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Abstract

Based on panel data collected from 2003 to 2020 across 30 provinces in China, the paper

employs the spatial vector angle method and spatial Durbin model to investigate industrial

agglomeration’s nonlinear and spatial spillover effects on the energy consumption struc-

ture’s low-carbon transition process (Lct). The results indicate the following: First, the influ-

ence of industrial agglomeration on Lct exhibits an inverted U-shaped pattern. As the

degree of industrial agglomeration expands, its effect on Lct shifts from positive to negative.

Second, industrial agglomeration demonstrates spatial spillover effects. It promotes the

improvement of Lct in neighboring provinces through agglomeration effects. However, the

continuous expansion of industrial agglomeration inhibits the improvement of Lct in neigh-

boring provinces through congestion effects. Third, the heterogeneity test finds that indus-

trial agglomeration has a significant role in promoting Lct in the samples of eastern region,

but this effect is not significant in the samples of western and middle regions.

1. Introduction

Since the initiation of China’s reform and opening-up program, the nation has experienced

remarkable economic growth, with its GDP soaring from 367.87 billion to 113,323.98 billion

yuan between 1978 and 2021, reflecting an impressive annual growth rate of 14.25 percent.

However, this growth has come at the cost of societal issues, notably excessive energy use and

environmental pollution, arising from a historically haphazard development approach. China

is steering its economy from fast growth to a high-quality growth model, emphasizing the

simultaneous pursuit of economic prosperity and environmental sustainability. This transition

aligns with the imperative outlined in the 19th CPC National Congress report, stressing the

need for a contemporary energy system characterized by cleanliness, low-carbon footprint,

safety, and efficiency. Crucial to fostering China’s energy revolution and urgent economic and

social transformation is realizing clean, low-carbon development and optimizing the energy
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consumption structure. These endeavors are fundamental to advancing the country towards a

sustainable and resilient future.

Academic researches on energy consumption structures are currently at the forefront due

to the pressing global challenges in energy, environment, and economy [1]. Existing researches

on energy mainly focused on energy efficiency [2], energy performance [3], and energy struc-

ture [4] to analyze their influencing factors, such as economic development [5], industrial

structure [6], and urbanization [7]. However, there are relatively few studies on the energy

consumption structure’s low-carbon transition process (Lct). The latest research on the Lct

analyzed the synergistic effects of green credit and green technology innovation [8]. Regarding

the researches on industrial agglomeration, existing researches focused on its impact on energy

dynamics [9] and total factor energy efficiency [10]. It can be seen that existing researches had

not explored the relationship between industrial agglomeration and the Lct, and is still in a

blank stage. Regarding the measurement of the Lct, there are currently no unified research

method in the academic community. Some scholars used a simple indicator system to measure

it [11], and some scholars used the principal component analysis method (PCA) to construct

an indicator system [12]. However, these methods are highly subjective and difficult to express

the energy consumption structure accurately.

Given this, this paper uses the spatial vector angle method and only considers three types of

energy: coal, oil, and natural gas to construct an indicator system to measure the Lct. At the

same time, to fill the gap in existing researches on the relationship between industrial agglomer-

ation and the Lct, this paper constructs a spatial Durbin model containing quadratic terms of

industrial agglomeration to analyze the nonlinear and spatial spillover effects of industrial

agglomeration. The novelty and marginal contribution of this article lie in the following aspects:

(1) This study particularly emphasizes the spatiotemporal evolution trends of industrial

agglomeration and Lct, and also conducts regional heterogeneity analysis, thus significantly

broadening the research horizons of industrial agglomeration and Lct.

(2) Considering the crowding effect of industrial agglomeration, this study innovatively

incorporates the square term of industrial agglomeration into the model to analyze the nonlin-

ear inverted U-shaped impact on Lct.

(3) This study innovatively adds the square term of industrial agglomeration to the dual-

space Durbin model, revealing the nonlinear spatial spillover effect of industrial agglomeration

on Lct.

(4) This paper uses the spatial vector angle method to measure the Lct and deal with the

complex structural evolution of subdivided energy, which is comparable across samples.

This study enhances academic understanding of the relationship between industrial agglomer-

ation and Lct. It also helps us better understand the complex interactions between industrial

dynamics, environmental sustainability, and social well-being. This study has important reference

significance for the industrial pattern distribution of various provinces in China and provides

valuable insights for industrial stakeholders and policymakers. In addition to its implications for

the industrial sector, this research has broader implications for broader social issues such as sus-

tainable development, regional inequality, and environmental sustainability. These findings can

help policymakers and stakeholders chart a more inclusive, resilient, and sustainable path to move

China’s industry and society toward shared prosperity and sustainability.

2. Literature review

2.1 Industrial agglomeration and the inverted-U relationship

The 3D surface and mapping of the spatiotemporal evolution trend of the Lct in 30 Chinese

provinces from 2003 to 2020 are shown in Fig 1. Where the y-axis is the year, i.e., 2003–2020,
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the z-axis is the size of Lct, and the x-axis represents the chosen 30 provinces. The image

shows that whereas central and western regions like Shaanxi, Shanxi, and Hubei have histori-

cally had lower degrees of Lct, provinces like Beijing, Fujian, Guangdong, and Zhejiang have

gradually strengthened the degree of Lct through time.

The standard method for studying industrial agglomeration is based on a scalar measure of

agglomeration within each industry. Mori and Smith (2015) proposed a quantitative method

based on an explicit method of detecting spatial clusters to differentiate the scale and extent of

industrial agglomeration [13]. They improved on their own to make it representative of spatial

agglomeration. Shi et al. (2023) conducted a visual analysis of industrial agglomeration’s spa-

tial distribution pattern for visualization and analysis [14], constructed the network of inter-

city traffic interaction, and then inferred the network of population mobility trend and techno-

logical innovation mobility trend. Based on the regression analysis model considering the spa-

tial intensity of mobility, the specific relationship between industrial agglomeration and the

influencing factors was studied. There are two views on industrial agglomeration: the agglom-

eration effect and the congestion effect. The externality theory of industrial agglomeration rep-

resented by Lekachman (1962) believes that the positive economic externality is a distinctive

feature of industrial agglomeration as a form of organization and takes this as an essential

source to maintain the competitiveness of industrial agglomeration [15]. With the develop-

ment of the theory, scholars further found that industrial agglomeration also has obvious

energy-positive externalities, and from the collaborative innovation environment between

enterprises related to the spillover of clean technology [16], the scale effect of pollution control

and the circular economy and other perspectives, that industrial agglomeration organizational

form, could promote economic growth, but also to accelerate the effect of energy structure

transformation [17]. In addition, there are theories that the industrial agglomeration process

would have negative externalities [18]. New economic geography [19] believed that industrial

Fig 1. Lct’s 3D surface map.

https://doi.org/10.1371/journal.pone.0307893.g001
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agglomeration, to a certain extent, might have a congestion effect, and the energy consumption

structure was one of the specific manifestations of the above phenomenon. Zhang and Tao

(2023) investigated the inverted U-shaped relationship between the green economy and indus-

trial agglomeration in the Yangtze River Delta region [20]. The magnitude of agglomeration

and crowding effects of industrial agglomeration could be illustrated by the output density

model proposed by Ushifusa and Tomohara (2013) to explain the changes and constraints

between them [21].

2.2 Spatial spillover effects of industrial agglomeration

In recent years, scholars had gradually studied the influence of industrial agglomeration on

other factors from a spatial perspective. Cohen and Paul (2005) concluded that industrial

agglomeration had a certain spillover effect at the spatial level [22]. Qin et al. (2022) studied

the spatial convergence and correlation of industrial agglomeration on pollution emissions in

the Yellow River Basin with the help of the spatial Durbin model [23]. They concluded that

there were certain heterogeneous differences in the influence of industrial agglomeration on

pollution emissions in the Yellow River Basin’s upper, middle, and lower reaches. Yang et al.

(2023) used the location entropy model to calculate the collaborative industrial agglomeration

[24], measured the nonlinear relationship between the collaborative industrial agglomeration

and the atmospheric environmental efficiency based on the threshold regression model, and

used the spatial Durbin model to study the spatial spillover effect of the joint industrial

agglomeration on the atmospheric environmental efficiency effect. Xiong et al. (2022) used

machine learning to process the multi-subject database and studied the spatial distribution

characteristics of metal-related industrial agglomeration and the spatial-temporal differentia-

tion characteristics of pollution emission, and finally put forward policy suggestions for sus-

tainable development from the perspective of the spatial spillover effect of industrial

agglomeration [25]. In summary, in the spatial impact of industrial agglomeration studies,

most of them focused on the study of the spatial spillover effect of industrial agglomeration of

urban agglomerations or industrial enterprise agglomeration on carbon emissions, environ-

mental pollution, etc. There were few studies on industrial agglomeration and Lct. Whether

industrial agglomeration has a significant positive impact on the Lct remains to be confirmed

and is still in a blank stage.

2.3 Heterogeneity of industrial agglomeration

Yu et al. (2023) and others found that industrial agglomeration has spatial heterogeneity in

sustainability [26]. It can be seen that it is necessary to discuss industrial agglomeration subre-

gionally. From Fig 1, we can see that Lct is stronger in the eastern region. In contrast, the

degree of Lct in the central and western regions is slightly inferior, so the regional differences

formed by the economy, geography, and culture provide an opportunity for this paper to study

the impact of different degrees of industrial agglomeration on the Lct. Therefore, this paper

divides the 30 provinces into three regions: east, west, and central, and analyses the impact of

industrial agglomeration on the Lct in different regions.

2.4 Spatial correlation test methodology

Compared to traditional econometrics, spatial econometrics considers the interaction between

regions. It incorporates spatial effects into regression models through spatial weights, thereby

enhancing the explanatory power and validity of the models [27]. Spatial effects primarily refer

to spatial dependence and spatial heterogeneity. Spatial dependence implies that the attributes

or behaviors of different regions are not independent but mutually influenced, with the degree

PLOS ONE Impacts of industrial agglomeration on the energy consumption structure’s low-carbon transition process

PLOS ONE | https://doi.org/10.1371/journal.pone.0307893 September 6, 2024 4 / 19

https://doi.org/10.1371/journal.pone.0307893


of influence correlated with the absolute or relative positions of the regions. Spatial heteroge-

neity indicates significant regional differences in economic and social development due to

regions’ varying economic and geographic characteristics [28].

Spatial correlation is captured by spatial weights, taking the spatial weight matrix of cross-

sectional data as an example. Suppose there are n observational samples within the study area.

The expression W is as follows.

W ¼

w11 . . . w1n

..

. . .
. ..

.

wn1 � � � wnn

0

B
B
B
@

1

C
C
C
A

ð1Þ

The elements wij in W define the spatial adjacency relationship of spatial objects. According to

different adjacency criteria, when region i is adjacent to region j, wij = 1; when region i is not

adjacent to region j, wij = 0. This study chooses the most commonly used R-neighborhood cal-

culation for computing spatial weight values in the adjacency matrix. Compared to cross-sec-

tional spatial weight matrices, panel spatial matrices incorporate a time factor (also known as

time-varying spatial weight matrix). The spatial weight matrix constructed in this study is

based on the adjacency among 30 major provinces and cities in China, excluding Hong Kong,

Macau, Taiwan, and Tibet regions.

Typically, spatial correlation is measured using the global Moran’s I, while the detailed spa-

tial distribution characteristics within the study object can be further examined using local

Moran’s I. The formula for computing global Moran’s I is as follows:

Moran0s I ¼

Xn

i¼1

Xn

j¼1

wijðxi � �xÞðxj � �xÞ

S2
Xn

i¼1

Xn

j¼1

wij

ð2Þ

Where n is 30 provinces, cities, and autonomous regions, wij is the spatial weight. In this

paper, the normalized spatial adjacency matrix is selected as the spatial weight matrix, x and �x
is the industrial agglomeration or the decarbonization transition of the energy consumption

structure in each province, and its mean value S2 represents sample variance. Moran’s I is usu-

ally between -1 and 1, with greater than 0 representing positive spatial correlation and con-

verging to 0 indicating no spatial correlation.

The formula for computing local Moran’s I is:

Moran0s I ¼
X

wijzizj ð3Þ

Where zi and zj are standardized observation values wij is the standardized spatial weight

matrix. WhenMoran’s Ii>0 and zi>0, the study variable exhibits high-high clustering, distrib-

uted in the first quadrant of Moran scatter plot; whenMoran’s Ii<0and zi<0, the study variable

exhibits low-low clustering, distributed in the third quadrant of Moran scatter plot; when Mor-
an’s Ii<0 and zi>0, the study variable exhibits high-low clustering, distributed in the second

quadrant of Moran scatter plot; when Moran’s Ii>0 and zi<0, the study variable exhibits low-

high clustering, distributed in the fourth quadrant of Moran scatter plot.

Based on this, the following hypotheses are proposed in this paper:

H1: The impact of industrial agglomeration on the Lct is the result of a combination of positive

and negative aspects. When lower than a certain threshold, the agglomeration effect is
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greater than the crowding effect, which will accelerate the energy consumption structure’s

low-carbon transition process; when higher than the threshold, the agglomeration effect

will be smaller than the crowding effect, which will slow down Lct.

H2: The impact of industrial agglomeration on the Lct has spatial spillover effects.

H3: Heterogeneous industrial agglomerations have different impacts on the Lct.

3. Methodology and data

3.1 Model construction

This paper proposes to use a spatial econometric model to analyze industrial agglomeration

and Lct.

3.1.1 Spatial correlation tests. The first step in spatial measurement is a spatial autocorre-

lation test, and the commonly used index is the Moran’s I.
In this paper, the test of global spatial autocorrelation was carried out for the independent

and dependent variables, respectively, and the results are shown in Table 1 below. We can see

that Moran’s I of industrial agglomeration and the Lct in each year is greater than 0, and they

are significant in the 99% confidence interval.

Fig 2 shows the localized Moran’s I results. From a) and b), it can be seen that the local

Moran index of industrial agglomeration in 2003 and 2020 are 0.333 and 0.220, respectively,

which show strong local positive spatial correlation; c) and d) in Fig 2 are the local Moran

index of the Lct in 2003 and 2020, respectively, which are greater than 0, and there exists strong

local positive spatial autocorrelation.

3.1.2 Spatial modeling tests. Given that it considers various spatial interactions as opposed

to the typical panel model, the spatial panel econometric model is better appropriate for the sit-

uation of this paper. The following forms of the spatial lag model (SAR), spatial error model

Table 1. Global Moran index values of 2003–2020.

Year IA Lct

I Sd (I) z p-value I Sd (I) z p-value

2003 0.333 0.090 4.103 0.000 0.340 0.125 3.003 0.003

2004 0.330 0.092 3.964 0.000 0.339 0.124 3.023 0.003

2005 0.326 0.092 3.940 0.000 0.352 0.124 3.115 0.002

2006 0.324 0.092 3.908 0.000 0.376 0.121 3.397 0.001

2007 0.282 0.085 3.707 0.000 0.332 0.122 2.996 0.003

2008 0.278 0.085 3.652 0.000 0.343 0.121 3.114 0.002

2009 0.278 0.086 3.622 0.000 0.326 0.122 2.952 0.003

2010 0.277 0.086 3.613 0.000 0.316 0.123 2.841 0.004

2011 0.278 0.087 3.586 0.000 0.278 0.123 2.540 0.011

2012 0.280 0.088 3.553 0.000 0.294 0.123 2.681 0.007

2013 0.221 0.078 3.258 0.001 0.339 0.123 3.042 0.002

2014 0.224 0.080 3.244 0.001 0.332 0.123 2.983 0.003

2015 0.228 0.081 3.247 0.001 0.322 0.123 2.906 0.004

2016 0.230 0.082 3.245 0.001 0.225 0.122 2.132 0.033

2017 0.231 0.082 3.246 0.001 0.275 0.122 2.531 0.011

2018 0.232 0.082 3.266 0.001 0.247 0.122 2.312 0.021

2019 0.236 0.082 3.282 0.001 0.197 0.122 1.906 0.057

2020 0.221 0.077 3.322 0.001 0.222 0.121 2.112 0.035

https://doi.org/10.1371/journal.pone.0307893.t001
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(SEM), and spatial Durbin model (SDM) are the most often used spatial econometric models.

The spatial Durbin model (SDM), which incorporates the spatial lag terms of the explanatory

factors and the explanatory variables, is one of them. It is an enhanced version of the SAR and

SEM.

SAR : Y ¼ dWY þ Xbþ ε

SEM : Y ¼WXyþ Xbþ m; and m ¼ lWmþ ε

SDM : Y ¼ dWY þ XbþWXyþ ε

8
><

>:
ð4Þ

In the above equation, Y represents the dependent variable matrix; W represents the spatial

weight matrix; and WY represents the spatial lag term of the dependent variable; δ represents

the spatial autoregressive coefficient, which is used to indicate the degree of interaction

between areas; X represents the matrix of explanatory variables; β represents the correspond-

ing coefficient variable; WX represents the spatial lag term of the explanatory variables; θ is the

corresponding coefficient vector.ε is a random perturbation term, λ is the error space autore-

gression coefficient, μ is the vector of regression residuals.

According to Elhorst (2014), a Lagrange multiplier test is necessary to select spatial econo-

metric models [29]. Table 2 shows that both lag and error multipliers passed the test at a 1%

confidence level, demonstrating spatial effects. Additionally, the robustness error multiplier is

considerable at the 1% level, demonstrating the use of SEM. As indicated in Table 2 below, the

LR and Wald test results passed the test at a 1% confidence level, rejecting the initial

Fig 2. Localized Moran index chart.

https://doi.org/10.1371/journal.pone.0307893.g002
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hypothesis. However, it is still essential to conduct the LR and Wald tests to decide whether

SDM will degenerate into SEM or SAR. In conclusion, this work can utilize the SDM model.

Additionally, the paper conducted the Hausman test, and the results rejected the original

hypothesis. So, this paper should use the Spatial Durbin Model (SDM) with double fixed

effects.

3.2 Variable selection

3.2.1 The explanatory variables. The energy consumption structure’s low-carbon transi-

tion process (Lct). The systematic project of continuously improving and changing the numer-

ous dominating energy sources in complementing and substituting is known as the Lct. To

speed up the clean-up of energy consumption, it primarily refers to the trend of replacing

high-carbon characteristics with green and low-carbon features in China’s energy structure. In

this study, we developed the Lct based on the spatial vector angle method [30] to assess the Lct.

First, oil and gas, coal, and other energy consumption are the three primary energy sources

consumed. The consumption share of each type of energy in the year(t) is a component of a

spatial vector, which can form a set of 3-dimensional vectors Ltðlt
1
; lt

1
; lt

1
Þ.

Secondly, calculate the angle yt
1
; yt

2
; yt

3
of Lt and the energy consumption vector ranked

from high to low carbon L0
1 ¼ ð1; 0; 0Þ; L0

2 ¼ ð0; 1; 0Þ; L0
3 ¼ ð0; 0; 1Þ.

yt
i
¼ arccos

X3

j¼1

ðlt
j
� l0

j
Þ

½
X3

j¼1

ðlt
j
Þ

2
�
X3

j¼1

ðl0
j
Þ

2
�

8
>>>><

>>>>:

9
>>>>=

>>>>;

i ¼ 1; 2; 3 ð5Þ

Thirdly, a weighted average of all vectors for each year t is used to obtain the energy con-

sumption structure decarbonization index Lctt, calculated as follows:

Lctt ¼
X3

s¼1

Xs

t¼1

y
j
t ð6Þ

To analyze the differences and dynamic changes of Lct during different periods, this article

presents the kernel density of Lct for different years, as shown in Fig 3. It shows that the peak

of the nuclear density curve for energy efficiency gradually increased from 2003 to 2020, indi-

cating that Lct continues to improve during the sample period.

Table 2. Spatial econometric modeling tests.

Test Methods statistical value p-value

LM-lag 51.323*** 0.000

Robust LM-lag 70.816*** 0.000

LM-error 132.497*** 0.0000

Robust LM-error 151.990*** 0.0000

Wald Spatial error 59.10*** 0.0000

Wald Spatial lag 62.17*** 0.0000

LR Spatial error 56.13*** 0.0000

LR Spatial lag 58.65*** 0.0000

Hausman 18.42*** 0.0183

Notes: Values in parentheses indicate the standard deviation.

*, ** and *** indicate p < 0.1, p < 0.05 and p < 0.01, respectively.

https://doi.org/10.1371/journal.pone.0307893.t002
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3.2.2 Core explanatory variables. Industrial agglomeration (IA). The term "industrial

agglomeration" describes combining different subjects, such as the government, businesses,

universities, and research institutions, who interact through interdependence, cooperation,

complementary strengths, improved labor division, resource sharing, etc., to foster collabora-

tive innovation. In this study, the employment density of each region was chosen to represent

the level of industrial agglomeration; the higher the population density, the higher the level of

industrial agglomeration.

3.2.3 Control variables. In light of studies by Chang et al. [26, 31] and others [10], we

chose the following control variables. The ratio of the urban to the overall population is known

as the urbanization level (civil). The ratio of industrial value added to GDP is known as the

industrialization level (gysp). The ratio of foreign direct investment to the gross regional prod-

uct is known as foreign direct investment (fdi). The proportion of total retail sales of consumer

goods to GDP is known as the social consumption level (sxsp). The logarithm of total freight

traffic is known as the Transport Infrastructure Level (jtsp). The ratio of completed invest-

ments in industrial pollution control to industrial value added is known as environmental reg-

ulation (envir). The proportion of fiscal expenditure to GDP indicates the degree of

government interference (gov). The aforementioned factors are specified as the controls influ-

encing the Lct.

3.3 Data

This study chose panel data from 30 Chinese provinces (municipalities and autonomous

areas) spanning 18 years from 2003 to 2020 for analysis because of the severe absence of data

in Tibet, Hong Kong, Macao, and Taiwan. The China Urban Statistical Yearbook, EPS,

CSMAR, province statistical yearbooks, and CNRDS are the main sources of the pertinent data,

Fig 3. Kernel density of Lct from 2003 to 2020.

https://doi.org/10.1371/journal.pone.0307893.g003

PLOS ONE Impacts of industrial agglomeration on the energy consumption structure’s low-carbon transition process

PLOS ONE | https://doi.org/10.1371/journal.pone.0307893 September 6, 2024 9 / 19

https://doi.org/10.1371/journal.pone.0307893.g003
https://doi.org/10.1371/journal.pone.0307893


and the average growth rate approach and interpolation are used to fill in the gaps. Table 3 dis-

plays the descriptive statistics for each variable.

4. Empirical results and discussion

4.1 Unit root and cointegration tests for spatial panels

Considering the common trends in the data, there may be pseudo-regression problems. So, to

avoid pseudo-regression and to ensure the validity and unbiasedness of the results, a stationar-

ity test was carried out before fitting the model [32]. This paper used the HT and ADF tests in

unit root tests, and the test results are shown below. It can be seen that most of the variable

series are non-stationary at the 10% level. After that, this paper repeatedly verified the series

after first-order differencing of all variables, and it can be obtained that they are all smooth

series.

From the smoothness test, it can be seen that the logarithmic values of the above variables

satisfy the first-order simple integer. Next, this paper needs to examine whether there is a coin-

tegration relationship between the selected variables. Considering the time trend of the sample,

this paper selected the Pedroni test for the cointegration test [33]. The three test statistics of

Pedroni are reported in Table 4 below have a p-value of 0.0000, indicating that the original

hypothesis of "no cointegration" is strongly rejected, i.e., a cointegration relationship exists.

Therefore, this paper can use the original series for regression analysis.

4.2 Regression results

The M1-M4 model is as follows:

OLS : Lct ¼ a0 þ a1IAþ a2IA2 þ aiControlsþ mi þ �t þ εi
SAR : Lct ¼ gW � Lct þ Z1IAþ Z2IA2 þ Z3Controlsþ mi þ �t þ εi
SEM : Lct ¼W � IAþW � IA2 þ g1IAþ g2IA2 þ g3Controlsþ mi þ �t þ z

SDM : Lct ¼ d1W � Lct þ d2W � IAþ d3W � IA2 þ d4W � Controlsþ φ1
IAþ φ

2
IA2 þ φ

3
Controlsþ mi þ �t þ εi

ð7Þ

8
>>>><

>>>>:

M1–M4 in Table 5 provides the findings of the OLS, SEM, SAR, and SEM model regressions.

All spatial econometric models are estimated using the method of maximum likelihood esti-

mation (MLE), and the spatial matrices used in the models are all 0–1 adjacency matrices.

Doing this can eliminate some endogeneity issues. The coefficients of industrial agglomeration

on the Lct are 16.221, 7.340,5.242, and 13.597, which pass the 1% significance level test and are

all positive, as shown in Table 5 when industrial agglomeration is the primary explanatory

Table 3. Descriptive statistics.

VARIABLES N mean sd min max

Lct 540 5.522 0.381 4.846 6.956

IA 540 0.0244 0.0343 0 0.217

cjcbz 540 0.0522 1.064 -0.693 6.030

cival 540 0.533 0.148 0.139 0.896

gysp 540 0.343 0.0861 0.101 0.559

fdi 540 0.0232 0.0191 0.000100 0.105

sxsp 540 0.127 0.110 0.00365 0.644

jtsp 540 11.21 0.917 8.526 12.94

envir 540 0.00419 0.00363 8.50e-05 0.0279

gov 540 0.207 0.0947 0.0772 0.643

https://doi.org/10.1371/journal.pone.0307893.t003
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Table 4. Stationarity test result of variable.

HT ADF-Fisher Steady or not

Gec 0.0003 0.0000 Yes

Cycbz 0.6808 1.0000 No

Cival 0.0002 0.0000 Yes

Gov 0.9990 0.2111 No

Envir 0.0000 0.3861 No

Fdi 0.4991 0.0971 No

Sxsp 0.7783 0.7073 No

Jtsp 0.9998 1.0000 No

Gysp 1.0000 0.9610 No

Pedroni test for cointegration Statistic p-value Cointegration or not

Modified Phillips–Perron t 7.0570 0.0000 Yes

Phillips–Perron t -11.4702 0.0000 Yes

Augmented Dickey–Fuller t -8.6228 0.0000 Yes

https://doi.org/10.1371/journal.pone.0307893.t004

Table 5. Estimation results.

M1 M2 M3 M4

OLS SEM SAR SDM

main Wx

IA 16.221*** 7.340*** 5.242*** 13.597*** 94.996***
(2.806) (1.427) (1.212) (2.610) (16.267)

IA2 -44.320*** -37.065*** -27.089*** -33.510*** -181.061***
(8.329) (6.455) (5.593) (7.622) (46.175)

cival -0.164 0.818*** 0.768*** 0.041 0.524

(0.121) (0.133) (0.127) (0.108) (0.715)

gov -0.104 0.501** 0.610*** -0.115 -2.715***
(0.186) (0.231) (0.219) (0.184) (0.973)

envir -4.041* -12.452*** -13.572*** -2.853 -1.726

(2.303) (3.455) (3.402) (2.056) (14.947)

fdi -1.049* 2.025** 1.911** 0.185 -3.028

(0.636) (0.860) (0.861) (0.595) (3.836)

sxsp 0.013 -0.711*** -0.745*** -0.102 -0.015

(0.108) (0.118) (0.116) (0.102) (0.723)

jtsp 0.019 -0.045** -0.050** 0.002 -0.421***
(0.023) (0.022) (0.022) (0.021) (0.107)

gysp 0.247 -0.625*** -0.355** 0.122 0.242

(0.181) (0.167) (0.159) (0.164) (0.987)

_cons 5.057***
(0.289)

Spatial 0.398*** 0.339*** 0.238***
(0.058)rho (0.058) (0.050)

N 540.000 540.000 540.000 540.000

0.461R2 0.906 0.460 0.496

Notes: Values in parentheses indicate the standard deviation.

*, ** and *** indicate p < 0.1, p < 0.05 and p < 0.01, respectively.

https://doi.org/10.1371/journal.pone.0307893.t005
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variable. However, the squared term’s coefficients are all negative and significant at the 1%

level. This demonstrates that industrial agglomeration significantly alters the structure of low-

carbon energy use in an inverted-U relationship. Based on prior research, it is known that

early industrial agglomeration will result in an expansion of the market scale, which will result

in the phenomena of labor sharing, intermediate input product sharing, and knowledge spill-

over. To a certain extent, the scale effect will predominate, encouraging the Lct. Industrial

agglomeration, however, will harm the Lct after it has developed to a certain extent. This may

be because the rapid expansion of production capacity within the industrial clusters has

sharply increased the energy demand, and the speed of energy structure transformation cannot

keep up with the increase in the energy demand rate, which causes it to slow down. This is con-

gruent with the findings of the paper’s theoretical derivation section. H1 is confirmed.

The linear term and quadratic term of the industrial agglomeration’s spatial spillover term,

presented in M4, have positive and negative coefficients, respectively, and are significant at the

1% confidence level. This shows that the shift to the Lct also exhibits a large inverted-U rela-

tionship in the regional spillover impact of industrial agglomeration. Industrial clusters can

aid in creating a platform for green energy technology innovation and sharing among indus-

tries in the early stages of industrial agglomeration [34]. They can also encourage the sharing

of advanced technology and management experience in energy use upgrading, which can

inspire and teach the neighboring industrial clusters, accelerating the spread of the Lct [35].

Although excessive agglomeration causes the competitive relationships between industries to

intensify and extrude one another, the agglomeration effect of industry is transformed into a

crowding effect [36] in the late stages of industrial agglomeration. As a result, the spatial effect

of industrial agglomeration may have some unfavorable effects on other provinces.

4.3. Effect decomposition

The equation for effect decomposition is as follows:

Directeffect ¼ ½ðI � rWÞ� 1
ðakIÞ��d ð8Þ

Indirecteffect ¼ ½ðI � rWÞ� 1
ðakIÞ�

rs�um
ð9Þ

This paper uses effect decomposition [29] to estimate the direct, indirect, and total effects

(Arnold, 2011) to analyze the intrinsic mechanism of industrial agglomeration’s impact on the

shift to the Lct because the results of the above regression cannot specifically reflect the mar-

ginal impact of the independent variables on the dependent variable. Table 6 illustrates the

three effects of the linear and quadratic terms of industrial agglomeration, which are positive

and negative at the 1% level. The validity of the hypothesis H2 can be deduced. When the indi-

rect impacts are further examined, it becomes clear that the spatial impact of industrial

agglomeration is the primary determining element because the absolute values of all the indi-

rect effects are substantially higher than the direct effects. This suggests that the transition pro-

cess toward a low-carbonization of the energy consumption structure in neighboring

provinces is significantly influenced by the substantial externality feature of industrial agglom-

eration. This supports the fundamental premise H2 of the earlier paper.

4.4 Robustness tests

The spatial econometric model is then tested for robustness to confirm the validity of the

empirical findings in this work. First, replacing the explanatory factors. The normalized indus-

trial agglomeration index is used in this study to regress the Lct, as shown in M5. The linear
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term and quadratic term coefficients are consistent with the trend above, and both are signifi-

cant at the 1% level, indicating that the model is reliable. Secondly, lagging one-period explan-

atory variables. The model is reliable because LIA_1 and LIA_2, shown in M6 as the linear

term and quadratic term of one lag, respectively, and their regressed coefficients, are in the

same direction and have the same significance as above. Finally, reducing the first and last out-

liers. The model is reliable because, as shown in M7, the outliers of the independent variable

and the dependent variable are 99% winsorized, and the final findings in Table 7 show that the

primary term and the quadratic term’s coefficients’ direction and significance are unaltered.

5. Heterogeneity test

The economics, culture, and customs of each province in China vary somewhat because of the

country’s colossal landmass [37]. As a result, 30 provinces are separated into three areas in this

study for the sake of regression analysis: east, middle, and west.

According to the degree of industrial agglomeration and the Lct in the east, west, and center

zones, Fig 4 is a three-bit stacked diagram. The plane on top of Fig 4 represents the mapping

map for the decarbonization transition of the energy consumption structure of Lct. The plane

on the bottom of Fig 4 represents the mapping map for the degree of industrial agglomeration

of industrial agglomeration, where the x-axis indicates the province of the region to which it

belongs, and the y-axis indicates the year. The z-axis indicates the size of the degree of indus-

trial agglomeration and the Lct. To more effectively compare the size and distribution of the

independent and dependent variables across different time and space, the two stacked planes

in this study are projected in three dimensions. It improves the results’ intuitiveness.

Table 8 demonstrates that only the eastern region experiences the inverted-U relationship

of industrial agglomeration on the Lct; in contrast, the central and western regions do not

Table 6. Decomposition of effects in the spatial Durbin model.

Direct effect Indirect effect Total effect

IA 10.018*** 37.209*** 47.227***
(3.027) (8.787) (7.227)

IA2 -27.457*** -65.850*** -93.307***
(8.450) (23.494) (19.915)

cival 0.031 0.224 0.255

(0.122) (0.377) (0.359)

gov 0.024 -1.305*** -1.282***
(0.231) (0.473) (0.355)

envir -3.447 1.863 -1.584

(2.509) (6.698) (6.346)

fdi 0.371 -1.633 -1.262

(0.603) (1.831) (1.766)

sxsp -0.112 0.066 -0.047

(0.099) (0.340) (0.329)

jtsp 0.018 -0.198*** -0.180***
(0.020) (0.050) (0.046)

gysp 0.099 0.072 0.171

(0.157) (0.447) (0.458)

Notes: Values in parentheses indicate the standard deviation.

*, ** and *** indicate p < 0.1, p < 0.05 and p < 0.01, respectively.

https://doi.org/10.1371/journal.pone.0307893.t006
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experience any discernible effects. This demonstrates that the gap in industrial agglomeration

between the regions has grown, and the developed eastern region continues to acquire more

resources, creating a siphon effect [38]. This is due to the more developed economy in the east-

ern region, the high degree of concentration of universities and research institutes, and the

high degree of industrial agglomeration. Due to their inferior economic development, lack of

resources, unfavorable environmental conditions, and lack of infrastructure development, the

central and western areas cannot match the effect of industrial agglomeration with the eastern

region. H3 is confirmed.

Table 7. Robustness test results.

M5

Replacing explanatory variables

M6

Explanatory variables lagged

M7

outlier reduction

Main Wx Wx Wx

IAS 0.390*** 2.956***
(0.075) (0.471)

IAS2 -0.035*** -0.203***
(0.008) (0.049)

cival 0.047 0.540 0.084 1.051 0.092 0.745

(0.108) (0.713) (0.105) (0.692) (0.105) (0.694)

gov -0.122 -2.650*** -0.132 -2.423** -0.125 -2.313**
(0.183) (0.970) (0.181) (0.952) (0.179) (0.946)

envir -2.884 -2.140 -2.106 6.292 -2.922 -2.997

(2.049) (14.898) (2.013) (14.778) (1.999) (14.552)

fdi 0.175 -3.264 0.355 0.807 0.273 0.073

(0.592) (3.814) (0.586) (3.820) (0.579) (3.731)

sxsp -0.104 -0.028 -0.125 -0.521 -0.119 -0.394

(0.102) (0.719) (0.100) (0.718) (0.100) (0.702)

jtsp 0.001 -0.420*** 0.005 -0.387*** 0.004 -0.418***
(0.021) (0.106) (0.021) (0.104) (0.021) (0.104)

gysp 0.139 0.427 0.147 0.188 0.098 -0.347

(0.164) (0.988) (0.161) (0.950) (0.160) (0.958)

LIA_1 11.377*** 96.654***
(2.476) (15.003)

LIA_2 -26.702*** -181.711***
(7.348) (43.123)

IA 11.620*** 97.045***
(2.552) (15.724)

IA2 -27.710*** -182.862***
(7.489) (45.076)

(45.076)

Spatial

rho -1.303*** -1.391*** -1.251***
(0.191) (0.191) (0.192)

N 540.000 540.000 540.000

R2 0.174 0.189 0.181

Notes: Values in parentheses indicate the standard deviation.

*, ** and *** indicate p < 0.1, p < 0.05 and p < 0.01, respectively.

https://doi.org/10.1371/journal.pone.0307893.t007
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Fig 4. Regional 3D stacked map. (e) 3D stacked map of the central region; (f) 3D stacked map of the western region; (g) 3D stacked map of the eastern region.

https://doi.org/10.1371/journal.pone.0307893.g004

Table 8. Regional heterogeneity regression results.

(1) (2) (3)

East Middle West

Main Wx Wx Wx

IA 22.098*** 85.650*** 23.049 184.389 -4.836 -111.336

(1.841) (7.492) (52.354) (237.711) (83.217) (330.574)

IA2 -74.320*** -297.184*** -44.057 -2892.566 151.911 2597.877

(6.940) (29.412) (2014.364) (8068.239) (1564.775) (6084.472)

cival -1.035*** -3.049*** 0.677 6.136 1.144 8.986

(0.199) (0.620) (0.717) (5.297) (3.015) (10.654)

gov -1.051*** 0.165 -1.551*** -5.415*** 2.226** 8.366**
(0.273) (1.156) (0.327) (1.614) (0.943) (3.737)

envir 3.860** -10.958 -0.075 18.573 -6.695 -35.737*
(1.744) (7.224) (2.408) (13.642) (6.052) (21.037)

fdi -1.880*** -1.797 -0.197 -2.134* -0.166 0.709

(0.452) (1.745) (0.190) (1.189) (0.386) (1.383)

sxsp 0.047 0.067 -0.043 -0.234 -0.427*** -1.702***
(0.039) (0.154) (0.041) (0.217) (0.083) (0.301)

jtsp -0.916 -5.500** -0.069 2.099 -1.669 -10.298*
(0.586) (2.255) (0.256) (1.889) (1.447) (5.295)

gysp -27.692*** -39.557 -3.438 -14.042 5.885 46.148

(7.193) (28.416) (2.592) (14.859) (14.898) (55.744)

Spatial

rho -0.469*** -1.088*** -1.040***
(0.152) (0.231) (0.201)

N 234.000 198.000 108.000

R2 0.453 0.378 0.050

Notes: Values in parentheses indicate the standard deviation.

*, ** and *** indicate p < 0.1, p < 0.05 and p < 0.01, respectively.

https://doi.org/10.1371/journal.pone.0307893.t008
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6. Conclusion

Accurately understanding the impacts of industrial agglomeration on energy consumption

structure’s low-carbon transition process is crucial in promoting high-quality development of

industry and socio-economic progress. Based on panel data from 30 provinces in China span-

ning the years 2003 to 2020, this study utilized the spatial vector angle method to measure indi-

cators of the energy consumption structure’s low-carbon transition process. Additionally, a

nonlinear spatial Durbin model was constructed to explore industrial agglomeration’s nonlin-

ear spatial spillover effects on the energy consumption structure’s low-carbon transition pro-

cess. The study’s findings reveal several vital insights:

(1) Temporal and spatial evolution trends. Firstly, from Figs 1 and 3, we find that from

2003 to 2020, the degree of Lct has steadily increased annually. Spatially, the coastal regions in

the eastern part of China exhibit a higher degree of Lct, with cities such as Beijing, Fujian,

Guangdong, Shandong, Shanghai, and Hainan showing notable progress. Secondly, from the

Fig 2’s local Moran’s I map, we found that industrial agglomeration demonstrates a significant

positive spatial correlation, with high-high agglomeration primarily concentrated in Tianjin,

Beijing, Anhui, Henan, and Shandong. In contrast, low-low agglomeration is mainly found in

Inner Mongolia, Qinghai, Gansu, Shaanxi, and Shanxi. Similarly, the Lct exhibits significant

positive spatial correlation, with high-high agglomeration primarily concentrated in Jiangsu,

Fujian, and Shanghai, and low-low agglomeration mainly concentrated in Shaanxi, Inner

Mongolia, and Ningxia. Thirdly, from the heterogeneity test, we found that industrial agglom-

eration significantly impacts the Lct in the eastern region. In contrast, the impact is insignifi-

cant in the central and western regions. Through all the analyses above, it can be inferred that

while China’s industrial agglomeration and the transformation of energy consumption struc-

tures have shown steady long-term growth, spatial disparities and inequalities persist.

(2) Nonlinear effects: Industrial agglomeration significantly expedites the shift towards the

energy consumption structure’s low-carbon transition process, aligning closely with the mod-

el’s foundational assumptions. A pronounced inverted-U relationship exists between industrial

agglomeration and the energy consumption structure’s low-carbon transition process.

(3) Spatial Spillover Effects: Spatial spillover effects stemming from industrial agglomera-

tion extend their impact to nearby areas. These effects are nonlinear, demonstrating a robust

inverted-U relationship.

Based on the findings above, this research proposes the following recommendations:

(1) Given the steady annual increase in Lct degree and the spatial concentration of progress

in coastal regions, policymakers should prioritize further investment and support in these

areas to sustain and potentially accelerate this positive trend. Additionally, targeted interven-

tions should be devised to address spatial disparities, particularly in regions with lower Lct lev-

els, to promote more equitable development across the country [39].

(2) Recognizing the significant role of industrial agglomeration in expediting the shift

towards low-carbon energy consumption structures, policymakers should leverage this rela-

tionship to facilitate a more rapid decarbonization transition. Strategies could include incen-

tivizing clean energy investments and promoting technological innovation within

agglomerated industrial zones. Furthermore, policies should be implemented to ensure the

transition remains sustainable, avoiding potential negative impacts of the nonlinear relation-

ship. Provincial governments are advised to manage the scale of industrial agglomeration judi-

ciously, paying close attention to preventing congestion effects from excessive agglomeration

[40]. Rejecting indiscriminate industry clustering while leveraging industrial agglomeration to

expedite the energy consumption structure’s decarbonization transition is crucial [41].
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(3) Collaborative regional development strategies should be devised to maximize the posi-

tive spatial spillover effects of industrial agglomeration on neighboring areas. This may involve

fostering synergies between agglomerated regions and their adjacent areas through coordi-

nated infrastructure development, knowledge exchange, and innovation networks. Addition-

ally, policies should be designed to mitigate potential congestion effects and ensure that the

benefits of industrial agglomeration are distributed more evenly across regions [42].
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