale approach, we rely on 

the following combination operators from [23]:

Down Φ IA, IB : = Φ AvgPool IA, 2 , AvgPool IB, 2

TS Φ, Ψ IA, IB : = Φ IA, IB ∘ Ψ IA ∘ Φ IA, IB , IB

The downsample operator (Down) is for predicting the warp between two high-resolution 

images using a network that operates on low-resolution images, and the two-step operator 

4Indeed, the neighborhood of identity of invertible maps is much larger for small-frequency perturbations than for high-frequency 
perturbations; what matters for invertibility is the norm of the gradient.
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(TS) is for predicting the warp between two images in two steps, first capturing the coarse 

transform via Φ and then the residual transform via Ψ. We use these operators to realize a 

multi-resolution, multi-step network, see Fig. 2, via

Stage1 = TS Down TS Down Ψ1 , Ψ2 , Ψ3
Stage2 = TS Stage1, Ψ4

(12)

Our atomic (i.e., not composite) registration networks Ψi are each represented by a UNet 

instance5 from [23] taking as input two images and returning a displacement field D. These 

displacement fields are converted to functions x x + interpolate D, x  since the above 

operators are defined on networks that return functions from ℝd to ℝd.

4.2. Training

We define a single training protocol that is applied to train a network on all the registration 

tasks of Sec. 5. For preprocessing, each image has its intensity clipped and rescaled to [0, 

1], with clipping intensities appropriate for the modality and anatomy being registered. For 

modalities with region of interest (ROI) annotations (brain and lung), all values outside the 

region of interest are set to zero. For intra-subject registration, we have many fewer pairs to 

train on6, so we perform augmentation via random flips along axes and small affine warps 

(see Appendix A.2). In all experiments, the image similarity measure is combined with the 

GradICON regularizer to yield the overall loss

ℒ = ℒsim IA ∘ Φ IA, IB , IB +
ℒsim IB ∘ Φ IB, IA , IA +

+ λ ∇ Φ IA, IB ∘ Φ IB, IA − I
F

2
.

(13)

In our implementation, ∇ ΦAB ∘ ΦBA  is computed using one-sided finite differences with 

Δx = 1e − 3, ∥ ⋅ ∥F
2  is computed by (uniform) random sampling over Ω with number of 

samples equal to the number of voxels in the image /2d, and we use coordinates where 

Ω = 0, 1 3.

Multi-stage training.—We train in two stages. Stage1: we train the multi-resolution 

network defined in Eq. (12) with the loss from Eq. (13). Stage2: we train with the same 

loss, jointly optimizing the parameters of Stage1 and Ψ4.

Instance optimization.—We optionally optimize the loss of Eq. (13) for 50 iterations at 

test time [66]. This typically improves performance but also increases runtime.

5For reference, networks. tallUnet2 in the ICON source code.
6For intra-subject reg., N = dataset size  instead of N = dataset size2 .

Tian et al. Page 10

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2024 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Unless noted otherwise, we use LNCC (local normalized cross-correlation) with a Gaussian 

kernel (std. of 5 voxels), computed as in [65], and GradICON with balancing parameter 

λ = 1.5. Stage1 and Stage2 are trained using ADAM at a learning rate of 5e-5 for 50,000 

iterations each. This protocol remains fixed across all datasets, and any result obtained by 

exactly this protocol is marked by †; if instance optimization is included, results are marked 

by ‡.

5. Experiments

Ethics.

We use one 2D synthetic (Triangles and Circles), one real 2D (DRIVE), and four real 3D 

datasets (OAI, HCP, COPDGene, DirLab). Acquisitions for all real datasets were approved 

by the respective Institutional Review Boards.

5.1. Datasets

Triangles and Circles.—A synthetic 2D dataset introduced in [23] where images are 

either triangles or circles. We generate 2000 hollow images with size 128 × 128 which 

consist of the shape edges and use them as the training set.

DRIVE [54].—This 2D dataset contains 20 retina images and the corresponding vessel 

segmentation masks. We use the segmentation masks to define a synthetic registration 

problem. In particular, we take downsampled segmentations as the source (/target) image 

and warp them with random deformations generated by ElasticDeform7 to obtain the 

corresponding target (/source) image. We generate 20 pairs per image, leading to 400 pairs 

at size 292×282 in total.

OAI [46].—We use a subset of 2532 images from the full corpus of MR images of the 

Osteoarthritis Initiative (OAI8) for training and 301 pairs of images for testing. The images 

are normalized so that the 1th percentile and the 99th percentile of the intensity are mapped 

to 0 and 1, respectively. Then we clamp the normalized intensity to be in [0, 1]. We 

follow the train-test split9 used in [23, 52]. We downsample images from 160×384×384 to 

80×192×192

HCP [60].—We use a subset of T1-weighted and brain-extracted images of size 

260×311×260 from the Human Connectome Project’s (HCP) young adult dataset to assess 

inter-patient brain registration performance. We downsample images to 130×155×130 for 

training but evaluate the average Dice score for 28 manually segmented subcortical brain 

regions [49, 50]10 at the original resolution. We train on 1076 images, excluding the 44 

images we use for testing.

8 https://nda.nih.gov/oai 
9Available at https://github.com/uncbiag/ICON
10 https://doi.org/10.5281/zenodo.6967315 
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COPDGene [47].—We use a subset of11 999 inspiratory-expiratory lung CT pairs from 

the COPDGene study12 [47] with provided lung segmentation masks for training. The 

segmentation masks are computed automatically13. CT images are first resampled to 

isotropic spacing (2 mm) and cropped/padded evenly along each dimension to obtain a 

175×175×175 volume. Hounsfield units are clamped within [−1000, 0] and scaled linearly 

to [0, 1]. Then, the lung segmentations are applied to the images to extract the lung region 

of interest (ROI). Among the processed data, we use 899 pairs for training and 100 pairs for 

validation.

DirLab [8].—This dataset is only used to evaluate a trained network. It contains 10 pairs of 

inspiration-expiration lung CTs with 300 anatomical landmarks per pair, manually identified 

by an expert in thoracic imaging. We applied the same preprocessing and lung segmentation 

as for COPDGene.

5.2. Ablation study

In Table 1, we investigate 1) which UNet structure should be used and 2) how multi-

resolution, multi-stage training, instance optimization, and data augmentation affect the 

registration results. To this end, we train on COPDGene and evaluate on DirLab using 

the same similarity measure, regularizer weight λ, and number of iterations. We report the 

mean target registration error (mTRE) on landmarks (in mm) and the percentage of voxels 

with negative Jacobian % J . First, we observe that the UNet from [23] performs better 

than the UNet from [4]. Hence, in all experiments, we adopt the former as our backbone. 

Notably, this model has considerably more parameters than the variant from [4] (≈ 17M 

vs. 300k, see Appendix A.6), but uses less V-RAM as it concentrates parameters in the 

heavily downsampled layers of the architecture. Second, we find that the multi-resolution 

approach, including Stage2 training, clearly improves performance, reducing the mTRE 

from 5.176mm to 3.478mm (1 vs. 3 res.) and further down to 3.153mm (with Stage2). 

In this setting, there is also a noticeable benefit of (affine) data augmentation, with the 

mTRE dropping to 1.258mm. This is not unexpected, though, as we only have 899 pairs 

of training images for this (inter-patient) registration task. While this is considered a large 

corpus for medical imaging standards, it is small from the perspective of training a large 

neural network. Finally, we highlight that adding instance optimization yields the overall 

best results, but the benefits are less noticeable in combination with augmentation.

5.3. Comparison to other regularizers

We study different regularizers in terms of the trade-off between transform regularity and 

image similarity on the training set when varying λ. We use Stage1 from Eq. (12) for all 

experiments, setting the regularizer to either Bending Energy ℒreg = ∑i ∥ ∇2 ΦAB − Id
i

∥
F

2
, 

Diffusion ℒreg = ∥ ∇ ΦAB − Id ∥
F

2
, ICON, or GradICON. Specifically, we pick λ0 for each 

11The dataset contains 1000 pairs, but 1 pair is also in the DirLab challenge set, and so was excluded from training.
12 https://www.ncbi.nlm.nih.gov/gap 
13 shorturl.at/ciEW6 
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regularizer such that % J  is kept at roughly the same level and train multiple networks with 

λ = λ0 ⋅ 2i ∣ i ∈ − 6, 6 , i ∈ ℤ  for the same number of iterations. Fig. 3 shows results on 

Triangles and Circles and DRIVE. We observe that all the regularizers lose a certain level 

of accuracy when increasing λ and GradICON in general has the least sacrifice in similarity. 

This is presumably because of the possible magnitude of deformation each regularizer 

allows. More results can be found in Appendix A.3.

5.4. Empirical convergence analysis

To demonstrate improved convergence when training models with our GradICON regularizer 

vs. models trained with the ICON regularizer of [23], we assess the corresponding loss 
curves under the same network architecture, in particular, the network described in Sec. 4. 

We are specifically interested in (training) convergence behavior when both models produce 

a similar level of map regularity. To this end, we choose λ to approximately achieve the 

same similarity loss under both regularizers and plot the corresponding curves for % J , see 

Fig. 4, for Triangles and Circles and DRIVE.

Overall, we see that GradICON converges significantly faster than ICON. We hypothesize 

that this is due to the fact that maps produced by GradICON contain larger motions than 

maps produced by ICON. I.e., for the same level of regularity, ICON more strongly limits 

deformations, effectively slowing down and resulting in less accurate image alignments.

5.5. Inter-patient registration

We evaluate inter-patient registration performance of our model with GradICON 

regularization on OAI and HCP. We report %J  (as in Sec. 5.2) and the mean DICE score 

between warped and target image for the segmentations of the femoral and tibial cartilage 

(OAI), and of a set of 28 subcortical brain regions (HCP). Both measures, averaged over the 

evaluation data, are listed in Table 2. In particular, we compare GradICON to the methods 

reported in [52] and [23] on OAI, and compare to ANTs SyN [3] and SynthMorph [31]14 

(sm-shapes/brains) on HCP. Segmentations are not used during training and allow 

quantifying if the network yields semantically meaningful registrations. Table 2 shows that 

on the OAI dataset GradICON can significantly outperform the state-of-the-art with minimal 

parameter tuning and, just as ICON, without the need for affine pre-alignment (i.e., a step 

needed by many registration methods on OAI). On HCP, GradICON performs better than 

the standard non-learning approach (SyN) and matches SynthMorph while not requiring 

affine pre-alignment and producing much less folds.

5.6. Intra-patient registration

We demonstrate the ability of our model with GradICON regularization to predict large 
deformations between lung exhale (source)/inhale (target) pairs (within patient) from 

COPDGene. This dataset is challenging as deformations are complex and large. Motion 

14Using SynthMorph networks trained on HCP aging data, which differs slightly from the HCP Young Adults data we use; see [27] 
for a comparison.
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is primarily visually represented by the deformation of lung vessels, which form a 

complex tree-like structure that creates capture-range and local minima challenges for 

registration. As in our ablation study (Sec. 5.2), we report % J  and the mTRE (in mm) 

for manually annotated lung vessel landmarks [8] averaged over all 10 DirLab image pairs. 

We assess GradICON against traditional optimization-based methods and state-of-the-art 

(SOTA) learning-based methods. Table 2 shows that our approach with instance optimization 

(0.96mm) yields a mTRE very close to the SOTA techniques and exceeds the SOTA for 

learning-based approaches of any sort. Further, our performance (1.26mm) in a single 

forward pass is the best of any one-forward-pass neural method.

6. Conclusion

We introduced and theoretically analyzed GradICON, a new regularizer to train 

deep image registration networks. In contrast to ICON [23], GradICON penalizes the 

Jacobian of the inverse consistency constraint. This has profound effects: we obtain 

dramatically faster training convergence, higher registration accuracy, do not require scale-

dependent regularizer tuning, and retain desirable implicit regularization effects resulting 

in approximately diffeomorphic transformations. Remarkably, this allows us to train 

registration networks using GradICON regularization with one standard training protocol 

for a range of different registration tasks. In fact, using this standard training protocol, we 

match or outperform state-of-the-art registration methods on three challenging and diverse 

3D datasets. This uniformly good performance without the need for dataset-specific tuning 

takes the pain out of training deep 3D registration networks and makes our approach highly 

practical.

Limitations and future work.

We only explored first-order derivatives of the inverse-consistency constraint and intensity-

based registration. This might have limited registration performance. Studying higher-order 

derivatives, more powerful image similarity measures (e.g., based on deep features), as well 

as extensions to piecewise diffeomorphic transformations would be interesting future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example source (left), target (middle) and warped source (right) images obtained with our 

method, trained with a single protocol, using the proposed GradICON regularizer.
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Figure 2. 
Illustration of the combination steps to create our registration network, see Eq. (12), from 

the atomic registration networks (Ψi) via the downsample (Down) and the two-step (TS) 

operator.
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Figure 3. 
GradICON vs. other regularization techniques.
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Figure 4. 
Comparison of the convergence speed (left), visualized as 1-LNCC (i.e., dissimilarity), for 

ICON and GradICON when λ is set to produce a similar level of map regularity (right).
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Table 1.

Ablation results for training on COPDGene and evaluating on Dirlab. We assess the effect of the backbone 

network, the number of resolutions (Res.), including Stage2 training (2nd), instance optimization (Opt.), and 

affine augmentation (Aug.).

Backbone Res. 2nd Opt. Aug. mTRE (in mm) %|J|

UNet from [4] 1 16.21 0.01440

1 5.176 0.00014

3 3.478 0.00109

3 ✓ 1.756 0.00032

UNet from [23] 3 ✓ 3.153 0.00042

3 ✓ ✓ 0.865 0.00021

3 ✓ ✓ 1.258† 0.00026

3 ✓ ✓ ✓ 0.955‡ 0.00023
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Table 2.

Results on OAI, HCP and DirLab. † and ‡ indicate results obtained using our standard training protocol (Sec. 

4.2), w/o (†) and w/ (‡) instance optimization (Opt.). Only when GradICON is trained with MSE do we set 

λ = 0.2. Results marked with * are obtained using the official source code; otherwise, values are taken from 

the literature (see A.5). Top and bottom table parts denote non-learning and learning-based methods, resp. For 

DirLab, results are shown in the common inspiration→expiration direction. A: affine pre-registration, BE: 

bending energy, MI: mutual information, TB: Tukey’s biweight, DV: displacement vector of sparse key points, 

TV: total variation, Curv: curvature regularizer, VCC: volume change control, NGF: normalized gradient flow, 

TVD: sum of squared tissue volume difference, VMD: sum of squared vesselness measure difference, Diff: 

diffusion, VF: velocity field, SVF: stationary VF, DVF: displacement vector field. PLOSL50: 50 iterations of 

instance optimization with PLOSL.

Method Trans. Lreg Lsim DICE ↑ %|J| ↓

OAI

Initial 7.6

Demons [62] A,DVF Gaussian MSE 63.5 0.0006

SyN [3] A,VF Gaussian LNCC 65.7 0.0000

NiftyReg [43] A,B-Spline BE NMI 59.7 0.0000

NiftyReg [43] A,B-Spline BE LNCC 67.9 0.0068

vSVF-opt [52] A,vSVF m-Gauss LNCC 67.4 0.0000

VM [4] SVF Diff. MSE 46.1 0.0028

VM [4] A,SVF Diff. MSE 66.1 0.0013

AVSM [52] A,vSVF m-Gauss LNCC 68.4 0.0005

ICON* [23] DVF ICON MSE 65.1 0.0040

Ours (MSE, λ=0.2) DVF GradICON MSE 69.5 0.0000

Ours (MSE, λ=0.2, Opt.) DVF GradICON MSE 70.5 0.0001

Ours(std. protocol)
DVF GradICON LNCC 70.1† 0.0261

DVF GradICON LNCC 71.2‡ 0.0042

HCP

Initial 53.4

FreeSurfer-Affine* [48] A — TB 62.1 0.0000

SyN* [3] A,VF Gaussian MI 75.8 0.0000

sm-shapes* [31] A,SVF Diff. DICE 79.8 0.2981

sm-brains* [31] A,SVF Diff. DICE 78.4 0.0364

Ours(std. protocol)
DVF GradICON LNCC 78.7† 0.0012

DVF GradICON LNCC 80.5‡ 0.0004

DirLab

Method Trans. ℒreg ℒsim
mTRE ↓
(in mm) %|J| ↓

Initial 23.36

SyN [3] A,VF Gaussian LNCC 1.79 —

Elastix [38] A,B-Spline BE MSE 1.32 —
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NiftyReg [43] A,B-Spline BE MI 2.19 —

PTVReg [65] DVF TV LNCC 0.96 —

RRN [28] DVF TV LNCC 0.83 —

VM* [4] A,SVF Diff. NCC 9.88 0.0000

LapIRN* [45] SVF Diff. NCC 2.92 0.0000

LapIRN* [45] DVF Diff. NCC
DICE 4.24 0.0105

Hering et al. [30] DVF Curv+VCC +KP+NGF 2.00 0.0600

GraphRegNet [26] DV — MSE 1.34 —

PLOSL [66] DVF Diff. TVD+VMD 3.84 0.0000

PLOSL50 [66] DVF Diff. TVD+VMD 1.53 0.0000

ICON* [23] DVF ICON LNCC 7.04 0.3792

Ours(std. protocol)
DVF GradICON LNCC 1.26† 0.0003

DVF GradICON LNCC 0.96‡ 0.0002
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