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Abstract

Objective structured clinical examinations (OSCEs) are a widely used performance assess-

ment for medical and dental students. A common limitation of OSCEs is that the evaluation

results depend on the characteristics of raters and a scoring rubric. To overcome this limita-

tion, item response theory (IRT) models such as the many-facet Rasch model have been

proposed to estimate examinee abilities while taking into account the characteristics of rat-

ers and evaluation items in a rubric. However, conventional IRT models have two impracti-

cal assumptions: constant rater severity across all evaluation items in a rubric and an equal

interval rating scale among evaluation items, which can decrease model fitting and ability

measurement accuracy. To resolve this problem, we propose a new IRT model that intro-

duces two parameters: (1) a rater–item interaction parameter representing the rater severity

for each evaluation item and (2) an item-specific step-difficulty parameter representing the

difference in rating scales among evaluation items. We demonstrate the effectiveness of the

proposed model by applying it to actual data collected from a medical interview test con-

ducted at Tokyo Medical and Dental University as part of a post-clinical clerkship OSCE.

The experimental results showed that the proposed model was well-fitted to our OSCE data

and measured ability accurately. Furthermore, it provided abundant information on rater and

item characteristics that conventional models cannot, helping us to better understand rater

and item properties.

Introduction

Objective structured clinical examinations (OSCEs) are widely used for evaluating the clinical

skills, knowledge, and attitudes of medical and dental students in a standardized and objective

manner [1–7]. OSCEs are classified as a performance assessment, in which expert raters assess

examinee outcomes or the processes involved in performing tasks.
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A common limitation of OSCEs is that the evaluation results depend on rater characteristics

such as severity, consistency, and range restriction [1–14]. Rater severity is the systematic incli-

nation to assign higher or lower scores compared with other raters, while rater consistency

denotes the degree to which raters maintain their criteria across examinees. Range restriction

refers to the limited variability in scores assigned by a rater. Various strategies, including rater

training and the use of scoring rubrics, have been adopted to mitigate the effects of these rater

characteristics. Nevertheless, residual rater effects can persist despite such efforts, impacting

the accuracy of ability measurement [14].

Moreover, OSCEs often employ a scoring rubric comprising multiple evaluation items. In

such cases, the assigned scores are affected by the characteristics of those evaluation items,

including item difficulty and discrimination [15]. Item difficulty refers to the relative difficulty

level in obtaining higher scores in a given item, while item discrimination is the capability of

an evaluation item to differentiate between examinees with varying levels of ability. Rating

scales quantify performance levels for the score categories in each evaluation item. Thus,

accounting for item characteristics, in addition to rater characteristics, is crucial for the accu-

rate measurement of examinees’ abilities [15].

To overcome these inherent limitations, item response theory (IRT) models have been pro-

posed to estimate examinee abilities while taking into account the effects of rater and item

characteristics [10, 14, 16–19]. One representative model is the many-facet Rasch model

(MFRM) [17], which has been applied to various performance assessments [4, 8, 11, 20–25],

including OSCEs [1–7, 9], in order to investigate the characteristics of raters and items as well

as estimate examinee ability while mitigating the influence of those characteristics. However,

the MFRM makes some strong assumptions about rater and item characteristics [12, 16, 25–

27]. For instance, it assumes that raters exhibit a uniform level of consistency and that items

possess equivalent discriminatory power, conditions that are not commonly observed in clini-

cal practice. Thus, several extensions of the MFRM have been recently proposed that relax

those assumptions [14, 16, 18, 25]. A recent example is the generalized MFRM (GMFRM)

[25], which jointly considers the abovementioned rater and item characteristics: rater severity,

consistency, and range restriction, as well as item difficulty and discrimination. The GMFRM

is expected to provide better model fitting and more accurate ability measurement compared

with the MFRM in cases where a variety of rater and item characteristics is assumed to exist.

However, the GMFRM retains the following assumptions, which may not be satisfied under

OSCE assessments.

1. It assumes no interaction between raters and items, meaning that the rater severity is

assumed to be consistent across all evaluation items.

2. It assumes an equal interval rating scale among evaluation items, meaning that the relative

difficulty of transitioning between adjacent score categories is consistent for all items.

These model assumptions can decrease model fitting and ability measurement accuracy

when applied to OSCE data that do not satisfy them. Furthermore, the inability to capture

these characteristic differences might hinder our understanding of some inherent characteris-

tics of raters and items, while a clearer understanding of them is crucial for improving the

assessment design and the accuracy of ability measurements.

To resolve these limitations, we propose an extension of the GMFRM that introduces two

types of parameters: (1) an interaction parameter between items and raters, which represents

the rater severity for each evaluation item, and (2) an item-specific step-difficulty parameter,

which captures the relative difficulty of transitioning between adjacent score categories in each

evaluation item.
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We demonstrate the effectiveness of the proposed model through simulation experiments

and application to actual data. In the actual data experiments, we apply the proposed model to

rating data collected from a medical interview test, which was conducted at Tokyo Medical

and Dental University in 2021 as part of a post-clinical clerkship OSCE (Post-CC OSCE) for

sixth-year dental students. Using actual OSCE data, we demonstrate that the proposed model

improves model fitting and ability measurement accuracy compared with conventional mod-

els. Furthermore, we show that the proposed model provides abundant information on rater

and item characteristics that conventional models cannot, helping us to better understand

rater and item properties.

Materials and methods

Data

The OSCE data we used consist of rating scores assigned by five raters to 30 videos recorded as

material for reconfirmation of medical interview tests for sixth-year dental students. The medi-

cal interview tests were conducted with the aim of evaluating the students’ level of achievement

after clinical training at Tokyo Medical and Dental University in 2021. The videos recorded at

the medical interview tests for educational purpose were used secondarily for this study. The

students were informed in writing of their right to refuse secondary use of the recorded videos

for this study. The Dental Research Ethics Committee of Tokyo Medical and Dental University

has stated in writing that this research falls outside the purview of the Ethical Guidelines for

Medical Research Involving Human Subjects and is thus deemed ‘not applicable.’ This deci-

sion is documented in the minutes of the 2019 9th Ethics Review Committee meeting. The five

raters were dentists with experience in OSCE evaluation. Of the 5 raters, 2 each evaluated all

30 examinees, while the remaining 3 each evaluated 10 different examinees. The raters per-

formed their evaluations independently, without communicating or consulting with one

another. The 30 evaluation items on the scoring rubric, shown in Table 1, were scored on a

4-point scale (4: excellent; 3: good; 2: acceptable; 1: unsatisfactory).

The rating data U obtained from the above OSCE is formulated as a set of scores xijr,
assigned by rater r 2 R ¼ f1; . . . ;Rg to examinee j 2 J ¼ f1; � � � ; Jg on evaluation items

i 2 I ¼ f1; . . . ; Ig, as

U ¼ fxijr 2 K [ f� 1g j i 2 I ; j 2 J ; r 2 Rg; ð1Þ

where K ¼ f1; . . . ;Kg is the score categories, and xijr = −1 indicates missing data. In our

OSCE data, R = 5, J = 30, I = 30, and K = 4.

In this study, IRT is applied to the above data in order to investigate the characteristics of

raters and evaluation items, and to accurately estimate the ability of examinees while taking

into account the effects of rater and item characteristics. Note that the IRT model we propose

is applicable not only to the above-explained OSCE data but also to various rubric-based per-

formance assessments whose data has the structure given in Eq (1).

Rater and item characteristics

Performance assessments such as OSCEs are susceptible to rater effects, which impact the eval-

uation results, and these effects are influenced by the individual rater characteristics. Common

rater characteristics are severity, consistency, and range restriction [1–7, 9, 12–14, 24, 28].

• Severity refers to the tendency of some raters to systematically assign higher or lower scores

compared with other raters, irrespective of the examinee’s actual performance.
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• Consistency is the degree to which raters maintain their scoring criteria over time and

across examinees. Consistent raters exhibit stable scoring patterns, making their evalua-

tions more reliable and predictable. In contrast, inconsistent raters display varying scoring

tendencies.

• Range restriction refers to the limited variability in scores assigned by a rater, often due to

their reluctance to use the full range of the rating scale. This can result in a compression or

clustering of scores, making it difficult to distinguish between examinees with varying per-

formance levels.

Differences in these rater characteristics may arise due to differences in raters’ expectations,

training, interpretation of assessment criteria, or personal biases and can lead to an inaccurate

estimation of examinees’ abilities [14, 25, 29].

Table 1. Evaluation items in the scoring rubric.

Evaluation Items

1 Greeting

2 Self-introduction

3 Patient identification

4 Medical interview explanation and consent

5 Confirmation of chief complaint

6 Confirmation of affected site(s)

7 Confirmation of when the complaint started

8 Confirmation of current symptoms (spontaneous pain, swelling, redness, agitation, purulent discharge)

9 Confirmation of evoked pain (cold pain, warm pain, occlusion pain)

10 Confirmation of the nature and severity of the evoked pain

11 Confirmation of history of hospital visits

12 Confirmation of whether there is any medication for the chief complaint

13 Confirmation of consultation behavior

14 Confirmation of symptom history up to the present day

15 Confirmation of history of anesthesia and tooth extraction and any abnormalities during those procedures

16 Confirmation of whether any systemic disease is present

17 Confirmation of necessary information for each disease (whether potential risks for dental treatment could be

identified)

18 Confirmation of allergies (food, drugs)

19 Summarization and confirmation of the chief complaint

20 Confirmation of whether there is anything the examinee has forgotten to say

21 Cleanliness during examination

22 Efforts to understand the patient’s situation (whether the examinee has confirmed the patient’s wishes, status of

hospital visits, financial situation, etc.)

23 Smooth flow of conversation

24 Appropriateness of the main points of the conversation (whether the judgment on the main points of the

conversation was appropriate according to the patient’s situation)

25 Eye contact, pauses, listening

26 Appropriateness of open questions

27 Respectful language, attention to terminology

28 Interaction with the patient

29 Listening to the patient’s concerns

30 Overall rating

https://doi.org/10.1371/journal.pone.0309887.t001
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Furthermore, when we use a scoring rubric comprising multiple evaluation items, the

assigned scores also depend on the characteristics of those evaluation items, including item dif-

ficulty, discrimination, and rating scale [11, 15].

• Difficulty refers to the relative ease or challenge presented by a given evaluation item, which

affects the likelihood of examinees obtaining high scores. Items with high difficulty levels

tend to have lower scores, whereas easier items tend to have higher scores.

• Discrimination is the ability of an evaluation item to differentiate between examinees with

varying levels of ability. Items with high discrimination can effectively distinguish between

high- and low-performing examinees, providing valuable information about their relative

abilities. Items with low discrimination may not be as useful in differentiating examinee per-

formance because they are more likely to give random scores irrespective of examinee

ability.

• Rating scale quantifies performance levels for the score categories in each evaluation item.

Rating scales may vary depending on the item. For example, it may be possible to find evalu-

ation items with overused mid-point score categories, while others use the full range of score

categories evenly.

It is important to accurately measure ability while taking into account these item and rater

characteristics. Therefore, this study explores the application of IRT to estimate such charac-

teristics and assess examinee ability while taking into account the effects of these

characteristics.

Item response theory and many-facet Rasch models

IRT [30] has recently been used for scoring and analysis in various assessments, especially

high-stakes and large-scale testing scenarios. IRT uses probabilistic models called IRT models,

which give the probability of an examinee’s responses to a test item as a function of the exam-

inee’s latent ability and the item’s characteristic parameters. The Rasch model and the two-

parameter logistic model are the most widely used IRT models, and they are applicable to test

items for which responses are scored in binary terms as correct or incorrect. Furthermore,

there are various polytomous IRT models that are applicable to ordered categorical score data,

including the rating-scale model [31], the partial-credit model [32], and the generalized par-

tial-credit model [33]. These traditional IRT models are applicable to two-way data consisting

of examinees × test items, and offer the following benefits:

1. Examinee ability can be estimated while taking into account test item characteristics,

including difficulty and discrimination.

2. Examinee responses to different test items can be assessed on the same scale.

3. Item characteristics can be isolated from the examinees’ characteristics, which helps in ana-

lyzing and maintaining the properties of a test and items.

However, these traditional models cannot be applied directly to OSCE data, in which the

examinees’ responses are scored by multiple raters on multiple items, even if we regard the

parameters of test items as parameters of evaluation items in a rubric. This is because the

assumed OSCE data are defined as three-way data consisting of examinees × items × raters.
Extended IRT models for such multi-faceted data have been proposed to address this prob-

lem [14, 16–19, 28]. The most common IRT model applicable to such data is the MFRM [17],
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which defines the probability that rater r assigns score k to examinee j on item i as

Pijrk ¼
exp

Pk
m¼1
½Dðyj � bi � br � dmÞ�

PK
l¼1

exp
Pl

m¼1
½Dðyj � bi � br � dmÞ�

; ð2Þ

where θj represents the latent ability of examinee j, βi represents the difficulty of item i, βr rep-

resents the severity of rater r, dm represents the difficulty of transition between scores m − 1

and m, and K indicates the number of categories. D = 1.7 is the scaling constant used to mini-

mize the difference between the normal and logistic distribution functions. For model identifi-

cation,
PR

r¼1
br ¼ 0, d1 = 0,

PK
m¼2

dm ¼ 0, and a normal prior for the ability θj are assumed.

However, the MFRM relies on the following strong assumptions, which are rarely satisfied

in practice [8, 12, 16, 25–27].

1. All items have the same discriminatory power.

2. All raters have the same assessment consistency.

3. There is no difference in range restriction among the raters.

Accordingly, various extensions of the models have been proposed that relax these assump-

tions [18, 19, 26, 27, 34, 35]. One recent extension model that relaxes all three assumptions

simultaneously is the generalized MFRM (GMFRM) [25]. In the GMFRM, the probability that

rater r assigns score k to examinee j on item i is defined as

Pijrk ¼
exp

Pk
m¼1
½Daiarðyj � bi � br � drmÞ�

PK
l¼1

exp
Pl

m¼1
½Daiarðyj � bi � br � drmÞ�

; ð3Þ

where αi represents the discriminatory power of item i, αr represents the consistency of rater r,
and drm is the rater-specific step-difficulty parameter denoting the severity of rater r of transi-

tion from score m − 1 to m, making it possible to reflect the range restriction for each rater.

For model identification,
QI

i¼1
ai ¼ 1,

PI
i¼1
bi ¼ 0, dr1 = 0,

PK
m¼2

drm ¼ 0, and a normal prior

for the ability θj are assumed.

The GMFRM can represent various rater and item characteristics, so it is expected to pro-

vide better model fitting and more accurate ability measurement compared with the conven-

tional MFRM, especially when various rater and item characteristics are assumed to exist [25].

However, the GMFRM retains the following assumptions, which might not be satisfied in a

practical OSCE-based evaluation.

1. It assumes no interaction between raters and items, meaning that the rater severity is

assumed to be consistent across all items.

2. It assumes a rating scale with an equal interval among items, meaning that the relative diffi-

culty of transitioning between adjacent score categories is consistent for all items.

Violating these assumptions would decrease model fitting and ability measurement accu-

racy when the model is applied to OSCE data that do not satisfy them. Furthermore, we might

fail to interpret some inherent characteristics of raters and items that would be important for

understanding and improving the accuracy of ability measurement.

Proposed IRT model

To resolve the above limitations, we propose an extension of the GMFRM that introduces two

parameters: (1) a rater–item interaction parameter representing the rater severity for each
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evaluation item and (2) an item-specific step-difficulty parameter representing the difference

in rating scales among evaluation items. The proposed model defines the probability Pijrk as

Pijrk ¼
exp

Pk
m¼1
½Daiarðyj � bir � dim � drmÞ�

PK
l¼1

exp
Pl

m¼1
½Daiarðyj � bir � dim � drmÞ�

; ð4Þ

where βir is the rater–item interaction parameter that indicates the severity of rater r on item i.
Moreover, dim is the item-specific step-difficulty parameter that represents the difficulty of

transition between scores m − 1 and m for item i. Here, for model identification, we assume
PR

r¼1
logar ¼ 0, dr1 = 0,

PK
m¼2

drm ¼ 0, di1 = 0,
PK

m¼2
dim ¼ 0, and a normal prior distribution

for the ability θj.
A unique feature of the proposed model is the addition of the item–rater interaction param-

eter βir, which makes it possible to capture the difference in rater severity among items.

Another feature is the incorporation of an item-specific step-difficulty parameter dim, enabling

the model to represent the differences in rating scales among items. These improvements are

expected to offer the following benefits.

1. Model fitting to the data and ability measurement accuracy are expected to be improved

when an interaction between items and raters exists and rating scales differ depending on

the item.

2. It is possible to analyze rater and item characteristics, which cannot be analyzed using

MFRM and GMFRM, thereby helping us better understand rater and item properties.

Model identifiability. As described above, the proposed model assumes
PR

r¼1
logar ¼ 0,

dr1 = 0,
PK

m¼2
drm ¼ 0, di1 = 0,

PK
m¼2

dim ¼ 0, and a normal prior distribution for the ability θj
for model identification. To explain why these constraints are necessary, we transform the pro-

posed model as follows.

Pijrk ¼
exp

Pk
m¼1
½Daiarðyj � bir � dim � drmÞ�

PK
l¼1

exp
Pl

m¼1
½Daiarðyj � bir � dim � drmÞ�

¼
exp
h
kDaiaryj � kDaiarbir � Daiar

Pk
m¼1
ðdim þ drmÞ

i

PK
l¼1

exp
h
kDaiaryj � kDaiarbir � Daiar

Pk
m¼1
ðdim þ drmÞ

i

From the first form of the equation, we can confirm that a location indeterminacy exists

among the four parameters θj, βir, dim, and drm. We deal with this indeterminacy by applying

zero-sum constraints for dim and drm and giving a normal distribution with a fixed mean for θj.
From the second form of the above equation, we can confirm that a scale indeterminacy

exists within each term. For the first term, kDαiαrθj, we resolve the scale indeterminacy by fix-

ing
QR

r¼1
ar by

PR
r¼1

logar ¼ 0 and giving a normal distribution with a fixed variance for θj.
Consequently, the scales of αi and αr are identified. Therefore, the scale of βir in the second

term kDαiαrβir and
Pk

m¼1
ðdim þ drmÞ in the third term Daiar

Pk
m¼1
ðdim þ drmÞ are also

identifiable.

Parameter estimation. We use an expected a posteriori (EAP) estimation, a type of Bayes-

ian estimation based on a Markov chain Monte Carlo (MCMC) algorithm, for the parameter

estimation of the proposed model because it is known to provide more robust results for com-

plex models [15, 25, 36–40] compared with marginal maximum likelihood estimation using an

expectation–maximization algorithm or maximum a posteriori estimation using a Newton–
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Raphson algorithm, both of which are traditional IRT parameter-estimation methods [41].

Although the Metropolis-Hastings-within-Gibbs sampling method [35] is a commonly used

MCMC algorithm for IRT models, the No-U-Turn (NUT) sampler [42], which is a variant of

the Hamiltonian Monte Carlo (HMC) algorithm, has recently become a popular and efficient

alternative MCMC algorithm [15, 25, 43, 44]. Therefore, we use a NUT-based MCMC algo-

rithm. The estimation program was implemented using the software package RStan [45]. The

EAP estimates are calculated as the mean of the parameter samples obtained from 2,000 to

5,000 periods, using three independent chains. We set the prior distributions for the proposed

model as follows.

yj; bir; dim; drm � Nð0; 1Þ

ar; ai � LNð0; 0:5Þ

(

ð5Þ

Results

We demonstrate the effectiveness of the proposed model through simulation experiments and

application to actual data.

Parameter-recovery experiments

This subsection describes a simulation experiment for the parameter-recovery evaluation,

which was conducted to confirm whether the proposed model parameters can be estimated

appropriately based on the NUT-based MCMC algorithm. To this end, the following experi-

ment was performed for different numbers of examinees J 2 {30, 50}, items I 2 {10, 30}, and

raters R 2 {5, 10}, with the different numbers determined based on the sizes of the actual

OSCE data.

1. For J examinees, I items, and R raters, randomly generate true model parameters from the

distributions given in Eq (5). The number of score categories K was fixed at 4 to match the

condition of the actual data.

2. Given the true parameters, randomly generate rating data from the proposed model.

3. Estimate the model parameters from the generated data with the NUT-based MCMC

algorithm.

4. Calculate the root mean square errors (RMSEs) and the biases between the estimated and

true parameters.

5. Repeat the above procedure 50 times, and calculate the mean values of the RMSEs and

biases.

Table 2 shows the results, which clearly indicate that the RMSEs decrease with increasing

amounts of data per parameter. Specifically, we can confirm the following tendencies.

1. The RMSEs for the examinee ability θj tend to decrease as the number of items or raters

increases.

2. The RMSEs for the item–rater interaction parameters βir tend to decrease as the number of

examinees increases.

3. The RMSEs for the item-specific parameters tend to decrease as the number of examinees

or raters increases.
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4. The RMSEs for the rater-specific parameters tend to decrease as the number of examinees

or items increases.

Related studies [25, 29, 46] have also shown that the RMSEs decrease with increasing

amounts of data per parameter, which is consistent with our results. Furthermore, as shown in

the table, the RMSEs for examinee ability θj are less than 0.2. Considering that standard normal

distribution is assumed for θj, an RMSE value below 0.2 is generally acceptable because it cor-

responds to only about 3% of the logit range [-3,3], where 99.7% of θj falls statistically.

Table 2 also shows that the average bias was nearly zero overall, indicating that there was no

overestimation or underestimation of the parameters. Furthermore, we confirmed the Gel-

man–Rubin statistic R̂ [47, 48], a well-known convergence diagnostic index, and the effective

sample size (ESS). The R̂ values were less than 1.1 in all cases, indicating that the MCMC runs

converged. Moreover, an ESS of more than 400 is considered sufficiently large [49], and our

ESSs satisfied this criterion in all MCMC runs.

Based on these results, we conclude that the parameter estimation for the proposed model

can be appropriately performed using the MCMC algorithm.

Actual data experiments

In this section, we evaluate the effectiveness of the proposed model through experiments using

the actual data that we collected from a medical interview test conducted as part of a Post-CC

OSCE at Tokyo Medical and Dental University, as detailed in Data Section.

Model comparison using information criteria. We first conducted model-comparison

experiments using information criteria. As the information criteria, we used the widely appli-

cable information criterion (WAIC) [50] and the widely applicable Bayesian information crite-

rion (WBIC) [51], which are applicable for Bayesian estimation using MCMC.

We compared the information criteria for the proposed model with those for the conven-

tional models, namely, GMFRM and MFRM. Furthermore, to directly evaluate the effective-

ness of the newly incorporated parameters βir and dim, we examined the following two

restricted versions of the proposed model.

• A proposed model that decomposes the item–rater interaction parameter βir into βi + βr.

• A proposed model without item-specific step-difficulty parameters dim.

Table 2. Results of parameter-recovery experiments.

J I R RMSE Bias

θj αr αi βir dim drm θj αr αi βir dim drm
30 10 5 .175 .147 .233 .295 .316 .267 .002 .032 .038 -.007 .000 .000

10 .141 .146 .191 .298 .173 .165 -.023 .021 .018 -.022 .000 .000

30 5 .111 .089 .251 .290 .488 .466 -.016 .016 .079 -.017 .000 .000

10 .081 .084 .158 .282 .333 .312 .010 .012 .024 .007 .000 .000

50 10 5 .172 .090 .188 .255 .262 .225 -.015 .013 .017 -.013 .000 .000

10 .127 .115 .121 .236 .139 .145 .016 .015 -.010 .015 .000 .000

30 5 .112 .059 .189 .241 .465 .457 .006 .008 .062 .007 .000 .000

10 .085 .068 .133 .235 .341 .329 .007 .011 .030 .010 .000 .000

A result of .000 indicates that the absolute value was less than .001.

https://doi.org/10.1371/journal.pone.0309887.t002

PLOS ONE IRT model highlighting rating scale of a rubric and rater-rubric interaction in OSCE

PLOS ONE | https://doi.org/10.1371/journal.pone.0309887 September 6, 2024 9 / 23

https://doi.org/10.1371/journal.pone.0309887.t002
https://doi.org/10.1371/journal.pone.0309887


Table 3 shows the WAIC and WBIC values calculated for these models, where the model

that minimizes the criteria is regarded as optimal. In the table, bold font indicates the model

that minimizes each criterion. According to the results, WAIC selected the proposed model as

the best model, whereas WBIC selected the proposed model that decomposes βir = βi + βr as

the best model. Although WBIC did not select the proposed model as the best model, a com-

parison of the proposed model and that without dim shows that removing dim substantially

deteriorates the WBIC. These results suggest that the item-specific step-parameter dim is essen-

tial for improving model fitting, although the effects of the item–rater interaction parameter

βir might be relatively small.

Additionally, we checked the proposed model’s goodness of fit to the data. For this, we used

a posterior predictive p-value (PPP-value) [47]. Specifically, we calculated a PPP-value for the

proposed model by using an averaged standardized residual (a traditional metric of IRT model

fitness under a non-Bayesian framework) as a discrepancy function, in a manner similar to

that in [52–54]. The PPP-value is around 0.5 for a well-fitted model but can be extremely low

or high, taking values less than 0.05 or greater than 0.95, for a poorly fitted model. The PPP-

value of the proposed model was 0.55, which is near 0.5, suggesting that the model is well-fitted

to the data.

Comparison of ability measurement accuracy. This subsection compares the accuracy

of ability measurement, using the abovementioned actual data. Specifically, we evaluate the

extent to which ability estimates are stable when abilities are estimated using data from differ-

ent items and raters. If a model appropriately reflects item and rater characteristics, ability val-

ues estimated from data comprising different items and raters should be highly stable. This

concept is based on the split-half method [55], a well-known method for measuring the accu-

racy of ability measurement in test theory. Specifically, we conducted the following experiment

for the proposed model and the comparative models, which were examined in the above

model-comparison experiment.

1. Estimate the model parameters from the full dataset, using MCMC.

2. Randomly select N = 20 or 40 scores assigned to each examinee, then change the unselected

scores to missing data.

3. Estimate examinee abilities using the dataset with missing data, and the rater and item

parameters estimated in Procedure 1.

4. Calculate the correlation between the ability estimates obtained in Procedure 3 and those

obtained in Procedure 1.

Table 3. Model comparison based on information criteria and ability measurement accuracy.

WAIC WBIC Ability measurement accuracy

N = 20 N = 40

Avg. SD p-value Avg. SD p-value

Proposed model 3346.0 2272.4 .893 .028 - .956 .016 -

• with βir = βi + βr 3408.6 2101.2 .871 .033 <.01 .945 .018 <.01

• w/o dim 3783.6 2427.5 .874 .032 <.01 .947 .018 <.01

GMFRM 383.9 2239.2 .842 .042 <.01 .930 .021 <.01

MFRM 4423.4 2389.7 .829 .042 <.01 .922 .025 <.01

Score averaging method - - .809 .046 <.01 .914 .023 <.01

https://doi.org/10.1371/journal.pone.0309887.t003
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5. Repeat Procedures 2 to 4 50 times and then calculate the average and standard deviation of

the correlations.

To determine a baseline with a non-IRT approach, we conducted the same experiment,

using a method in which the ability estimates are given as simple average scores. We desig-

nated this as the score averaging method. We also conducted multiple comparisons using Dun-

nett’s test to ascertain whether correlation values under the proposed model are significantly

higher than those under the other models and the score averaging method.

Table 3 shows the results, which indicate that all IRT models provide higher average corre-

lation values compared with the score averaging method, suggesting that the IRT models effec-

tively improve the accuracy of ability measurements. The results also show that the proposed

model provides significantly higher correlations compared with the other models, demonstrat-

ing the proposed model’s superior accuracy in estimating ability.

Parameter interpretation. Besides the improvement in model fitting and ability measure-

ment accuracy, another benefit of the proposed model is its higher interpretability on rater

and item characteristics compared with conventional models. This subsection interprets those

characteristics based on the proposed model parameters estimated from the actual data.

First, we show the histogram of the ability estimates in Fig 1. The horizontal axis indicates

the ability values θ, the vertical axis indicates the probability density values, the bars show the

histogram, and the solid blue line shows the probability density function estimate. From the

results, we can confirm that the ability estimates are scattered around 0, where the minimum

Fig 1. Histogram of ability estimates.

https://doi.org/10.1371/journal.pone.0309887.g001
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of the ability estimates was -0.91, the maximum was 0.70, the average was 0.12, and the stan-

dard deviation was 0.39.

The rater-parameter estimates are shown in Table 4, where Avg(βr) indicates the overall

severity of each rater calculated based on the item–rater interaction parameter βir as

AvgðβrÞ ¼
1

I

XI

i¼1

bir: ð6Þ

Furthermore, Fig 2 depicts the item response curves (IRCs) of the proposed model, which

are plots of Pijrk, for each rater, where the parameter of item 1 was given. In the IRCs, the hori-

zontal axis shows the examinee ability θj, the first vertical axis shows the response probability

for each category, and the black lines with markers indicate the IRCs. The gray shaded area

indicates the range in which the ability estimates exist, namely, θ2[-0.91, 0.70]. Furthermore,

in the figure, the red solid line shows the standard error (SE) of ability, which indicates how

accurately a given item and a given rater measure an examinee with an ability level, and the

Table 4. Estimates of rater parameters.

r αr dr2 dr3 dr4 Avg(βr)

1 0.96 -0.46 -1.64 2.10 0.13

2 0.86 -0.97 -1.31 2.28 0.08

3 1.28 -0.70 -0.33 1.03 -0.17

4 1.05 -0.72 -0.71 1.43 -0.29

5 0.90 -0.81 -1.11 1.92 0.11

https://doi.org/10.1371/journal.pone.0309887.t004

Fig 2. IRCs for each rater in item 1.

https://doi.org/10.1371/journal.pone.0309887.g002
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second vertical axis shows the standard error values. In IRT, the SE of ability is defined as the

inverse square root of the Fisher information (FI), where more information implies less error

in the assessment. In the proposed model, the FI of rater r in item i for an examinee j with abil-

ity θj can be calculated as

Iijr ¼ D2a2
i a

2
r

"
XK

k¼1

k2Pijrk �

 
XK

k¼1

kPijrk

!2#

: ð7Þ

Consequently, the SE can be calculated as
ffiffiffiffiffiffiffiffiffiffi
1=Iijr

q
. A smaller SE on a specific ability value θ

indicates that the rater can distinguish the ability level more precisely.

From the IRCs, we can see that raters 1, 2, 4, and 5 tend to have a range restriction in which

score category 3 is overused, while rater 3 tends to use two categories, 2 and 3, evenly. More-

over, the rater consistency parameters shown in Table 4 suggest that rater 3 tends to distin-

guish the examinees’ ability levels more consistently. This characteristic can also be confirmed

from the fact that the SE of rater 3 is relatively low in the ability range θ2[-0.91, 0.70] (gray

shaded area). Furthermore, the overall severity Avg(βr) shows that rater 4 tends to be a little

lenient, although the difference in overall severity is not large among the raters.

Next, we show the item-parameter estimates in the item parameters column in Table 5,

where Avg(βi) indicates the overall difficulty of each item calculated based on the item–rater

interaction parameter βir as

AvgðβiÞ ¼
1

R

XR

r¼1

bir: ð8Þ

We also show that the IRCs and SE function for each item, given the parameters for rater 3,

in Figs 3 and 4. According to the IRCs, it is clear that the rating scale differs depending on the

item. For example, the following tendencies can be confirmed.

1. The highest score category tends to be overused strongly in items 3 and 5, while score cate-

gory 3 is highly used in items 21 and 26. In those items, nearly all the target examinees had

the same score, indicating that these items are ineffective for distinguishing the ability of

examinees. This can also be confirmed from the toward relatively high SEs in the ability

range shaded gray in the figures.

2. In items 2, 16, 19, 22, 23, 24, 25, 27, and 29, the IRCs for three score categories tend to show

high probabilities in or near the ability range of the target examinees (the gray-shaded

area), indicating that these items can be utilized to distinguish the ability of examinees

according to these three score categories. Thus, these items tend to provide low SE values

across a wide range of the target examinees’ abilities, indicating their high effectiveness for

the ability measurement.

3. The IRCs for the other items show relatively high probabilities for only two score categories

within the ability range of the target examinees (the gray-shaded area), indicating that these

items tend to distinguish the examinees’ ability in two score categories. For example, item

23 distinguishes the examinees using scores 2 and 4, whereas items 13 and 14 do so using

scores 1 and 3. Because of this range restriction, these items might not be adequate for eval-

uating the entire range of the target examinees’ abilities, although they might help to distin-

guish a specific ability for which the IRCs of the two most-used score categories intersect.
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This can be confirmed from the fact that these items tended to show relatively low SE values

around such ability points.

Table 5 shows that the item discrimination parameter αi and the overall difficulty Avg(βi)

also vary depending on the item. For the ease of grasping the tendency, Fig 5 shows the item

discrimination parameter αi and the overall difficulty Avg(βi) for each item, where the hori-

zontal axis indicates the αi values, the vertical axis indicates the Avg(βi) values, and the plots

indicate the item index. As shown in the figure, the αi estimates suggest that items 11 and 22

have low discriminatory power, whereas items 23, 24, and 26 have extremely high discrimina-

tory power. In addition, the overall difficulties suggest that items 3, 5, 15, and 16 are extremely

easy, whereas items 8 and 11 are extremely difficult. We can also see that the variety of the

item discriminatory powers and the overall item difficulty are substantially large compared

with the rater consistency and overall severity among raters.

Table 5. Estimates of item parameters, and item–rater interaction parameters βir.

i Item parameters Item–rater interaction parameter βir

αi di2 di3 di4 Avg(βi) βi1 βi2 βi3 βi4 βi5

1 1.09 -1.42 0.19 1.23 -0.13 0.19 -0.06 -0.26 -0.41 -0.10

2 1.58 -0.84 -0.08 0.92 0.33 0.27 0.56 0.92 -0.49 0.42

3 0.89 0.22 1.16 -1.39 -1.20 -1.22 -0.70 -1.57 -1.02 -1.50

4 1.28 0.09 -0.84 0.75 0.26 0.60 0.58 0.29 -0.66 0.49

5 0.98 0.22 0.55 -0.77 -1.25 -1.57 -0.13 -1.70 -1.15 -1.68

6 1.08 -0.20 -0.26 0.47 -0.76 -0.38 -0.24 -1.37 -0.35 -1.47

7 1.84 0.14 -0.96 0.81 -0.65 -0.34 -0.44 -1.20 -0.89 -0.37

8 0.86 -1.34 1.68 -0.33 1.06 1.51 0.58 1.49 0.31 1.42

9 0.86 1.62 0.88 -2.50 -0.15 -0.14 -0.02 -0.26 -0.04 -0.30

10 0.70 -1.87 1.06 0.81 0.45 0.80 0.06 1.23 -0.57 0.71

11 0.59 0.99 -1.62 0.63 1.11 2.25 0.34 0.70 0.28 1.97

12 1.22 0.81 -1.41 0.60 0.68 0.93 0.96 0.30 0.50 0.71

13 1.53 0.65 -1.24 0.59 0.59 0.81 0.80 0.77 -0.18 0.73

14 0.78 0.87 -1.53 0.67 0.50 1.01 0.51 0.60 -0.46 0.84

15 0.69 1.17 1.11 -2.29 -1.11 -1.12 -1.20 -0.68 -1.59 -0.97

16 0.70 0.47 -0.18 -0.29 -1.35 -1.63 -2.12 -0.29 -1.06 -1.65

17 0.78 0.25 -0.94 0.69 0.68 2.18 -0.51 -0.21 -0.29 2.23

18 1.00 0.62 -0.21 -0.41 0.41 0.67 0.43 0.44 -0.07 0.57

19 0.63 -0.51 -0.52 1.03 0.21 0.81 0.32 -0.01 -0.46 0.40

20 0.82 0.54 -1.31 0.77 0.81 0.73 0.99 0.64 0.91 0.79

21 1.32 -0.57 -0.82 1.39 -0.41 -0.38 -0.48 -0.96 -0.38 0.15

22 0.56 1.02 -1.44 0.41 0.27 0.88 -0.28 -0.49 0.46 0.78

23 1.99 -0.99 1.23 -0.24 -0.50 -0.06 -0.72 -0.77 -0.74 -0.24

24 2.20 -0.94 0.90 0.05 -0.40 -0.58 0.42 -0.89 -0.24 -0.73

25 1.38 -0.38 0.58 -0.20 -0.26 -0.17 0.31 -0.69 -0.26 -0.50

26 2.00 -0.70 -0.82 1.52 -0.22 -0.34 0.45 -0.39 -0.38 -0.47

27 1.03 -1.09 -0.14 1.23 -0.29 -0.58 0.34 -0.88 -0.26 -0.07

28 1.13 -1.06 0.33 0.72 -0.17 -1.05 0.34 -0.43 0.03 0.27

29 1.24 -0.54 -0.49 1.03 0.32 -0.40 0.57 0.57 0.29 0.55

30 1.43 -0.84 -0.09 0.93 0.32 0.19 0.69 0.03 0.54 0.14

https://doi.org/10.1371/journal.pone.0309887.t005
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Finally, we show the item–rater interaction parameters in the item–rater interaction param-
eters column in Table 5. We plot these values in Fig 6, where the horizontal axis indicates the

item index, the vertical axis indicates the βir values, each line indicates one rater, and the black

x’s indicate the overall item difficulty Avg(βi). As the values and figure show, the severity of

Fig 3. IRCs for items 1–15, where rater parameters for r = 3 are given.

https://doi.org/10.1371/journal.pone.0309887.g003
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each rater is inherently inconsistent across items. For example, rater 2 is more severe com-

pared with the other raters on items 5, 24, 25, 26, and 27 but is more lenient on items 16, 17,

and 22. Moreover, raters 1 and 5 seem to be extremely severe on items 11, 17, and 22 in

particular.

Fig 4. IRCs for items 16–30, where rater parameters for r = 3 are given.

https://doi.org/10.1371/journal.pone.0309887.g004
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Discussion

The above experiments using actual data revealed that rater severities and rating scales varied

among evaluation items. Unlike conventional models, the proposed model estimated exam-

inee ability while considering the effects of these two characteristics, which explains why the

proposed model showed improved model fitting and ability measurement accuracy.

Implications of findings

Analysis of our OSCE data reveals the following observation about the rubric and raters. First,

many evaluation items in the rubric cause a few restricted score categories to be overused,

meaning that some score categories are not used efficiently. Specifically, items 3, 5, 21, and 26

induce the extreme overuse of one score category, thereby resulting in low SE values for the

target ability range. These items might have to be revised to improve the effectiveness of the

ability measurement and reduce the assessment burden of raters. Furthermore, the item–rater

Fig 5. Estimates of the discriminatory power and overall difficulty for each item. The numbers in the graph indicate the item index.

https://doi.org/10.1371/journal.pone.0309887.g005
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interaction parameters suggest that rater 2 tends to be substantially lenient only for evaluation

items 24, 25, 26, and 27, which are related to communication skills. This may reflect the rater’s

unconscious scoring biases, and thus providing such feedback would be meaningful for

improving their future rating behavior.

In addition, the proposed model excels at analyzing the consistency, overall severity, and

range restriction of raters and the discrimination power and overall difficulty of items. Under-

standing such characteristics might also be useful for providing feedback to raters, designing

rater training programs, and evaluating and revising a rubric’s evaluation items, as detailed in

the next paragraph. Checking the SE function is also beneficial for investigating the overall

measurement accuracy for a specific ability level.

Although the direct contribution of our model to general clinical practice, other branches

of clinimetrics, and routine patient care evaluations may be limited, our model has the follow-

ing features, which are relevant to the field of clinimetrics and will ultimately lead to higher

quality clinical practice and patient care:

• Appropriate Selection of Competent Professionals: Our model realizes accurate measure-

ment of examinee abilities in the OSCE, even when multiple raters are involved. This con-

tributes to the appropriate selection of competent medical and dental professionals,

enhancing future patient care quality.

• Trust in Evaluation and Learning Processes: Accurate ability measurement enhances the

trustworthiness of both the evaluation and the learning processes for medical and dental stu-

dents. This trust is fundamental for the credibility and effectiveness of medical education.

• Improved Rubric Design and Development: Our model allows for a detailed analysis of the

characteristics of each evaluation item in the rubric. This helps in refining and developing

more effective rubrics, thereby ensuring fair and comprehensive assessment criteria.

Fig 6. Estimates of the item–rater interaction parameter βir.

https://doi.org/10.1371/journal.pone.0309887.g006
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• Enhanced Rater Training: Our model provides detailed and objective information on the

characteristics of raters. Offering such information to each rater serves as valuable feedback

for rater training programs. Such feedback can help raters, who are typically medical and

dental professionals, become aware of their biases and standardize their evaluations, thereby

improving the reliability of assessments.

• Reducing Rating Cost: By enabling high-quality rubric design and improving rater reliabil-

ity, our model can potentially reduce the number of raters and stations while maintaining

ability measurement accuracy, which contributes to cost reduction for managing

examinations.

• Broader Applicability: Our model is applicable to various rubric-based performance assess-

ments beyond OSCEs, including writing exams, interview exams, and presentation exams,

in fields such as psychology, nursing, and allied health professions.

Note that the interpretation of item and rater characteristics based on the IRT model can-

not be realized directly by basic statistics such as the mean or variance of scores for each item

and rater given that such simple statistics cannot isolate the effects derived from the various

characteristics of examinees, rater, and items.

Limitations and future works

One limitation of this study is the relatively small size of the actual data, which might affect the

parameter estimation accuracy. However, as shown in the parameter-recovery experiments,

the proposed model provides acceptable parameter estimation accuracy given the size of the

actual data, namely, J = 30, I = 30, and R = 5. Note that the MFRMs and its extension models,

including the proposed model, use I × R = 150 data points for estimating the examinee ability

θj. Similarly, the item and rater parameters are estimated from the J × R = 150 and J × I = 900

data points, respectively. This suggests that the amount of data for each parameter is not too

small, although the effects of increasing data size should be investigated in future studies.

The proposed IRT model is applicable to various rubric-based performance assessments

and offers various benefits as detailed above. However, to use our model appropriately, careful

rater allocation is required for IRT parameter linking. The ideal condition for parameter link-

ing is a setting where all examinees are assessed by all raters. However, in general settings, to

reduce the scoring burden on each rater, each examinee is assessed by a few different raters

from a pool of raters. To ensure parameter linking in such cases, each examinee must be

assessed by at least two raters, and the combinations of raters must be changed several times

throughout the examination. This is because when raters remain fixed, the factors of raters

and examinees become nested, making it impossible to separate their characteristics. Under

inappropriate rater allocation designs, fair ability measurement cannot be achieved by any sta-

tistical analysis method, including IRT, without some strong assumptions. For appropriate

rater allocation designs, please refer to [28]. Note that our dataset follows an appropriate rater

allocation design.

This study assumes the unidimensionality of ability, and the model–data fit based on PPP
suggested that the unidimensional proposed model is well-fitted to the data. Meanwhile, a

multidimensional extension might have further benefits. Thus, examining multidimensional

variants of the proposed model will be another future task. It is important to note that the

unidimensionality assumption and the relatively small sample size do not preclude the use of

IRT in analyzing OSCE data. Although such conditions might lead to inaccurate or biased

parameter estimation, the same difficulties arise when simple statistics such as mean scores are

employed as ability estimates. Compared with non-IRT approaches, the proposed IRT model
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has the advantage of being able to estimate examinee ability while considering various bias

effects derived from raters and items, resulting in a higher ability measurement accuracy.

Another limitation of this study is that other rater characteristics, which may have affected

the assessment results, were ignored. Some representative examples are rater-parameter drift

[56–58], differential rater functioning [59–61], and the halo effect [12]. This study also ignored

other possible bias factors sourced by stations and simulated/standardized patients [2, 4, 6, 7].

In future work, we will extend the proposed model to account for such complex factors.

Conclusion

This study proposed a new IRT model that considers the characteristics of raters and rubric

evaluation items. Specifically, the proposed model is formulated as a GMFRM extension with

two additional parameters: the rater–item interaction parameter and the item-specific step-dif-

ficulty parameter. The proposed model relaxes two strong, unrealistic assumptions of conven-

tional models, namely, the consistent rater severity across all evaluation items and the equal

interval rating scale across all evaluation items. Through experiments using actual OSCE data,

we showed that the proposed model succeeded in improving model fitting, ability measure-

ment accuracy, and the interpretability of rater and item properties compared with conven-

tional models.
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