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Summary
Background Osteoarthritis is a leading cause of disability, and disease-modifying osteoarthritis drugs (DMOADs)
could represent a pivotal advancement in treatment. Identifying the potential of antidiabetic medications as
DMOADs could impact patient care significantly.

Methods We designed a comprehensive analysis pipeline involving two-sample Mendelian Randomization (MR)
(genetic proxies for antidiabetic drug targets), summary-based MR (SMR) (for mRNA), and colocalisation (for
drug-target genes) to assess their causal relationship with 12 osteoarthritis phenotypes. Summary statistics from
the largest genome-wide association meta-analysis (GWAS) of osteoarthritis and gene expression data from the
eQTLGen consortium were utilised.

Findings Seven out of eight major types of clinical antidiabetic medications were identified, resulting in fourteen
potential drug targets. Sulfonylurea targets ABCC8/KCNJ11 were associated with increased osteoarthritis risk at any
site (odds ratio (OR): 2.07, 95% confidence interval (CI): 1.50–2.84, P < 3 × 10−4), while PPARG, influenced by
thiazolidinediones (TZDs), was associated with decreased risk of hand (OR: 0.61, 95% CI: 0.48–0.76, P < 3 × 10−4),
finger (OR: 0.50, 95% CI: 0.35–0.73, P < 3 × 10−4), and thumb (OR: 0.49, 95% CI: 0.34–0.71, P < 3 × 10−4) osteo-
arthritis. Metformin and GLP1-RA, targeting GPD1 and GLP1R respectively, were associated with reduced risk of
knee and finger osteoarthritis. In the SMR analyses, gene expression of KCNJ11, GANAB, ABCA1, and GSTP1,
targeted by antidiabetic drugs, was significantly linked to at least one osteoarthritis phenotype and was replicated
across at least two gene expression datasets. Additionally, increased KCNJ11 expression was related to decreased
osteoarthritis risk and co-localised with at least one osteoarthritis phenotype.

Interpretation Our findings suggest a potential therapeutic role for antidiabetic drugs in treating osteoarthritis. The
results indicate that certain antidiabetic drug targets may modify disease progression, with implications for devel-
oping targeted DMOADs.
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Research in context

Evidence before this study
Previous research has explored the complex interplay between
metabolic dysfunctions and osteoarthritis, implicating
conditions such as diabetes in the pathophysiology of the
disease. Despite extensive research, traditional treatments
have not effectively halted osteoarthritis progression,
highlighting a substantial gap in effective Disease-Modifying
Osteoarthritis Drugs (DMOADs). We conducted a
comprehensive literature review using multiple databases,
such as PubMed, Web of Science, and Scopus, with no
language restrictions and covering publications up to January
2024. Our search was focused on gathering robust evidence
from genetic studies, clinical trials, and observational cohorts
to inform our understanding of the links between metabolic
dysfunction and osteoarthritis. Our search criteria were
carefully designed to include relevant studies, assessing their
quality and potential biases. This groundwork identified
knowledge gaps regarding the use of antidiabetic drugs as
potential treatments for osteoarthritis. This gap in knowledge
underscored the need for robust genetic studies to clarify
these potential relationships, leading directly to the design of
our study, which utilises Mendelian Randomization to
overcome these limitations.

Added value of this study
Our study uniquely applies employing a comprehensive
analysis pipeline involving two-sample Mendelian
Randomization, summary-based Mendelian Randomization,
and colocalisation analyses to explore the relationship
between antidiabetic drug targets and osteoarthritis
phenotypes. We found that certain antidiabetic drugs,
including sulfonylurea targets like ABCC8/KCNJ11 and the
PPARG target of Thiazolidinediones (TZDs), might influence
osteoarthritis risk, offering new insights into their potential as
disease-modifying drugs.

Implications of all the available evidence
The study opens up new possibilities for osteoarthritis
treatment by suggesting antidiabetic drugs as potential
disease-modifying osteoarthritis drugs. This has significant
implications for clinical practice and future research,
particularly in developing targeted treatments and
understanding disease mechanisms. Further research is
needed to confirm these findings and assess their clinical
relevance.
Introduction
Osteoarthritis (commonly abbreviated as OA), the most
prevalent form of arthritis, is a whole-joint disease that
leads to substantial morbidity due to pain and functional
limitations.1 Characterised by progressive cartilage
degradation, subchondral bone remodelling, and
inflammation, the aetiology of osteoarthritis is multi-
factorial, involving biomechanical forces and biochem-
ical processes.2 Despite its prevalence, there are
currently no approved Disease-Modifying Osteoarthritis
Drugs (DMOADs) that effectively halt the progression
or reverse the course of the disease.3 Thus, searching for
effective DMOADs remains a critical pursuit in osteo-
arthritis research.4

Recent insights into osteoarthritis pathogenesis have
highlighted metabolic dysregulation as a key factor in
disease progression, suggesting a strong interplay be-
tween metabolic syndrome and osteoarthritis.5 Hyper-
glycemia and osteoarthritis interact at both local and
systemic levels. Locally, oxidative stress and the accu-
mulation of advanced glycation end-products play a role
in damaging cartilage.6 Systemically, the build-up of
glucose leads to low-grade inflammation, creating a
harmful internal environment that can worsen
osteoarthritis symptoms.6 This has sparked interest in
the potential repurposing of antidiabetic medications as
DMOADs, with studies indicating that such drugs may
influence pathways relevant to joint health.7 Previous
studies have explored the potential of antidiabetic drugs,
such as metformin, in influencing osteoarthritis.8,9

Metformin has been observed to modulate inflamma-
tory responses and cartilage matrix homeostasis, while
drugs affecting the insulin pathway may influence sys-
temic inflammation and anabolic processes in
chondrocytes.10–14 The recently developed antidiabetic
drug class, glucagon-like peptide-1 receptor agonists
(GLP1-RA), also demonstrates promising potential as
therapeutic treatments for osteoarthritis.15 Given the
complexities of osteoarthritis and the multifaceted ac-
tions of antidiabetic drugs, understanding the potential
of these medications as DMOADs requires robust
investigative methods. Mendelian Randomization (MR),
by leveraging genetic variants (single nucleotide poly-
morphisms, SNPs) as instrumental variables (IVs), of-
fers a powerful approach to infer causal relationships
from observational data, mitigating confounding and
reverse causation that often plague traditional epidemi-
ological studies.16
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In this study, we utilise MR to examine the impli-
cations of targets of antidiabetic medications on osteo-
arthritis phenotypes. By using genetic proxies for drug
targets, we aim to delineate the potential of these
medications to modify disease progression in osteoar-
thritis. This approach provides insights into the biolog-
ical mechanisms by which these drugs may serve as
DMOADs and underscores the potential for a paradigm
shift in osteoarthritis management through the repur-
posing of existing drugs. The introduction of antidia-
betic medications into the realm of osteoarthritis
treatment reflects an innovative convergence of meta-
bolic and musculoskeletal research. This study contrib-
utes to the ongoing quest to discover effective DMOADs
and opens new avenues for therapeutic interventions in
osteoarthritis, with the potential to improve the quality
of life for millions worldwide.
Methods
Identification and validation of antidiabetic drug
targets
The study’s procedural flowchart is depicted in Fig. 1.
The identification of antidiabetic drug targets was car-
ried out in a three-step process. Firstly, the gene targets
for the existing eight types of clinical antidiabetic drugs
were ascertained using the DrugBank (https://go.
drugbank.com/) pharmacogenetics database (Table S1
in Supplemental Tables). The specifics of these target
genes are catalogued in Table S2. Secondly, we obtained
the available IVs in the cis-region (±500 kb) of these
targets from a previous genome-wide association study
(GWAS) on haemoglobin A1C (HbA1c) in the UK Bio-
bank population,17 using the parameters P < 5 × 10−8

and r2 < 0.2.18 This process allowed us to determine the
IVs for the drug targets of seven key antidiabetic drugs:
sulfonylureas, metformin, alpha glucosidase inhibitors
(AGI), Thiazolidinediones (TZDs), GLP1-RA, insulin
and its analogues, and sodium-glucose cotransporter 2
inhibitors (SGLT2i). Despite the relevance of dipeptidyl
peptidase-4 inhibitors (DPP4i) as antidiabetic drugs,
they were not involved in further analysis due to the lack
of available IVs that meet our stringent selection criteria.
If two neighbouring target genes shared the same IVs
due to being located in the overlapped cis-region, these
genes were combined and marked with a slash, as in
“ABCC8/KCNJ11”. The IVs for ESRRA were automati-
cally excluded by the default settings of the harmo-
nise_data function in the TwoSampleMR package due to
palindromes. Furthermore, we acquired IVs for these
gene targets from several non-UK Biobank GWAS da-
tabases. Since there is no other GWAS data that in-
cludes IVs for all drug targets related to HbA1c, blood
glucose levels, or type 2 diabetes mellitus (T2DM), we
sourced these IVs from six datasets. These include the
HbA1c GWAS from MAGIC19 and the Within Family
GWAS consortium,20 the T2DM GWAS from
www.thelancet.com Vol 107 September, 2024
DIAGRAM,21 FinnGen, as well as the fasting glucose
data from MAGIC.22 All these datasets predominantly
consist of European ancestry samples and are available
on the MRC IEU OpenGWAS platform (Table S3).23

Thirdly, four GWAS datasets on blood glucose levels
and T2DM were used as positive controls to validate the
effectiveness of the identified drug targets (Table S3).
The target KCNJ1 was excluded from further analysis as
it was not associated with any positive control outcomes
(Table S5). The IVs and their corresponding effects for
each drug target are presented in Table S6.

Determination of study outcomes
We utilised summary statistics from the most compre-
hensive and current GWAS of osteoarthritis (Genetics of
Osteoarthritis (GO) Consortium). The meta-analysis
dataset included 826,690 individuals, with 177,517
diagnosed osteoarthritis cases, spanning 13 interna-
tional cohorts from nine diverse populations.24 This rich
dataset provided us with a broad spectrum of osteoar-
thritis phenotypes to investigate, including knee and/or
hip osteoarthritis, knee osteoarthritis, hip osteoarthritis,
hand osteoarthritis, finger osteoarthritis, thumb osteo-
arthritis, spine osteoarthritis, early-onset osteoarthritis,
total joint replacements such as total knee replacement
(TKR), total hip replacement (THR), total joint replace-
ment (TJR) and all osteoarthritis (or any site osteoar-
thritis). The overview of the 12 defined osteoarthritis
phenotypes and their relationships are shown in Fig. 1.
Osteoarthritis may also occur in the shoulder, ankle,
foot, toe, and other joints; however, data on these sites
are not available or included in this definition of oste-
oarthritis. The dataset delineates specific relationships
between osteoarthritis manifestations, such as the cate-
gorisation of TJR—indicating advanced disease—into
procedures like TKR for knee osteoarthritis and THR for
hip osteoarthritis. It also provides a detailed breakdown
of hand osteoarthritis, further dissecting it into finger
and thumb osteoarthritis, reflecting the diverse joints
that can be affected by osteoarthritis. To ensure the
validity of our results, we carefully checked and
confirmed the absence of sample overlap between the
exposure and outcome datasets. Specifically, in the
principal outcome GWAS dataset (GO Consortium), UK
Biobank participants (n = 316,467) were also included in
the larger cohort comprising 826,690 individuals in the
GO Consortium (Table S3), and the percentage of the
overlap for each GWAS of osteoarthritis phenotype
ranged from about 0.5% to 38%, with all values being
less than 50% (detailed in Table S4).

Two-sample MR analysis
Two-sample MR method was applied to estimate the
causal effect of each antidiabetic drug target on osteo-
arthritis phenotypes. To distinguish between the effects
of blood glucose changes and the effects of antidiabetic
drugs on osteoarthritis risk, we used MR to focus on the
3
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Fig. 1: Flowchart illustrating the systematic approach for identifying the association between antidiabetic drug targets and osteoarthritis
phenotypes. This flowchart delineates the Mendelian Randomization framework used to assess the causal impact of antidiabetic drug targets on

Articles

4 www.thelancet.com Vol 107 September, 2024

http://www.thelancet.com


Articles
genetic proxies for drug targets rather than direct mea-
sures of blood glucose. This approach helps isolate the
specific effects of the drug targets from those of blood
glucose levels. According to the causal graph of MR
shown in Fig. 1, this method must satisfy three as-
sumptions: (1) the IVs should be associated with the
exposure, (2) the IVs should affect the outcome only
through the exposure (lower red cross in Fig. 1), and (3)
the IVs should not be associated with any confounders
(upper red cross in Fig. 1). To meet these assumptions,
several approaches were applied. The primary analysis
method was the random-effect inverse variance
weighted (IVW) MR.25 To ensure the robustness of our
findings, we also conducted sensitivity analyses using
the fixed-effects IVW, weighted median, and weighted
mode approaches. These methods were employed
concurrently to address any potential violations of IV
assumptions. We compared the odds ratios (ORs) and P-
values obtained from all four methods to assess the
stability and validity of the findings. Random-effects
IVW was used to counteract the potential bias from
high heterogeneity among the multiple IVs. Heteroge-
neity among the IVs was quantified using I2 statistics
and Q test. The weighted median method was employed
to provide robust estimates even in the presence of
some invalid genetic instruments (if the proportion of
invalid instruments was less than 50%).26 The weighted
mode estimator is deemed reliable when the majority of
similar causal effect estimates are derived from valid
IVs.27 Findings that were concurrently significant across
these methods were considered robust associations.
Furthermore, the intercept of MR-Egger regression was
used to test for the presence of horizontal pleiotropy.28

The MR analysis was performed using the TwoSam-
pleMR package with the default parameters (https://
mrcieu.github.io/TwoSampleMR/).

We also performed the MR-PRESSO analysis to test
and correct the presence of specific IV outliers (potential
pleiotropy SNPs) as another sensitivity analysis.29

Furthermore, to evaluate the robustness of the MR re-
sults, we conducted a multivariable MR (MVMR) anal-
ysis (the schematic representation is shown in Figure S1
for Supplemental Figures).30 This analysis also used IVs
from the cis-region (cis-window: ±500 kb) of each drug
target and adjusted for body mass index, systolic blood
pressure, smoking status, and alcohol drinker status,
using the same parameters (P < 5 × 10−8, r2 < 0.2). The
strength of the IVs was determined using the F-statistic,
12 osteoarthritis phenotypes identified from the largest osteoarthritis g
shared the same IVs due to being located in the overlapped cis-region, t
KCNJ11.” Abbreviations: OA, Osteoarthritis; MR, Mendelian randomisatio
based Mendelian randomisation; IVs, instrumental variables; GWAS, g
T2DM, type 2 diabetes mellitus; HbA1c, haemoglobin A1C; FBG, fasting blo
SMR analysis; PHEIDI, P-value for heterogeneity in dependent instrument
PPA, posterior probability; THR, total hip replacement; TJR, total joint re
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calculated as Fj = γ̂2j ∕σ
2
Xj , where γ̂j is the estimate of

the SNP-exposure association, and σ2Xj is the standard
error of this association.31 In our study, all observed F-
statistics comfortably exceeded the threshold of F >10,
indicating no weak instrument bias (Table S7). A
Bonferroni-corrected P-value threshold of 3 × 10−4 (0.05
divided by the number of tests, which is 14 drug targets
times 12 osteoarthritis phenotypes) was set for signifi-
cance to address multiple testing, with P-values less
than 0.05 being deemed suggestive of a statistically
significant association. If the IVs for multiple target
genes were available for a single antidiabetic drug, the
combined IVs were used in the MR analysis to
demonstrate the overall effects. The MR estimators in
the principal analysis represented a per-standard devia-
tion (SD) decrease in genetically predicted levels of
HbA1c when targeting a specific gene by the corre-
sponding drug on the risk of osteoarthritis. Additionally,
we scaled these effects to a per-SD decrease in geneti-
cally predicted levels of random blood glucose. This
process was conducted by the positive control MR
analysis of the per-SD HbA1c on per-SD blood glucose
for each drug target, which can acquire the corre-
sponding coefficients (β) of their relationship. Then, the
estimators from per-SD decreased HbA1c to per-SD
decreased blood glucose could be scaled by multiple 1/
β (detailed in Table S7).

Gene expression analysis
Gene expression data was sourced from the eQTLGen
consortium, which provided us with a substantial
sample size (n = 31,684) to identify SNPs associated
with the expression of genes targeted by antidiabetic
drugs in blood.32 In this analysis, we specifically
focused on cis-eQTLs (cis expression quantitative trait
locus), located within a one-megabase distance from
the target gene, ensuring the relevance of the genetic
variation to gene expression changes. Data were nor-
malised and scaled by subtracting from each expres-
sion value (abundance of mRNA) the mean of the
respective probe and then dividing it by the SD of the
respective probe.32 The eQTL data is represented as the
effect of each additional allele on per-SD change in
gene expression level.

The effects of target genes of all eight antidiabetic
drugs (including DPP4i) were evaluated by the summary-
based MR (SMR) method to examine the association
between antidiabetic drug-related gene expression and
enome-wide association studies. If two neighbouring target genes
hese genes were combined and marked with a slash, as in “ABCC8/
n; MVMR, multivariable Mendelian randomisation; SMR, summary-
enome-wide association studies; IVW, inverse variance weighted;
od glucose; SNPs, single nucleotide polymorphisms; PSMR, P-value for
s; eQTLs, expression quantitative trait loci; H0–H4, Hypotheses 0–4;
placement; TKR, total knee replacement.
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osteoarthritis risk.33 The SMR method employs the most
significantly associated cis-eQTL SNP as the top IV. The
main results are presented as the OR for osteoarthritis
per-SD increase in gene expression. The HEIDI (het-
erogeneity in dependent instruments) test, part of the
SMR approach, was conducted to determine if the asso-
ciation observed between gene expression and osteoar-
thritis was due to a linkage scenario, where an eQTL SNP
in linkage disequilibrium with another SNP indepen-
dently influences the disease outcome, potentially
violating one of the MR assumptions. A HEIDI test
P-value below 0.01 was considered indicative of an as-
sociation likely due to linkage rather than the regulation
of gene expression.33 We performed the SMR analysis
using the default parameters (https://yanglab.westlake.
edu.cn/software/smr/#SMR&HEIDIanalysis; P value of
cis-eQTL: <5 × 10−8, P value of eQTLs for the HEIDI test:
<1.57 × 10−3, window centred around the probe to select
cis-eQTLs: 2000 Kb).33 Additionally, serum HbA1c levels,
glucose levels, and T2DM were employed as outcomes to
confirm the validity of the results’ direction.

Furthermore, to evaluate the robustness of the SMR
results and determine if the effects of gene expression
on osteoarthritis risk were independent of blood glucose
levels, we also conducted MVMR analysis (the sche-
matic representation is shown in Figure S1).30 This
analysis used IVs from the cis-region and adjusted for
blood glucose levels using the same parameters
(P < 5 × 10−8, r2 < 0.2, cis-window: ±500 kb). We
confirmed that there was no sample overlap between the
gene expression and osteoarthritis datasets.

Colocalisation analysis
Colocalisation analysis was conducted to determine if
the associations between specific gene expressions and
osteoarthritis were attributable to the same causal ge-
netic variant. The analysis was based on a Bayesian
model with a posterior probability of five hypotheses
(PPH): H0 suggests no association with either trait; H1

indicates an association with the first trait only; H2 with
the second trait only; H3 posits that different causal
variants are associated with each trait; and H4 implies
the same causal variant is associated with both traits.34

The coloc. abf algorithm in R package (http://cran.r-
project.org/web/packages/coloc) was used (parameter
setting: p1 = 1 × 10−4, p2 = 1 × 10−4, p12 = 1 × 10−3), and
we considered a PPH (H4) greater than 0.8 as evidence
of strong colocalisation between gene expression targets
and osteoarthritis, while a PPH (H4) above 0.5 was
indicative of moderate colocalisation (Fig. 1). Consid-
ering the classification and similarity of 12 osteoarthritis
phenotypes, we also conducted a multiple trait colocal-
isation analysis for target gene expression across a
group of osteoarthritis phenotypes using the moloc
method (https://github.com/clagiamba/moloc).35 This
method enables the detection of colocalisation across
multiple traits at a specific locus. We set the prior
variance and prior probability for each trait at 0.1 and
1 × 10−4, respectively. In this analysis, we focused
particularly on the results of the posterior probability
(PPA), which indicates whether a target gene is co-
localised with at least one osteoarthritis phenotype
from specific osteoarthritis groups (Fig. 1).

Replication analysis
First, to address the partial overlap between the oste-
oarthritis GWAS data and the primary HbA1c GWAS
used in our two-sample MR analysis, we conducted
replication analyses to further validate the robustness
of our findings. For these analyses, we selected IVs (in
the cis-region (±500 kb) of the targets using the same
parameters P < 5 × 10−8 and r2 < 0.2) for target genes/
drugs from non-UK Biobank exposure GWAS datasets
to ensure there was no potential sample overlap. Sec-
ond, to expand the scope of gene expression analysis,
we also incorporated brain eQTL data from the Psy-
chENCODE project and skeletal muscle eQTL data
from the most recent version of the Genotype-Tissue
Expression (GTEx) database, both of which are perti-
nent to the pathophysiology of osteoarthritis.36,37 The
PsychENCODE project focuses on understanding the
genetic underpinnings of psychiatric disorders by
studying brain-specific gene expression, while the
GTEx project aims to provide a comprehensive public
resource to study tissue-specific gene expression and
regulation. SMR analyses were conducted that
included all target genes with available cis-eQTLs of
antidiabetic drugs.

Target genes/drugs that passed the replication anal-
ysis (highlighted in yellow in Fig. 1) and were verified at
least twice in the MR, SMR, and colocalisation analyses
were considered key findings. Finally, to ascertain the
distribution and specificity of target gene expression
across various tissues and cell types, we incorporated
single-cell transcriptomic annotations from the Human
Protein Atlas (proteinatlas.org), which offers normalised
counts of protein-coding transcripts per million reads
across 76 cell types derived from 14 distinct healthy
tissue types.38

All analyses in this study were performed using R
software, version 4.3.1, with the packages TwoSam-
pleMR, coloc, and moloc, and the smr-1.3.1-win soft-
ware on the Windows platform.

Ethics statement
This study is based on existing publications and public
databases; both ethical approval and informed consent
have been received by each relevant institutional review
committee.

Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing
of the report.
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Results
Effective antidiabetic drug targets using blood
glucose and T2DM as positive control outcomes
Fourteen viable drug targets were identified that could
harmonise with osteoarthritis outcomes across seven
antidiabetic drug groups: sulfonylureas (ABCB11,
ABCC8/KCNJ11, CPT1A, INS, KCNJ1, KCNJ8/ABCC9,
LRP2/ABCB11, and VEGFA/SLC29A1), TZDs (PPARG,
RXRB, and VEGFA/SLC29A1), GLP1-RA (GLP1R), in-
sulin and its analogues (LRP2/ABCB11), AGIs (GANC),
metformin (GPD1), and SGLT2i (SLC5A1 and SLC5A2)
(Table S5). The SNPs and corresponding effects for each
drug target are shown in Table S6. This analysis
revealed 14 targets significantly associated with blood
glucose levels and T2DM, except for KCNJ1 (Table S5).

Effects of genetically determined antidiabetic drug
targets on osteoarthritis by MR
Under the principal analysis of IVW (random-effect),
the sensitivity analyses (fixed-effect IVW, weighted me-
dian, and weighted mode method), and the quality
control of MR (F statistic >10 for IVs; Q test for het-
erogeneity <50%; P intercept of MR-Egger >0.05;
Bonferroni-corrected P < 3 × 10−4), there were 11 sig-
nificant drug targets, except GANC, KCNJ8/ABCC9,
and SLC5A2 (Fig. 2a, Table S6, Figure S2), associated
with at least one osteoarthritis phenotype in the MR
analyses. Representative targets for each drug, such as
ABCC8/KCNJ11 for sulfonylureas, LRP2/ABCB11 for
insulin and sulfonylureas, PPARG for TZDs, GPD1 for
metformin, and GLP1R for GLP1-RA, surpassed the
multiple testing threshold (P < 3 × 10−4) (Fig. 2a).

In the random-effect IVW MR analysis (Fig. 2a), for
sulfonylureas targeting ABCC8/KCNJ11, a decrease in
HbA1c by this target was significantly linked to an
increased risk of osteoarthritis at any site (OR: 2.07, 95%
CI: 1.50–2.84, P < 3 × 10−4), knee and/or hip osteoar-
thritis (OR: 2.72, 95% CI: 1.63–4.55, P < 3 × 10−4), knee
osteoarthritis (OR: 2.62, 95% CI: 1.71–4.03,
P < 3 × 10−4), TJR (OR: 1.92, 95% CI: 1.63–2.26,
P < 3 × 10−4), THR (OR: 3.17, 95% CI: 1.83–5.48,
P < 3 × 10−4), and spine osteoarthritis (OR: 3.43, 95% CI:
1.88–6.23, P < 3 × 10−4). However, sulfonylureas tar-
geting CPT1A demonstrated varied effects, showing an
association with a decreased risk of osteoarthritis at any
site, knee and/or hip osteoarthritis, knee osteoarthritis,
and TJR. The target LRP2 of insulin, which shares IVs
with the sulfonylureas target ABCB11, also exhibited
consistent effects similar to those of the sulfonylureas
target ABCC8/KCNJ11. In contrast, TZDs targeting
PPARG were associated with a reduced risk of hand
(OR: 0.61, 95% CI: 0.48–0.76, P < 3 × 10−4), finger (OR:
0.50, 95% CI: 0.35–0.73, P < 3 × 10−4), and thumb (OR:
0.49, 95% CI: 0.34–0.71, P < 3 × 10−4) osteoarthritis,
suggesting a protective effect. Metformin and GLP1-RA,
which target GPD1 and GLP1R, respectively, were
associated with decreased knee and finger osteoarthritis
www.thelancet.com Vol 107 September, 2024
risk. Additionally, the target RXRB of TZDs and SLC5A1
of SGLT2i were both associated with a reduced risk of
any site osteoarthritis, THR, and early-onset osteoar-
thritis, although these findings did not achieve statistical
significance after multiple testing corrections (Fig. 2a).

Three drugs with multiple available target genes,
including sulfonylureas, TZDs, and SGLT2i, were also
significantly associated with at least one osteoarthritis
phenotype (Fig. 2b). The combined targets of sulfonyl-
ureas were significantly associated with an increased
risk of any site osteoarthritis, knee and/or hip osteoar-
thritis, hip osteoarthritis, TJR, and THR (all
P < 3 × 10−4). Targeting PPARG, SLC29A1, and RXRB of
TZDs demonstrated protective effects on hand, finger,
and thumb osteoarthritis (all P < 3 × 10−4). SGLT2i was
also negatively associated with any site osteoarthritis,
although this association did not pass the multiple
correction threshold.

The MR results scaled by random blood glucose
levels are presented in Table S7. The results from
different MR methods in the sensitivity analysis were
largely consistent with the principal findings, as shown
in Table S7 and Figures S3–S15. In MVMR analysis, the
effects of representative targets, including ABCC8/
KCNJ11 for sulfonylureas, PPARG and PPARD for
TZDs, GPD1 for metformin, and GLP1R for GLP1-RA
et al. were further verified (Figure S16). Furthermore,
only a few target–outcome pairs in the MR analysis
detected outlier SNPs by the MR-PRESSO global test;
however, the outlier-corrected results also support the
above findings, suggesting limited bias from horizontal
pleiotropy (Table S8). In the replication analysis using
non-UK Biobank IVs, the results for targets ABCC8/
KCNJ11, PPARG, and LRP2/ABCB11 were further
replicated at least once, avoiding bias from potential
sample overlap (Tables S9, Figures S17 and S18).

Antidiabetic drugs target gene expression and
osteoarthritis
In the primary SMR analyses, gene expression of
KCNJ11, CPT1A, PPARD, IGF1R, and GANAB in
eQTLGen, targeted by antidiabetic drugs, was signifi-
cantly linked to at least one osteoarthritis phenotype
(Fig. 3, Table S10). Specifically, an increase in KCNJ11
expression within the blood by per-SD was inversely
associated with the presence of osteoarthritis across
several phenotypes, including osteoarthritis at any site
(OR: 0.92, 95% CI: 0.86–0.97, P = 0.005), knee and/or
hip osteoarthritis (OR: 0.89, 95% CI: 0.82–0.96,
P = 0.005), knee osteoarthritis (OR: 0.90, 95% CI: 0.82–
0.99, P = 0.027), and spine osteoarthritis (OR: 0.87, 95%
CI: 0.76–0.99, P = 0.036) (Fig. 3 and 4 and Table S10).
The gene expression of GANAB, targeted by AGI, was
associated with an increased risk of osteoarthritis across
various phenotypes, including knee and/or hip osteo-
arthritis (OR: 1.07, 95% CI: 1.00–1.13, P = 0.048), hip
osteoarthritis (OR: 1.11, 95% CI: 1.01–1.22, P = 0.030),
7
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Fig. 2: Forest plots of the effects of the five antidiabetic drug targets on 12 osteoarthritis phenotypes. All results were derived from the random-
effects inverse variance weighted Mendelian Randomization (MR). The effects (ORs) were adjusted to reflect a per-SD decrease in genetically
predicted levels of HbA1c when targeting the specific gene with the corresponding drug on the risk of osteoarthritis. Each subtitle identifies the
target gene and its associated drug class. Panel a) displays results for individual drug targets, and Panel b) presents results for combined
multiple drug targets within a specific drug class. Additional results for other single drug targets are presented in Figure S2. *denotes the
P < 0.05 for the test of intercept by the MR Egger method. #denotes the P < 0.05 of the Q test for heterogeneity. Abbreviations: OA,
Osteoarthritis; THR, total hip replacement; TJR, total joint replacement; TKR, total knee replacement; OR, odds ratio; CI: confidence interval.
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and THR (OR: 1.16, 95% CI: 1.03, 1.30, P = 0.014)
(Fig. 3 and 4 and Table S10). Additionally, the expres-
sion of the PPARD gene, targeted by TZDs, exhibited a
protective effect against various osteoarthritis pheno-
types (Fig. 3, Table S10).

Significantly, KCNJ11, GANAB, ABCA1, and GSTP1
were replicated across at least two gene expression
datasets, including eQTLGen (blood), PsychENCODE
(brain), and GTEx (skeletal muscle) (Figures S19 and
S20). KCNJ11 and GANAB were consistently repli-
cated across all three datasets (Fig. 4). Analysis of anti-
diabetic drug target gene expression in different tissues
(brain and skeletal muscle) revealed that KCNJ11
expression in the brain was inversely associated with
www.thelancet.com Vol 107 September, 2024
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Fig. 3: Gene expression analysis of antidiabetic drug targets and osteoarthritis. The heatmap illustrates the association between the expression
of drug target genes in the blood (from eQTLGen) and 12 osteoarthritis phenotypes, with serum HbA1c, glucose levels, and T2DM as outcomes
to confirm the direction of the results. A red region indicates a positive association, a blue region indicates a negative association, and the ORs
(95% CIs) are displayed if the results are significant and pass the HEIDI test. Asterisks denote the level of significance (*P < 0.05, **P < 0.05/25
for multiple corrections). Abbreviations: OA, Osteoarthritis; SMR, summary-based Mendelian randomisation; HbA1c, Hemoglobin A1C; T2DM,
Type 2 Diabetes Mellitus; THR, Total Hip Replacement; TKR, Total Knee Replacement; AGI, alpha glucosidase inhibitors; DPP4i, dipeptidyl
peptidase-4 inhibitors; GLP-1RA, glucagon-like peptide-1 receptor agonists; SGLT2i, sodium-glucose cotransporter 2 inhibitors; TZDs,
Thiazolidinediones.
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osteoarthritis at various sites, including any site osteo-
arthritis (OR: 0.95, 95% CI: 0.92–0.98, P = 4.2 × 10−3),
knee and/or hip osteoarthritis (OR: 0.94, 95% CI: 0.90–
0.98, P = 0.005), knee osteoarthritis (OR: 0.95, 95% CI:
0.91–1.00, P = 0.037), and spine osteoarthritis (OR: 0.90,
95% CI: 0.84–0.97, P = 4.2 × 10−3). Similarly, KCNJ11
expression in skeletal muscle was associated with a
decreased likelihood of osteoarthritis at any site (OR:
0.92, 95% CI: 0.85–0.99, P = 0.033), knee and/or hip
osteoarthritis (OR: 0.84, 95% CI: 0.75–0.95,
P = 4.2 × 10−3), knee osteoarthritis (OR: 0.86, 95% CI:
0.75–0.97, P = 0.016), hip osteoarthritis (OR: 0.85, 95%
CI: 0.73–1.00, P = 0.047), TJR (OR: 0.85, 95% CI: 0.73–
0.98, P = 0.028), and THR (OR: 0.80, 95% CI: 0.66–0.98,
P = 0.027) (Fig. 4). Moreover, the effects of GANAB
expression in blood on knee and/or hip osteoarthritis,
www.thelancet.com Vol 107 September, 2024
hip osteoarthritis, and THR were also replicated by gene
expression in either brain or skeletal muscle (Fig. 4).
Furthermore, the findings from the principal SMR
analysis were corroborated by the MVMR analysis
adjusted for blood glucose (Figure S21), suggesting that
the effects of this gene expression on osteoarthritis were
independent of blood glucose levels.

Colocalisation of the putative proteins with
osteoarthritis
The colocalisation analysis presented consistent re-
sults of these genes with osteoarthritis (Fig. 5,
Table S11 and S12). Among them, the KCNJ11,
ESRRA, RXRB, INSR, and GANAB were co-localised
with at least one osteoarthritis phenotype (PPH4

>0.8) (Fig. 3). Meanwhile, the ABCA1, CPT1A,
9
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Fig. 4: Results of the SMR analysis for the associations of KCNJ11 and GANAB gene expression in the blood (sourced from eQTLGen), brain (from
PsychENCODE), and skeletal muscle (from GTEx) with 12 osteoarthritis phenotypes. The forest plot visualises the effect sizes, with the vertical
dashed line representing an odds ratio (OR) of 1. Values to the left indicate a protective effect, and values to the right suggest a risk effect. The
PSMR values indicate the significance levels, with lower values providing stronger evidence against the null hypothesis of no association. A P-
value of <4.2 × 10−3 indicates a statistically significant level, adjusted for multiple testing across 12 osteoarthritis phenotypes. All results passed
the HEIDI test of the SMR method. For detailed eQTL results, please refer to Table S10. Abbreviations: OA, Osteoarthritis; SMR, summary-based
Mendelian randomisation; eQTLs, expression quantitative trait loci; HEIDI, heterogeneity in dependent instruments; OR, odds ratio; CI, con-
fidence interval.
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TRMP4, PPARG, PPARD, GSTP1, RXRA, IGF1R,
IGFBP7, and GANC were moderately co-localized
with osteoarthritis (PPH4 >0.5). Specifically, KCNJ11
presented a consistent association with osteoarthritis
at any site, as well as knee and/or hip osteoarthritis in
both SMR and colocalisation analysis. In the multi-
trait colocalisation analysis, RXRB and INSR demon-
strated moderate colocalisation with at least one trait
within specific osteoarthritis phenotype groups (PPA
>0.5). Additionally, KCNJ11, ESRRA, and PPARD
showed suggestive colocalisation (PPA >0.3), although
they did not meet the stricter criteria. The regional
association plot displaying results with PPH4 >0.8 is
presented in Figure S22.
Single-cell RNA annotations
The single-cell RNA annotations for tissue cluster
specificity revealed that the KCNJ11 gene was expressed
predominantly in skeletal muscle and skeletal myocytes
(Table S13). Similarly, the ABCC9, PPARG, ESRRA,
RXRA, RXRG, and GPD1 genes also exhibited high
tissue specificity in skeletal muscle or adipose tissue and
demonstrated specific cell type specificity in cells such
as skeletal myocytes and adipocytes.
Discussion
In this study, we sought to elucidate the role of antidi-
abetic drug targets in the risk of osteoarthritis using
www.thelancet.com Vol 107 September, 2024
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Fig. 5: Colocalisation results of antidiabetic drug gene expression and osteoarthritis. The heatmap depicts the two-trait colocalisation analysis of
putative targets with 12 osteoarthritis phenotypes (left) and the multiple-trait colocalisation analysis with specific osteoarthritis phenotype
groups (right), where darker blue shading and asterisks indicate stronger evidence of colocalisation. **indicates PPH4 >0.8 in coloc analysis.
*indicates 0.5 <PPH4 <0.8 in coloc analysis. ††indicates PPA >0.5 in moloc analysis. †indicates PPA >0.3 in moloc analysis. Abbreviations: OA,
Osteoarthritis; THR, Total Hip Replacement; TKR, Total Knee Replacement; AGI, alpha glucosidase inhibitors; DPP4i, dipeptidyl peptidase-4
inhibitors; GLP-1RA, glucagon-like peptide-1 receptor agonists; SGLT2i, sodium-glucose cotransporter 2 inhibitors; TZDs, Thiazolidinediones.
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MR. The significant associations found between certain
drug targets and osteoarthritis outcomes suggest that
metabolic dysregulation plays a role in osteoarthritis
pathogenesis and that antidiabetic medications may
have therapeutic potential as DMOADs. The distinct
associations between sulfonylurea targets like ABCC8/
KCNJ11 and the PPARG target of TZDs suggest po-
tential pathways through which these drugs may influ-
ence osteoarthritis progression. Our findings extend
www.thelancet.com Vol 107 September, 2024
beyond the scope of previous research, which predom-
inantly assessed the progression of preexisting osteoar-
thritis, offering new insights into the potential for
antidiabetic drugs to also affect the onset of
osteoarthritis.

The causal association of antidiabetic drug targets
with osteoarthritis phenotypes, as identified through
MR analyses in our study, suggests that sulfonylurea
targets (ABCC8/KCNJ11) may increase osteoarthritis
11
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risk. Supporting these findings, SMR analysis indicates
that lower expression of the KCNJ11 gene in blood and
skeletal muscle was associated with increased osteoar-
thritis risk, in line with the inhibitory effects of sulfo-
nylureas on this gene expression (drug target). This
observation is in line with the known pharmacological
actions of sulfonylureas, which involve the inhibition of
KCNJ11 gene expression (as detailed in Table S2). Sul-
fonylureas operate primarily by blocking the KCNJ11
(Kir6.2) subunit of ATP-sensitive potassium channels.39

Under normal physiological conditions, this subunit
may protect against osteoarthritis. However, this pro-
tective mechanism is likely compromised by sulfonyl-
ureas, consequently heightening the risk of developing
the disease. In our further exploratory analysis, single-
cell RNA data indicated that KCNJ11 gene expression
was primarily observed in skeletal muscle and myocytes.
MicroRNAs (miRNAs) in circulation analyses also
revealed that KCNJ11-targeted miRNAs were down-
regulated in the serum of patients with osteoarthritis.40

To the best of our knowledge, the association between
sulfonylureas and osteoarthritis has been minimally
explored in observational studies, with the primary
focus of this medication being on T2DM. A recent
publication reported that genetic variation in the target
(KCNJ11) of sulfonylurea was associated with a rheu-
matoid arthritis risk (OR: 1.25), although this finding
did not achieve statistical significance.41

The subunits of ATP-sensitive K+ channels (K(ATP)
channels) encoded by KCNJ11 and ABCC8, were
expressed by the human chondrocytes at the mRNA and
protein levels.42,43 In chondrocytes, K(ATP) channels
are believed to be crucial for maintaining cartilage
metabolism and modulating intracellular ATP concen-
trations.44 They may act indirectly as part of the glucose-
sensing mechanism in chondrocytes, influencing the
cell’s capacity to adjust to varying extracellular glucose
concentrations by regulating the availability of glucose
transporters, affecting the cells’ overall glucose transport
capacity.42,44 This means K(ATP) channels are important
in the regulation of cartilage metabolism and intracel-
lular ATP sensing.

The protective effects observed with PPARG-target-
ing drugs on hand, finger, and thumb osteoarthritis
suggest that modulation of this pathway could benefit
osteoarthritis in smaller joints. This finding is particu-
larly interesting as it may indicate a differential impact
of antidiabetic drugs on osteoarthritis based on the
affected joints. Studies found that PPARG maintains
articular cartilage homeostasis, in part, by regulating the
mTOR pathway, and epigenetic PPARG suppression
plays a key role in osteoarthritis development.45,46 While
the SMR analyses did not yield consistent findings for
the PPARG gene expression in our study, the explor-
atory analyses revealed that the expression of the
PPARD gene, which is also a target of TZDs, showed a
protective effect against osteoarthritis phenotypes.
Significantly, the drug repurposing potential high-
lighted by the GO consortium identified ABCC8,
PPARD, and PPARG as druggable targets, albeit they
are presently being explored for other clinical
indications.24

While the SMR and colocalisation analyses did not
verify our findings due to data limitations, our results
indicated that metformin and GLP1-RA, targeting GPD1
and GLP1R respectively, were associated with reduced
risk of knee and finger osteoarthritis. This aligns with
existing research, which consistently supports metfor-
min’s beneficial effects on chondroprotection, immu-
nomodulation, and pain reduction in knee
osteoarthritis.10 Similarly, current studies suggest that
GLP1 analogues could serve as potential DMOADs due
to their anti-inflammatory, immunoregulatory, and
differentiation-enhancing properties.15 Additionally,
SGLT2i (targeted by SLC5A2 and SLC5A1) were nega-
tively associated with osteoarthritis at any site, though
this association did not meet the threshold for statistical
significance after multiple corrections in this study.
Recognised primarily as a new class of glucose-lowering
drugs, emerging research has increasingly highlighted
the broader roles of these inhibitors beyond blood sugar
reduction, including cardiorenal protective effects and
benefits related to bone health.47,48

Our study has limitations. The causal inferences
made by MR rely on the assumptions that the genetic
variants used as instruments are associated with the
drug target, that they affect osteoarthritis risk only
through that target, and that they are not related to any
confounders of the drug–osteoarthritis relationship.
While we have taken steps to ensure the robustness of
our instruments, potential pleiotropy and other biases
inherent to MR analyses cannot be entirely ruled out.
Our study’s reliance on HbA1c as a biomarker in the
MR analyses may still be confounded by red blood cell
traits, affecting the accuracy of our causal inferences,
though the IVs are selected from the cis-region of each
antidiabetic target gene rather than from broader
genomic areas that may involve the red blood cell related
genes. Most of the IVs and drug targets were obtained
from individuals of European ancestry, while our
outcome data encompassed 13 international cohorts, as
detailed in Table S3. Although European ancestry is
predominant, this could introduce some bias into the
MR results. This limitation should be considered when
interpreting our findings. Since current drug-target MR
typically depends on SNPs within the cis-regions of
specific genes rather than on GWAS data of different
traits, adjusting multiple targets with each other using
MVMR is challenging. Despite these issues, we suc-
cessfully implemented MVMR using IVs in the cis-
region, highlighting the need for future developments
in statistical analysis methods to address these com-
plexities adequately.49 Furthermore, the observational
nature of GWAS data used in MR limits the ability to
www.thelancet.com Vol 107 September, 2024
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establish definitive causal relationships. Thus, our
findings should be validated by pharmacoepidemiology
studies or randomised controlled trials. Moreover, the
differential impact on various osteoarthritis phenotypes
highlights the need for a nuanced understanding of the
mechanisms by which these drugs may exert their ef-
fects. Our study also acknowledges the potential selec-
tion bias inherent in MR analysis, given that participants
are selected based on the presence of both genetically
determined genes and outcomes.

Our study observed that sulfonylureas, which target
KCNJ11, are associated with an increased risk of oste-
oarthritis. Conversely, TZDs that target PPARG, have
shown a protective effect against osteoarthritis. These
findings suggest that the impact of antidiabetic drugs on
osteoarthritis risk is more complex than previously
thought and extends beyond their glucose-lowering
properties. The potential therapeutic strategy emerging
from our study involves exploring drugs that counteract
the adverse effects on osteoarthritis risk posed by these
targets. However, such an approach must be
approached cautiously, considering the delicate balance
between alleviating osteoarthritis symptoms and not
exacerbating or inducing diabetes.

In conclusion, our study supports the repurposing of
antidiabetic drugs or target genes for osteoarthritis
treatment and underscores the need for a precision
medicine approach, considering the heterogeneity of
osteoarthritis and the specific actions of different drugs.
Future research should focus on targeted clinical trials,
investigating drug effects in distinct osteoarthritis phe-
notypes, and exploring the molecular pathways medi-
ating these effects to fully realise the potential of
antidiabetic drugs as DMOADs.
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