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Abstract

The Regulator of Telomere Helicase 1 (RTEL1) gene encodes a critical DNA helicase intri-

cately involved in the maintenance of telomeric structures and the preservation of genomic

stability. Germline mutations in the RTEL1 gene have been clinically associated with Hoyer-

aal-Hreidarsson syndrome, a more severe version of Dyskeratosis Congenita. Although var-

ious research has sought to link RTEL1 mutations to specific disorders, no comprehensive

investigation has yet been conducted on missense mutations. In this study, we attempted to

investigate the functionally and structurally deleterious coding and non-coding SNPs of the

RTEL1 gene using an in silico approach. Initially, out of 1392 nsSNPs, 43 nsSNPs were fil-

tered out through ten web-based bioinformatics tools. With subsequent analysis using nine

in silico tools, these 43 nsSNPs were further shortened to 11 most deleterious nsSNPs. Fur-

thermore, analyses of mutated protein structures, evolutionary conservancy, surface acces-

sibility, domains & PTM sites, cancer susceptibility, and interatomic interaction revealed the

detrimental effect of these 11 nsSNPs on RTEL1 protein. An in-depth investigation through

molecular docking with the DNA binding sequence demonstrated a striking change in the

interaction pattern for F15L, M25V, and G706R mutant proteins, suggesting the more

severe consequences of these mutations on protein structure and functionality. Among the

non-coding variants, two had the highest likelihood of being regulatory variants, whereas

one variant was predicted to affect the target region of a miRNA. Thus, this study lays the

groundwork for extensive analysis of RTEL1 gene variants in the future, along with the

advancement of precision medicine and other treatment modalities.

Introduction

Regulator of telomere elongation helicase 1 (RTEL1) is an essential iron-sulfur (FeS)-contain-

ing DNA helicase, which is a member of the DEAH subfamily of the Superfamily 2 (SF2) heli-

cases and also categorized as a RAD3-like helicase with a 50 to 30 helicase activity [1]. It is

located at chromosome 20q13.33 and contains thirty-five exons. Various isoforms are
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produced through alternative splicing results in multiple transcript variants, and in humans,

the two main isoforms are- isoform 2 (1219 amino acid) and isoform 6 (1300 amino acid);

both differ in the C terminal region [2]. RTEL1 is a multidomain protein that includes a

RAD3-like helicase domain-containing helicase type 2 ATP binding domain and C terminus

(Dead 2 and Helicase C2) domains, DEAH box, PCNA interacting motifs or PIP boxes, Har-

monin N-like domains and RING-finger domain [3, 4]. This gene is essential for telomere reg-

ulation, DNA repair, and genome stability that interacts with proteins in the shelterin complex

to preserve the telomere.

DNA secondary structures such as trinucleotide repeats, G-quadruplexes or the intermedi-

ates formed during the 3R process must be processed correctly to maintain genome stability

and reduce pathological consequences [4]. Several studies have suggested the role of RTEL1 as

an anti-recombinase that combats harmful recombination and limits the crossover in meiosis.

The RTEL1 gene maintains the crossover homeostasis by physically separating strand invasion

events, which encourages non-crossover repair through synthesis-dependent strand annealing

(SDSA). During DNA repair and meiotic recombination procedures, it facilitates the break-

down of D-loop recombination intermediates [1, 5]. Additionally, through resolving G-quad-

ruplexes created during telomere replication, mouse RTEL1 has also been linked to

disassembling T loops and preventing telomere fragility, which collectively maintains the

dynamics and integrity of the telomere [6]. Besides, one study demonstrated the association of

RTEL1 in unwinding trinucleotide repeat to prevent triplet repeat mediated chromosome fra-

gility [7].

R-loops, a co-occurrence known for its intimate relationship between G4-DNA and RNA

structures, increase due to deficient functionality of RTEL1 in cells. Several studies have dem-

onstrated that the regulation of G4-DNA/R-loops is facilitated by RTEL1 and cells with

depleted RTEL1, observed to have the inability to unwind G4-DNAs, leading to an increase in

R-loops formation, which in turn increases the transcription-replication collisions [8]. This

may ultimately lead to genome instability and the emergence of cancer.

DNA replication stress, produced by oncogene activation during tumorigenesis, causes G4/

R-loop forming loci, for example, common fragile sites (CFSs) and telomeres, to remain

under-replicated during interphase, which is compensated through mitotic DNA synthesis

(MiDAS) [9]. The mechanism of MiDAS depends on the RTEL1 protein, where the recruit-

ment of RTEL1 to the affected loci is facilitated through SLX4, which in turn assists in attract-

ing RAD52 and POLD3 protein-both essential for MiDAS [9]. This suggests the necessity of

RTEL1 in maintaining genomic stability through resolving conflicts between the replication

and transcription machinery. On the other hand, the SLX4-RTEL1 complex increases the

recruitment of proteins to nascent DNA, strongly associated with active RNA pol II, which

also facilitates the co-localization of FANCD2/RNA pol II [10]. Therefore, the interaction of

SLX4 and RTEL1 is necessary for replication fork development. This interaction has been

observed to be abolished in patients with HHS and cancer [10].

The expression of the RTEL1 gene is found in the testis, appendix, spleen, endometrium,

adrenal, prostate, bone marrow, and 20 other tissues. The mutation in the RTEL1 gene has

been linked to a variety of human diseases, including dyskeratosis congenita (DC), Hoyeraal-

Hreidarsson syndrome, glioma (HHS), glioblastoma, pulmonary fibrosis, bone marrow failure,

breast cancer, and other malignancies [4]. The mutation in the RTEL1 gene can cause multiple

discrepancies in telomere biology, cellular replication, and DNA repair mechanism. Multiple

clinical studies have observed a broader spectrum of clinical complications in patients with

DC and HHS who have inherited RTEL1 mutation [2, 11–15]. In addition, the effect of a

mutated RTEL1 gene may vary depending on the cell type and the mutation that occurred in

the gene [13]. The risk of tumorigenesis or cancer predisposition due to RTEL1 mutations is

PLOS ONE In silico SNP analysis of the RTEL1 gene

PLOS ONE | https://doi.org/10.1371/journal.pone.0309713 September 6, 2024 2 / 32

https://doi.org/10.1371/journal.pone.0309713


not only observed in the case of HHS or DC, but interestingly, it has also been connected to

the predisposition for brain malignancies like gliomas, astrocytomas, and glioblastomas [16–

18]. The RTEL1 gene has thus been suggested to be a tumor suppressor gene for the emergence

of brain malignancies [19]. However, recent studies have also shown that the RTEL1 gene

locus is amplified in a number of malignancies, including gastrointestinal and breast tumors

[20, 21]. In many cellular circumstances, it is conceivable that either overexpression or down-

regulation of the RTEL1 gene could lead to the formation of cancer or tumorigenesis in many

different ways [22–24].

Single nucleotide polymorphism (SNP), a single base substitution in alleles, is the most

prevalent type of mutation in the human genome. SNPs occur in approximately every 1,000

base pairs in the genome [25] and can be found in coding and non-coding regions. Variants in

the non-coding region have been demonstrated to impact the function of cis or trans-regula-

tory elements, UTRs, and introns, which might disrupt the affinity of transcription factors,

various epigenetic factors, alternative splicing, and mRNA stability [26]. The SNPs in the cod-

ing region, particularly missense or non-synonymous SNPs (nsSNPs), have long been a great

concern. They result in amino acid substitutions in the protein sequence, thus altering the

activity of the protein. According to earlier research, nsSNPs account for about 50% of the

mutations linked to a number of genetic illnesses [27, 28], as well as several autoimmune and

inflammatory conditions [29–31].

Functional variations caused by SNPs might have deleterious or neutral effects on protein

function, with detrimental impacts involving damage to protein structures and gene regulation

[32, 33]. Additionally, changes in the protein sequence may ultimately lead to changes in the

dynamics, translation, hydrophobicity, charge, shape, and inter/intra protein interactions,

endangering cells [34–36]. This information supports the notion that nsSNPs, particularly mis-

sense SNPs, are connected to several human disorders [37, 38]. The use of computational

methods in recent studies on nsSNPs successfully revealed the possible relevance of mutation

in comprehending the molecular pathways of numerous diseases [39–41]. Although the accu-

racy of these tools is sometimes uncertain, the combined utilization of different algorithms has

enabled us to predict the impact of specific mutations reliably [42, 43]. Moreover, computa-

tional analysis is essential for primary filtration, as working with a large amount of SNP data in

laboratory experiments would be expensive and time-consuming.

Even though the RTEL1 gene has been the subject of multiple genome-wide association

studies, most RTEL1 SNPs have not yet been thoroughly studied for their potential to cause

disease. It is still unclear how nsSNPs and non-coding SNPs affect the RTEL1 protein in terms

of disease etiology. So far, no comprehensive in silico analysis of the RTEL1 gene has been con-

ducted to detect SNPs linked to functional and structural changes in the protein. Therefore, in

this study, we aim to elucidate the impact of the most deleterious genetic variations of the

RTEL1 gene on the protein’s structure and stability and attain molecular-level insights into

SNP-mediated protein’s functional divergence.

Materials and methods

Data retrieval

The SNP data of RTEL 1 gene was acquired from the available human GRCh37 genome SNPs

in NCBI dbSNP [https://www.ncbi.nlm.nih.gov/snp/?term=] database [44], ClinVar [https://

www.ncbi.nlm.nih.gov/clinvar/] database [45] and the DisGeNET [https://www.disgenet.org/]

database [46]. Relative data about the RTEL1 gene and the amino acid sequence (FASTA for-

mat) of RTEL1 protein were collected from NCBI [https://www.ncbi.nlm.nih.gov/] and Uni-

protKB (Universal Protein Knowledgebase) [https://www.uniprot.org/] databases
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(UniprotKB-Q9NZ71), respectively [47]. For the analysis of non-coding SNPs, the dataset was

collected from Ensembl [https://asia.ensembl.org/index.html] database [48].

Retrieval of 3D structure and quality checking

The AlphaFold structure of the human RTEL1 protein was retrieved from the UniprotKB

(Universal Protein Knowledgebase) [https://www.uniprot.org/] database. The validation of the

retrieved structure was checked using the SAVES [https://saves.mbi.ucla.edu/] server. The

results of ERRAT, VERIFY, and PROCHECK Ramachandran plot were analyzed to estimate

the validation of the AlphaFold structure of the native protein.

Functional impact prediction

To determine the functional consequences of nsSNPs that were retrieved from the dbSNP

database, ten bioinformatics-based web tools, i.e., PMut, SuSPect, PredictSNP, PredictSNP2,

SIFT, SNAP2, SNP & GO, PROVEAN, Polyphen2, PANTHER were used to ensure the verac-

ity and stringency of the results. SNPs commonly identified as deleterious by all these ten algo-

rithms were considered high-risk nsSNPs.

PMut [http://mmb.irbbarcelona.org/PMut/] anticipates the pathological mutations on pro-

tein sequences, where a score of>0.5 indicates the disease effects of nsSNPs and<0.5 indicates

the neutral effects of nsSNPs on the given protein’s functionality [49]. SuSPect [http://www.

sbg.bio.ic.ac.uk/~suspect/] (Disease-Susceptibility-based SAV Phenotype Prediction) webser-

ver predicts single amino acid variants associated with the disease with 82% accuracy [50]. Pre-

dictSNP [https://loschmidt.chemi.muni.cz/predictsnp/] is a consensus classifier with eight

integrated established prediction tools to predict the mutations related to the disease [51]. Pre-

dictSNP2 [https://loschmidt.chemi.muni.cz/predictsnp2/] is a unified web platform with six

integrated prediction tools that predict SNPs’ pathogenic effect in distinct genomic regions

[52]. PredictSNP2 expands on PredictSNP by evaluating the impacts of nucleotide variants

across any genomic region, while PredictSNP is limited to analyzing substitutions within

amino acid sequences [52]. SIFT (Sorting Intolerant from Tolerant) [https://sift.bii.a-star.edu.

sg/] predicts the impact of an amino acid alteration on protein depending on the sequence

homology and physical property of amino acids, where score�0.05 indicates damaging and

>0.05 is tolerant [53]. Next, PROVEAN (Protein Variation Effect Analyzer) [https://www.jcvi.

org/research/provean] was used for the prediction of the damaging impact of nsSNPs on pro-

tein sequence [54]. The PROVEAN score, which is generated by averaging the delta alignment

scores of variants and reference protein query sequence concerning homology sequence, helps

to separate the nsSNPs as deleterious (score� -2.5) and neutral (score >-2.5) variants. SNAP2

[https://rostlab.org/services/snap/] is another neutral network-based web tool that gives pre-

diction scores between -100 and +100, which indicates strong neutral to strong impactful vari-

ants [55]. SNP & GO (SNP & Gene Ontology) [https://snps.biofold.org/snps-and-go/snps-

and-go.html] is an SVM-based classifier that classifies polymorphisms as a neutral variation or

disease-associated variation (when probability score >0.5) [56]. Polyphen2 (Polymorphism

phenotype v2) [http://genetics.bwh.harvard.edu/pph2/] analyzes the potential effect of amino

acid substitution on the function and structure of protein and based on the probabilistic score

it provides the result as benign, possibly damaging and probably damaging [57]. PANTHER

(Protein Analysis Through Evolutionary Relationship) [http://www.pantherdb.org/tools/

csnpScoreForm.jsp] employs the PANTHER-PSEP (Position Specific Evolutionary Preserva-

tion) method to distinguish disease-related variants from neutral variants in the human pro-

tein. It estimates the likelihood of nsSNPs disrupting protein functionality by calculating the
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evolutionary preservation of the amino acid residues, where a long preservation period indi-

cates greater chances of nsSNPs causing a functional impact on the protein [58].

Structural impact prediction

The structural impact of nsSNPs on the RTEL1 protein was analyzed using nine web tools. Per

two distinct categories of tools, the prediction approach was split into two parts. One category

of tools was selected for predicting the change in stability, where seven different tools, includ-

ing DUET, mCSM, SDM, I-Mutant, INPS-MD, MUpro, and Dynamut2 were employed. On

the other hand, the following group of tools relied on the prediction of phenotypic effects

using two separate web servers, including HOPE and MudPred2.

DUET [http://biosig.unimelb.edu.au/duet/] predicts the alteration in the stability of protein

due to the introduced mutation by combining the SDM and mCSM approaches; therefore,

both SDM and mCSM predicted results come together with DUET [59]. In this tool, the server

gives the result of the change in folding free energy or value of ΔΔG in kcal/mol by subtracting

ΔG mutant from ΔG wild type where the negative value indicates destabilization, and a positive

value indicates stabilization of the structure. MuPro [http://mupro.proteomics.ics.uci.edu/]

predicts the effects of a single-site amino acid substitution on the stability of protein with 84%

accuracy using protein sequence and mutation information [60]. I-Mutant 2.0 [https://folding.

biofold.org/i-mutant/i-mutant2.0.html] assesses the protein stability change from a given pro-

tein sequence and provides information about the state of stability as a decrease or increase in

stability upon possible mutation along with Reliability Index [61]. The INPS-MD (Impact of

Non-synonymous mutations on Protein Stability-Multi Dimension) [https://inpsmd.biocomp.

unibo.it/inpsSuite/default/index] can also predict the stability change of protein from both

protein sequence and structure [62]. The stability change of the protein was further analyzed

through Dynamut2 [https://biosig.lab.uq.edu.au/dynamut2/] prediction submission panel.

Dynamut2 predicts the likely effects of an amino acid alteration on the stability of a protein by

employing normal mode analysis and graph-based models to take snapshots of molecular

movements in cellular conditions [63].

The web server MutPred2 [http://mutpred2.mutdb.org/] uses machine learning-based algo-

rithms that enable the prediction of pathogenicity of amino acid substitutions in proteins with

a probabilistic score along with a list of specific alterations of the molecular mechanism [64].

The effects of harmful nsSNPs on protein structure were examined using the HOPE [http://

www.cmbi.ru.nl/hope/home] server. By combining data from numerous sources, such as

sequence annotations, tertiary structure, homology models from the Distributed Annotation

System (DAS) servers, UniProt database, etc., the Project HOPE server foresees the structural

effects of nsSNPs [65].

Comparative modeling and evaluation of mutated 3D structures

The three-dimensional (3D) model of the mutant proteins was obtained through comparative

modeling in Modeller 10.2 [https://salilab.org/modeller/] standalone software. The AlphaFold

structure of wild-type protein was used as a template for generating altered protein structure.

A comprehensive optimization protocol was followed to ensure high accuracy. The optimiza-

tion schedule was modified to give less weight to soft-sphere restraints, with the scaling factor

set to 0.7. For the optimization configuration, the Variable Target Function Method (VTFM)

was set to a thorough schedule with a maximum of 300 iterations, while Molecular Dynamics

(MD) with Simulated Annealing (SA) was configured for thoroughness. Additionally, the

entire optimization process was repeated twice, with the objective function limit set to 1×106.

The energy of the model was minimized according to the default system that constructs a
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scoring function from the available data and then minimizes it. All mutant structures were

generated using the same default seed value (-8321) to ensure consistency in the structural

generation process [66]. After completion of the 3D model generation, PyMOL 2.5 [https://

pymol.org/2/] software was utilized to analyze each mutant structure’s root mean square devia-

tion (RMSD) value. By superimposing native and mutant structures, this tool forecasts the

RMSD value, which aids in identifying the closest related structural analog. Then, the structure

validation of the 3D model of each mutant protein was analyzed through the SAVES [https://

saves.mbi.ucla.edu/] server.

Analysis of secondary structure, domains, and PTM sites

To analyze the secondary structure, all ten variant sequences, along with the native sequence,

were evaluated using PDBsum [https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/].

Mutation 3D [http://mutation3d.org/] was utilized to assess the arrangements of SNPs on pro-

tein models or structures and to look for the functional domain information of the SNP posi-

tions [67]. Through the complete-linkage clustering procedure, this tool also identifies clusters

of amino acid substitutions in protein structure, which indicates the positions that have the

most impact on the structure of a protein. Lastly, MusiteDeep [https://www.musite.net/] was

employed to predict the putative PTM sites in RTEL1 protein. Utilizing a deep learning-based

algorithm and depending on the confidence threshold, with a default cut-off of 0.5, Musite-

Deep predicts and identifies the desired PTM sites in the sequence [68].

Prediction of evolutionary conservation and surface accessibility

The evolutionary conserved amino acid position in RTEL1 protein was interpreted using Con-

Surf [https://consurf.tau.ac.il/consurf_index.php] web server [69]. In this server, the evolution-

ary profile is computed by searching for homologous sequences and multiple sequence

alignment (MSA), then generating a phylogenetic tree using a neighbor-joining algorithm.

Moreover, through the Bayesian method [70], this tool enumerates a site-specific conservation

score from 1 to 9, with 9 representing a highly conserved position [71]. NetSurfP-2.0 [http://

www.cbs.dtu.dk/services/NetSurfP/] is a sequence-based web server that employs convolu-

tional and long short-term memory neural network architecture to predict structural features

such as surface accessibility, structural disorder, and secondary structure for each amino acid

position [72]. To assess the surface accessibility of each amino acid residue of the RTEL1 pro-

tein, the protein sequence was run within the default parameter in the NetSurfP-2.0 server. A

phylogenetic tree of the ten closest matches to the human RTEL1 protein, determined by

BLASTp search, was constructed in MEGA11 software using the maximum likelihood tech-

nique and a bootstrap parameter of 1000 [73]. This enables us to elucidate the evolutionary

relationship of the RTEL1 protein. The tree was then visualized using the Iroki web server

[https://www.iroki.net/] [74].

Cancer susceptibility prediction

The oncogenic susceptibility of the selected nsSNPs was evaluated through CScape [http://

cscape.biocompute.org.uk/] and CanSAR.ai [https://cansar.ai/]. Following a statistical

approach, CScape can predict the likelihood of a mutation to be cancer-causing with a 91%

balanced accuracy in coding regions of the genome [75]. The server takes the mutations list

using the format chromosome, position, reference base, and mutant base and returns the result

as p-values (probability scores) between [0, 1], with values above 0.5 projected to be harmful

and values below 0.5 predicted to be neutral or benign. P-values close to the extremes (0 or 1)

are the highest-confidence predictions that yield the highest accuracy. Next, CanSAR.ai was
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used to find the association of specific SNPs with different cancer types previously identified in

different studies. This tool is an integrative translational research knowledgebase for cancer

with the integration of multidisciplinary data [76].

Interatomic interaction prediction

The interatomic interaction was predicted by implementing several programs of PyMOL 2.5

software [https://pymol.org/2/], which helps to visualize the change in atomic interaction in

amino acid residues due to any single mutation. The polar contacts of selected residue with

other atoms were searched for, and the distance between the atoms was measured.

Molecular docking analysis

Using the HDOCK [http://hdock.phys.hust.edu.cn/] web server, molecular docking with telo-

meric DNA corresponding to PDB ID 1W0U [77] was performed on the selected most harm-

ful mutant structures and the native structure. HDOCK server predicts the binding complexes

between protein and nucleic acid by following the hybrid docking approach [78, 79]. For the

input molecule in the server, protein structure (wild type and mutant) and DNA structure

were provided as receptor molecule and ligand molecule, respectively.

The literature shows that the HHD2 (Harmonin Homology Domain 2) domain of RTEL1

interacted directly with DNA [80]. Therefore, to specify the binding site, the positions of the

HHD2 domain (A1059, V1060, S1061, A1062, Y1063, L1064, A1065, D1066, A1067, R1068,

R1069, G1075, S1077, Q1078, L1079, L1080, A1081, A1082, T1084, K1087, D1090, and D1134)

mentioned in the literature were used here as a receptor binding site residues and the

TTAGGG motif and its complementary sequence positions were selected from both strands

(chain C and chain D) of DNA for ligand binding site residue. From the provided HDOCK

result, docked models were chosen based on the following criteria: smaller docking score, con-

fidence score�0.5, and smaller RMSD value and subjected to DNAproDB [https://dnaprodb.

usc.edu/] to visualize the interaction patterns that each complex formed [81, 82].

5’ and 3’ UTR non-coding SNPs assessment

To evaluate the functional effects of the filtered-out non-coding SNPs from the Ensemble data-

base, RegulomeDB [https://regulomedb.org/regulome-search] was used. With the combinato-

rial uses of numerous high-throughput experimental datasets, this server detects non-coding

SNPs with possible regulatory roles [83]. Lastly, in order to determine whether any of the non-

coding SNPs were found in the seed regions and target sites of microRNAs (miRNA), the Poly-

miRTS [https://compbio.uthsc.edu/miRSNP/] database was searched [84].

A schematic representation of the workflow of this study is provided in Fig 1.

Results

SNP annotation

The Single Nucleotide Polymorphism data about the human RTEL1 gene was retrieved from

the NCBI dbSNP database. Among the 20734 SNPs from the search result, 25 are inframe dele-

tions, 17554 are in the intronic region, 1392 are missense (non-synonymous), 2522 are non-

coding variants, and 781 are synonymous. For this study, only the nsSNPs or missense SNPs (a

total of 1392) were filtered out from the dbSNP database. After removing redundancy, 347

SNPs and 23 SNPs were filtered out from ClinVar and DisGeNET databases, respectively, but

all were found to be annotated in the NCBI dbSNP database. Therefore, in total, 1392 nsSNPs,

which occurred in 1383 unique positions, were considered for subsequent analysis. After being
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Fig 1. Schematic illustration of the workflow of the study along with the tools and software used during the

investigation process.

https://doi.org/10.1371/journal.pone.0309713.g001
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collected from the Ensemble database, the non-coding SNPs located at the 5’-3’ UTR region

were filtered out based on a global minor allelic frequency (MAF) value between 0.01 and 0.5.

Assessment of RTEL1 protein structure

The tertiary structure of the protein determines its properties and capacity for interacting with

ligands. As no full-length crystal structure was found in the protein data bank for human

RTEL1 protein, the AlphaFold structure of RTEL1 protein was taken from UniProt. The struc-

ture was validated using the SAVES server, where ERRAT provided 91.1036 for the overall

quality factor and Verify-3D revealed that 52.83% of the residues have an average 3D-1D score

of 0.2. The Ramachandran plot, available in PROCHECK, was utilized to evaluate further the

quality of the 3D protein structure (Fig 2). The plot from the AlphaFold model revealed that

93.7% of the residues are in the favoured region, 10.9% are in the additional allowed region,

2.0% are in the generously allowed region, and 3.4% are in the disallowed region. The general

conclusions drawn from the results mentioned above pointed to the good quality of our pro-

tein structure, which allowed it to be used in subsequent investigations.

Determination of functional consequences of RTEL1 nsSNPs

The functional impact of nsSNPs on RTEL1 has been assessed using ten tools. SIFT predicted

441 as damaging, of which 88 had a low confidence score. Therefore, 353 remained the most

functionally detrimental after eliminating the redundancies. Out of the submitted 1392

nsSNPs, the PROVEAN server identified 489 as potentially harmful. PolyPhen-2 and Panther

anticipated 386 and 579 as probably damaging ones, respectively. Moreover, SuSPect provides

a list of scores ranging from 0–100 for each variant that is likely to be disease-causing, and the

recommended cutoff is 50 for the most deleterious ones. Therefore, 72 disease-causing variants

with a score of�50 were chosen from the SuSPect output. PredictSNP integrates the results of

six (MAPP, PhD-SNP, Polyphen1, Polyphen2, SIFT, SNAP) best-performing tools, while Pre-

dictSNP2 combines the results of five top tools (CADD, DANN, FATHMM, FunSeq2,

GWAVA) and gives a consensus score. Only the consensus score from both tools was consid-

ered, where PredictSNP and PredictSNP2 identified 309 and 364 as deleterious, respectively.

In addition, 280 nsSNPs were found to be pathological in P-Mut, 505 nsSNPs were predicted

to be impactful in SNAP2, and 166 nsSNPs were disease-associated in SNP and GO.

Among 1392 nsSNPs, 43 were deemed functionally harmful by all 10 different tools, and

the remaining SNPs were assumed to be neutral in at least one of these tools. So, considering

only the common variants predicted by all ten tools, 43 nsSNPs (S1 Table) were selected for

further analysis.

Determination of structural impact of RTEL1 nsSNPs

To determine the structural impact of nsSNPs on RTEL1 protein, the filtered nsSNPs from the

upstream analysis were subjected to nine different tools. Among these nine tools, seven were

utilized for predicting stability changes, and two were used for phenotypic effect prediction.

The change in the structural stability of RTEL1 protein due to the introduction of point

mutations was predicted through seven bioinformatics-based web tools. The 43 deleterious

nsSNPs were run to check the structural stability of proteins in the DUET server, including the

mCSM and SDM results. mCSM, SDM, and DUET predicted 36, 30, and 33 nsSNPs as desta-

bilizing for RTEL1 protein, respectively. To increase the accuracy of our predictions of changes

in protein stability caused by single AA mutations, all 43 variants were analyzed through

I-Mutant, INPS-MD, Mupro, and Dynamut2. I-Mutant and MuPro predicted 34 and 41

nsSNPs as stability-decreasing. Moreover, 40 nsSNPs with a negative ΔΔG score were
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Fig 2. Ramachandran plot of the AlphaFold structure of RTEL1 protein from PROCHECK and quality parameters

derived from SAVES server.

https://doi.org/10.1371/journal.pone.0309713.g002
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considered destabilizing in the INPS-MD result. Lastly, by combining the structure or NMA-

based prediction (ΔΔG ENCoM) and vibrational entropy change (ΔΔS ENCoM) between

mutant and wild-type structures, Dynamut2 provides the ΔΔG prediction score for each

amino acid substitution. Here, 36 nsSNPs were predicted to be destabilizing by Dynamut2.

Combining the findings from seven tools, 13 nsSNPs were identified unanimously by all of

these tools as extremely detrimental based on their effects on the structural stability of proteins

(Table 1).

The phenotypic effects of 13 functionally damaging SNPs were computed using MutPred2

and Project HOPE. Together with the P-value and probability score, some predictions made

using MudPred2 were loss or gain of allosteric site, catalytic site, helix, relative solvent accessi-

bility, increase in various types of modification such as transmembrane protein, DNA, ligand,

metal binding, or ordered interface, etc. Besides that, a MutPred2 score was given, with a cutoff

of 0.50, determining the overall probability of pathogenicity. The score goes from 0 to 1, and as

the score rises, it becomes more likely that the SNP-induced alterations can influence the

molecular mechanism of disease. Except for F559L, all the other nSNPs were identified as hav-

ing higher pathogenic potential (Table 2).

Additionally, the mutations were submitted to HOPE for analysis. According to HOPE

results, 9 of the 13 mutant amino acids differed in charge, one differed in the level of hydro-

phobicity, and all 13 mutant residues were predicted to differ in size from the wild-type resi-

due. These differences in size, charge, and hydrophobicity can interfere with the nearby amino

acid residues’ interactions and protein folding. Aside from these, amino acid substitution also

impacts numerous other attributes. For example, substitutions involving glycine may disrupt

protein conformation by interfering with the flexibility that glycine imparts due to its greater

conformational freedom. HOPE also provides a result of pathogenicity based on conservancy

where R729C predicted as less damaging.

Finally, 11 nsSNPs were repeatedly recognized by MutPred2 and Project HOPE web server

as being particularly harmful based on their effects on protein phenotype (Table 2). These

SNPs were found to induce a decrease in protein stability and negatively impact other

properties.

Table 1. Predication of the destabilizing effect of nsSNPs determined by 7 different web tools.

Serial

No.

nsSNPs mCSM SDM DUET I-Mutant2 INPS-MD MuPro Dynamut2

Stability

Change

ΔΔG in

kcal/

mol

Stability

Change

ΔΔG in

kcal/

mol

Stability

Change

ΔΔG in

kcal/

mol

Stability RI Stability

Change

ΔΔG in

kcal/

mol

Stability

Change

ΔΔG in

kcal/

mol

Stability

Change

ΔΔG in

kcal/

mol

1 F15L Decrease -1.3 Decrease -0.05 Decrease -1.2 Decrease 9 Decrease -1.99 Decrease -0.31 Decrease -1.49

2 M25V Decrease -1.47 Decrease -0.88 Decrease -1.23 Decrease 5 Decrease -1.89 Decrease -0.88 Decrease -0.81

3 R141Q Decrease -0.9 Decrease -0.88 Decrease -0.84 Decrease 9 Decrease -1.32 Decrease -0.47 Decrease -0.67

4 A252V Decrease -0.34 Decrease -0.64 Decrease -0.29 Decrease 1 Decrease -1.06 Decrease -0.47 Decrease -1.23

5 G480R Decrease -0.89 Decrease -1.95 Decrease -0.88 Decrease 8 Decrease -0.6 Decrease -0.85 Decrease -0.86

6 F559L Decrease -1.82 Decrease -2.25 Decrease -2.16 Decrease 9 Decrease -1.52 Decrease -1.55 Decrease -1.6

7 R639H Decrease -2.46 Decrease -0.42 Decrease -2.51 Decrease 7 Decrease -1.1 Decrease -1.29 Decrease -0.88

8 G645D Decrease -2.13 Decrease -1.87 Decrease -2.25 Decrease 6 Decrease -0.91 Decrease -0.87 Decrease -1.78

9 R697Q Decrease -1.68 Decrease -1.88 Decrease -2.06 Decrease 8 Decrease -0.85 Decrease -0.71 Decrease -2.42

10 R700Q Decrease -1.02 Decrease -2.27 Decrease -1.42 Decrease 9 Decrease -1.06 Decrease -1.01 Decrease -0.74

11 G706R Decrease -0.85 Decrease -2.32 Decrease -0.79 Decrease 7 Decrease -0.58 Decrease -1.09 Decrease -0.96

12 R729C Decrease -1.06 Decrease -0.29 Decrease -0.94 Decrease 7 Decrease -0.16 Decrease -0.73 Decrease -0.88

13 H960R Decrease -1.52 Decrease -1.55 Decrease -1.6 Decrease 3 Decrease -0.1 Decrease -0.69 Decrease -1.47

https://doi.org/10.1371/journal.pone.0309713.t001
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Three-dimensional structure prediction for mutant proteins

To investigate whether the selected nsSNPs cause any alteration in the resultant protein, com-

parative 3D modelling and structural comparison between native and mutant structures were

carried out through Modeller 10.2, followed by PyMOL 2.5 software. The wild-type amino

acid residues in the selected deleterious SNP positions in the RTEL1 protein sequence were

replaced with the mutant amino acid to generate the sequence for each variant. The mutated

protein sequence was then utilized in Modeller 10.2 to develop the 3D structure for each vari-

ant using the AlphaFold structure as a template.

Next, the RMSD values of the mutant models were examined in PyMOL 2.5 to investigate

structural similarity between the native and mutant protein structures. All the mutant models

were observed to have a high RMSD value (Table 3) when superimposed over the native struc-

ture (S1 Fig). Also, the results of ERRAT, VERIFY, and PROCHECK Ramachandran Plot

from the SAVES server validated the quality of the mutant models. As the larger RMSD value

demonstrates greater deviation between wild-type and mutant structures, all 11 nsSNPs were

considered for the following investigation.

Table 2. Analysis of the phenotypically damaging nsSNPs predicted by MutPred 2 and Project HOPE.

Serial

No.

nsSNPs HOPE MutPred2

Pathogenicity based

on Conservancy

Phenotypic Effects Pathogenicity

Score

Predicted Molecular Mechanism

1 F15L probably damaging A smaller mutant amino acid might lead

to loss of external protein interactions.

0.773 Altered Ordered interface; Loss of Relative solvent

accessibility; Loss of Allosteric site at F13; Altered Metal

binding

2 M25V probably damaging An empty space in the protein’s core

could result from a smaller mutant amino

acid.

0.841 Altered Ordered interface

3 R141Q probably damaging Loss of charge in a mutant amino acid

may disrupt interactions with other

molecules.

0.774 Loss of Allosteric site at R141; Loss of Catalytic site at R141

4 A252V probably damaging A larger mutant amino acid on the

protein surface might disturb molecular

interactions.

0.78 Loss of Catalytic site at E251; Gain of Allosteric site at A252;

Altered Metal binding

5 G480R probably damaging A bigger, charged mutant amino acid

could repel neighboring residues and

disturb protein structure.

0.925 Loss of Catalytic site at T481; Altered Ordered interface;

Gain of Helix; Gain of Allosteric site at G480; Altered Metal

binding; Altered Transmembrane protein

6 R639H probably damaging Loss of charge and a smaller mutant

amino acid might lead to fewer external

interactions.

0.839 Altered Metal binding; Loss of Allosteric site at R639; Loss

of Relative solvent accessibility; Gain of Loop; Gain of

Catalytic site at D635

7 G645D probably damaging Introduction of a charge by a larger

mutant amino acid could cause protein

folding problems.

0.956 Altered Metal binding; Gain of Catalytic site at G645; Gain

of Allosteric site at G645; Gain of Relative solvent

accessibility

8 R697Q probably damaging A smaller mutant amino acid could lead

to loss of interactions due to charge and

size differences.

0.913 Loss of Allosteric site at R697; Gain of Catalytic site at R700;

Altered Disordered interface; Altered Metal binding; Altered

DNA binding

9 R700Q probably damaging The mutation causing loss of charge and a

smaller amino acid might reduce external

interactions.

0.897 Altered Metal binding; Loss of Allosteric site at H701;

Altered Ordered interface; Altered Disordered interface;

Gain of Catalytic site at R700; Altered DNA binding

10 G706R probably damaging A larger mutant amino acid introducing a

charge could lead to protein folding issues

and structural disruption.

0.917 Altered Metal binding; Loss of Strand; Gain of Allosteric site

at H701; Altered Ordered interface; Altered Disordered

interface; Loss of Catalytic site at D704

11 H960R probably damaging A larger mutant amino acid introducing a

charge might cause repulsion and

structural issues.

0.721 Altered Metal binding

https://doi.org/10.1371/journal.pone.0309713.t002
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Investigation of the impact of nsSNPs on secondary structure, domains &

clusters, and PTM sites

The prediction of secondary structure conformation of RTEL1 and 11 mutants was performed

in the PDBsum web tool. The tool’s output found that both the wild-type and mutant struc-

tures have the same number of strands, sheets, beta hairpins, and beta alpha beta units. Apart

from the number of helix-helix interactions, which remained the same in the native and M25V

mutant structure, the number of helices and helix-helix interactions were increased in mutant

structures compared to the native structure. Additionally, in all mutant structures, the amount

of beta and gamma turns was reduced, as shown in Table 4. Furthermore, in the native struc-

ture, positions W89 to D105 had many closely packed beta turns, whereas, in the mutant struc-

tures, this varied widely (either absent or 2/3 beta turns were present). Besides, F15L, M25V,

A252V, G480R, R639H, G645D, R697Q, and R700Q mutants showed more tightly packed

beta and gamma turns after position A429 than R141Q, G706R, and H960R mutants (Fig 3).

Table 3. RMSD values of 11 mutated RTEL1 protein models and the quality parameters of each structure generated through PyMOL and SAVES server,

respectively.

Serial

No.

Mutation RMSDa

Values

Quality Parameters

PROCHECK Ramachandran Plot ERRAT

Quality

Factor

VERIFY (percentage of the

residues have averaged 3D-1D

score > = 0.1)
Residues in most

favoured regions

(%)

Residues in

additional allowed

regions (%)

Residues in

generously allowed

region (%)

Residues in

disallowed region

(%)

1 F15L 0.471 94.00% 5.10% 0.60% 0.40% 82.613 75.48%

2 M25V 0.393 94.20% 4.70% 0.80% 0.40% 86.0119 78.76%

3 R141Q 0.455 94.20% 5.10% 0.50% 0.30% 84.6693 76.84%

4 A252V 0.685 94.50% 4.70% 0.70% 0.20% 84.7913 78.08%

5 G480R 0.437 94.00% 5.40% 0.20% 0.40% 80.0399 76.61%

6 R639H 0.396 94.40% 4.90% 0.40% 0.40% 83.9161 73.90%

7 G645D 0.526 93.70% 5.40% 0.50% 0.40% 83.4325 75.71%

8 R697Q 0.511 94.50% 4.70% 0.50% 0.40% 84.1584 78.53%

9 R700Q 0.58 94.80% 4.50% 0.50% 0.30% 82.9681 80.11%

10 G706R 0.418 94.20% 4.90% 0.80% 0.20% 84.4554 76.16%

11 H960R 0.574 93.50% 5.80% 0.40% 0.30% 80.8448 79.10%

aRMSD: Root Mean Square Deviation

https://doi.org/10.1371/journal.pone.0309713.t003

Table 4. ProMotif information of the secondary structure of native and mutant protein.

Protein Sheets beta alpha beta units beta hairpins strands helices helix-helix interacts beta turns gamma turns

Wild-type 4 3 3 20 53 74 67 14

F15L 4 3 3 20 58 80 41 7

M25V 4 3 3 20 60 74 43 10

R141Q 4 3 3 20 58 76 40 9

A252V 4 3 3 20 58 75 40 9

G480R 4 3 3 20 57 75 43 9

R639H 4 3 3 20 58 75 41 7

G645D 4 3 3 20 58 79 40 8

R697Q 4 3 3 20 58 77 41 10

R700Q 4 3 3 20 57 76 41 10

G706R 4 3 3 20 58 81 40 8

H960R 4 3 3 20 58 77 40 8

https://doi.org/10.1371/journal.pone.0309713.t004
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Fig 3. Analysis of wild-type and mutated RTEL1 protein secondary structures using PDBsum. It displays the

changes brought on by nsSNPs in terms of alpha helices, beta strands, and other patterns.

https://doi.org/10.1371/journal.pone.0309713.g003
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Mutation 3D was used to predict mutant positions in domains and clusters, and the

tool predicted two domains based on the submitted data. Dead 2 domain (111–272) con-

tains R141Q, and A252V mutants, and Helicase C2 domain (545–731) contains R639H,

G645D, R697Q, R700Q, and G706R, mutants. Moreover, the tool projected ModBase

model, featuring one cluster, which housed R639H, R697Q, R700Q, and G706R (Fig 4).

According to the findings of Mutation3D, four mutants were found to be part of a

cluster, indicating that these mutations may have the greatest impact on the protein

structure. Even though the rest of the mutants were not predicted to form clusters, we kept

all of them for further analysis as those were predicted to be deleterious in former

investigations.

To predict the potential PTM sites in RTEL1 and the effects of SNPs on PTM sites, Musite-

Deep was used. A total of 8 types of 74 PTM sites were predicted for the protein sequence.

Among all the selected deleterious SNPs, only the R639 position was predicted to be in a meth-

ylation site. Studies have linked methylation to fine-tuning various biological processes, result-

ing in the formation of numerous diseases [85]. Thus, amino acid alteration in position 639

can be anticipated to result in PTM impairment.

Fig 4. Domain & cluster information of nsSNPs represented in linear and 3D protein model. (A) 3D protein model represents atomic coordinates

based on the corresponding ModBase structure where substitutions in the cluster are shown in red spheres. (B) Helicase C2 (right) and Dead2 (left)

domains are indicated as a light blue transparent box in the highlighted green region of the linear model, and the position of amino acid substitutions is

portrayed in vertical lines. (C) Mutation cluster prediction from Mutation 3D (upper right side).

https://doi.org/10.1371/journal.pone.0309713.g004
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Analysis of evolutionary relationship of RTEL1 protein and conservation

profile & surface accessibility of nsSNPs

Despite the evolutionary change, amino acid residues essential for various biological functions,

including genome integrity, typically persist. Because of this, it is frequently believed that the

degree of residue conservation indicates how crucial a location is to preserve the stability and

functionality of a protein. In this regard, the conservation profile and surface accessibility of

the 11 nsSNPs were analyzed through the ConSurf and NetSurfP web tools, along with inspect-

ing the evolutionary relationship of RTEL1 protein using MEGA 11 software.

The MEGA 11 program was used to analyze the conservation of the selected 11 SNP posi-

tions in 10 different species, along with phylogenetic analysis to determine the evolutionary

relationships between these species. Then, the tree was displayed by Iroki to examine evolu-

tionary conservation. According to the findings, all amino acid positions are conserved among

these ten species. Moreover, Pan paniscus, Pan troglodytes, and Gorilla gorilla are the three spe-

cies that have been found to share the largest genetic similarity with the human RTEL1 protein

(Fig 5). So, according to the phylogenetic tree, it can be said that the RTEL1 protein is con-

served in primates.

To determine the conserved positions in the amino acid sequence of RTEL1 protein, the

ConSurf server was used. Using the Bayesian approach, the ConSurf online browser assessed

the degree of conservation of each protein residue along with identified potential structural

and functional residues. The result showed all eleven residues filtered out from the upstream

study are structural (buried) residues, with a highly conserved profile. Moreover, on the con-

servation scale of 1–9, ten positions exhibit the highest conservation profile with a

Fig 5. Assessment of the evolutionary relationship of RTEL1. (A) Evolutionary conservancy of 11 nsSNPs analyzed through multiple sequence

alignment. (B) Graphical depiction of the evolutionary relationship of human RTEL1 with its closest relatives.

https://doi.org/10.1371/journal.pone.0309713.g005
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Fig 6. Evolutionary conservation profile of RTEL1 protein from ConSurf web server. All of the nsSNPs identified

as harmful belonged to highly conserved regions in the RTEL1 protein.

https://doi.org/10.1371/journal.pone.0309713.g006
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conservation score of 9, and one position (F15) has a high level of conservation with a conser-

vation score of 8 (Fig 6).

With the percentage scores, NetSurfP-2.0 estimated the surface accessibility of each amino

acid site of the RTEL1 protein. The relative surface accessibility of each position in the amino

acid sequence was predicted at a threshold of 25%, which meant that amino acid residues with

scores of more than 25% were expected to be exposed, whilst residues with scores of less than

25% were assumed to be buried. Among eleven selected positions, R141, and R639 each

received a score of more than 25%. Therefore, these amino acid residues were anticipated to be

exposed, while the remaining 9 locations were expected to be in the buried zone, scoring less

than 25% (Table 5).

While modification of amino acids in a highly conserved position can possibly be more

harmful than in any non-conserved position, it is also possible for functional variants to exist

without causing harm. Additionally, the residues in the buried or exposed zone can also poten-

tially hamper the structure of the proteins and their interaction. Therefore, based on the out-

comes of the tools, it can be said that the 11 selected nsSNPs may significantly impact the

RTEL1 protein.

Prediction of high-risk nsSNPs with cancer susceptibility

The initial evaluation of the oncogenic potential of 11 nsSNPs was performed in CScape. All of

the mutations were predicted to be deleterious; among them, five (R639H, G645D, R697Q,

R700Q, G706R) demonstrated the highest degree of confidence of being oncogenic (Table 6).

Next, these mutations were searched in canSAR.ai, and from the search result, the association

of G480R, and G706R mutations was found with liver, and endometrial cancer, respectively

[86].

Prediction of interatomic interaction

In the case of the substitution of phenylalanine with leucine at position 15, no alteration in

interatomic interaction was observed. In the native structure, methionine at position 25 forms

H -bonds with four nearby residues Gln21, Gln22, Val28, and Leu29, whereas due to the sub-

stitution of methionine with valine, the number of interacting residues decreased to three, and

the distance remained quite similar to that of the wild-type residue. For the substitution of

arginine with glutamine at position 141, only one H-bond with Cys145 remained intact in the

mutant, with the distance being decreased to 2.8 Å, and the rest of the interactions were

Table 5. Surface accessibility result of 11 nsSNPs generated by NetSurf2.0.

Class assignment Amino acid Amino acid number Relative Surface Accessibility

Buried F 15 0.116

Buried M 25 0.012

Exposed R 141 0.315

Buried A 252 0.034

Buried G 480 0.15

Exposed R 639 0.287

Buried G 645 0.061

Buried R 697 0.145

Buried R 700 0.17

Buried G 706 0.005

Buried H 960 0.097

https://doi.org/10.1371/journal.pone.0309713.t005
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eliminated. When comparing wild-type and mutant amino acids, it was found that the A252V

mutation did not significantly alter the H-bond pattern and that the distance between the neigh-

boring residues (Val255 and Thr478) remained nearly unchanged. The H-bond distance between

Gly480 and the nearby Ser479 residue was 2.9 Å, as shown in Fig 7E. Due to glycine being replaced

with arginine, the bond distance was reduced to 2.8 Å, and three additional H-bonds with neigh-

boring Thr44, Gly696, and Gln693 were introduced in the mutant structure. The mutation

G645D formed new H-bonds with Ser527, Leu646, and Arg714 each having a length of 2.6 Å.

Moreover, the H-bond distance between Arg639 (wild type) and nearby Gly555, Asp635,

Asp704, Tyr705, and Ala707 residues was 3 Å, 3.4 Å, 2.7 Å, 2.9 Å, and 2.9 Å, whereas for

His639 (mutant), the values were 3 Å and 2.9 Å for Gly555 and Ala707, respectively, and the

rest of the H-bonds were not observed to persist in the mutated protein structure. Further-

more, when arginine was replaced with glutamine, the structure relaxed because five of the six

H-bonds observed in the wild-type amino acid with Leu631, Asp632, Phe633, Gly696, and

Arg697 were eliminated in the mutant amino acid, while the remaining H-bond (Asp704)

showed the slightest increase (2.9 Å to 3.3 Å) in distance. On the other hand, the mutant at

position 960 had little effect on interaction, where the H-bond with Tyr922 was canceled out,

along with minimal fluctuation in other H-bonds with neighboring atoms (Fig 7K). Among

the other two mutations, one showed complete elimination of two H-bonds while the other

showed introduction of two new H-bonds. In the case of R697Q, H-bond with Ser628 and

Leu631 was eliminated, and the interacting distance with both Ala694 and Arg700 increased

by at least 1 Å. Finally, when glycine was switched out for arginine at position 706, two new H-

bonds with Gly638 and Gly640, at distances of 2.7 Å and 2.6 Å, as well as a minor increase in

the bond distance with atoms comparable to the wild-type, were noticed (Fig 7).

Molecular docking

Due to RTEL1 being an essential DNA helicase, molecular docking of native and 11 filtered

mutant proteins was performed with telomeric DNA (Fig 8). Active residues of the HHD2

domain in RTEL1 were extracted from the literature and used for specifying the DNA binding

site in the HDOCK docking server.

A total of 12 molecular dockings were performed in the HDOCK server, which predicts

binding complexes using a hybrid algorithm to predict binding affinity. Some deviation in the

orientation of the molecular complexes has been observed. Six mutants (F15L, M25V, A252V,

G480, R639H, and R697Q) have been predicted to have a less negative docking score when

Table 6. The cancer susceptibility predictions, scores, and association with different types of cancer of the selected nsSNPs determined by CScape and canSAR.ai.

CScape canSAR.ai association

Chromosome Position Ref. Base Mutant Base Coding Score Prediction

20 62290800 C A 0.580519 oncogenic

20 62290828 A G 0.701031 oncogenic

20 62293925 G A 0.876857 oncogenic

20 62303964 C T 0.84255 oncogenic

20 62319080 G C 0.856576 oncogenic Liver Cancer

20 62320892 G A 0.910291 oncogenic

20 62320910 G A 0.890656 oncogenic

20 62321167 G A 0.964741 oncogenic

20 62321176 G A 0.913183 oncogenic

20 62321193 G A 0.920325 oncogenic Endometrial Cancer

20 62324523 A G 0.684018 oncogenic

https://doi.org/10.1371/journal.pone.0309713.t006
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binding with DNA than the wild type, indicating a less stable binding complex. Besides, five of

the other mutants showed a more negative docking score, which might result in a more rigid

binding complex, leading to a discrepancy in the functionality of proteins (Table 7). The

bound conformations revealed significant differences between the mutant and wild-type mole-

cules when visualized in the DNAproDB web-based tool. All the mutant proteins deviated

from the wild type when binding to DNA, not only in terms of interacting residues but also in

the number of hydrogen bonds, Van der Waals interactions, and nucleic acid interactions.

Additionally, the DNA has been observed to bind with entirely new residues in the F15L,

M25V, and G706R mutant proteins compared to the wild type.

5’ and 3’ UTR non-coding SNPs analysis

A total of 7 non-coding SNPs were extracted from the Ensemble database with the global

minor allelic frequency (MAF) value ranging from 0.01 to 0.5. While analyzing the

Fig 7. Analyses of the effect of nsSNPs on the interaction pattern with the neighboring residues. The distance from

nearby amino acid atoms in (A) F15L, (B) M25V, (C) R141Q, (D) A252V, (E) G480R, (F) R639H, (G) G645D, (H)

R697Q, (I) R700Q, (J) G706R, and (K) H960R mutant structure are visualized using PyMOL2.5.

https://doi.org/10.1371/journal.pone.0309713.g007
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RegulomeDB database, rs1291208 scored 0.95 with rank 1a, indicating eQTL/caQTL, TF bind-

ing, matched TF motif, matched Footprint, and chromatin accessibility peak. Besides,

rs114023340 scored 0.71269 and ranked 2a, indicating TF binding, matched TF motif,

matched Footprint, and chromatin accessibility peak, and the rest of the SNPs (rs2297432,

rs13043797, rs2297441, rs1291209, rs1295810) were scored 0.55436 and ranked 1f, which indi-

cates eQTL/caQTL, TF binding/chromatin accessibility peak. Moreover, probability scores

close to 1 indicates the likelihood of an SNP being a regulatory variant. Finally, the SNPs were

analyzed in PolymiRTS Database 3.0, where out of seven SNPs, the CLASH system predicted

only one (rs2297441) SNP in the target region of hsa-miR-615-3p.

Discussion

As an essential DNA helicase, RTEL1 plays a vital role in the regulation and maintenance of

telomeres. RTEL1 dissembles recombination intermediates, breaks down telomeric loops or T

loops, and restricts excessive meiotic crossing over [6, 22]. Studies have shown the function of

RTEL1 in DNA replication machinery and its association with maintaining the proper DNA

replication, stability of replication fork, and maintenance of telomere integrity [22, 87]. In

Fig 8. Graphical representation of molecular docking using DNAproDB. Illustration of docking result of DNA with

(A) native and mutant (B) F15L, (C) M25V, (D)R141Q, (E) A252V, (F) G480R, (G) R639H, (H)G645D, (I) R697Q, (J)

R700Q, (K) G706R, and (L) H960R protein are shown.

https://doi.org/10.1371/journal.pone.0309713.g008
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humans, mutations in the RTEL1 gene have been proven to cause a rare genetic hereditary dis-

ease called Dyskeratosis congenita (DC) and its severe form Hoyeraal–Hreidarsson syndrome

(HHS). The deficiency of RTEL1 in different cell lines has proven the increasing risk of telo-

mere fragility and genomic instability [2]. RTEL1 expression dysregulation or structural alter-

ation may significantly contribute to the emergence of malignancies. Studies have shown that

the RTEL1 genomic locus is often amplified in human cancers [21, 88, 89] and the polymor-

phisms of this gene are associated with several cancers, including gliomas, neuroblastoma,

lung, and breast cancer [19, 20, 90, 91]. Additionally, it has also been found that genetic varia-

tions of the RTEL1 gene are linked to an elevated risk of stroke [92]. Though RTEL1 mutations

and their association with human disorders are well-documented in studies, the full spectrum

of polymorphic variations in RTEL1 and their effects on its biological functions remain largely

unexplored. Therefore, in this study, we employ comprehensive in silico analysis to identify

and characterize the most deleterious coding and non-coding SNPs in the RTEL1 gene and

assess their impact on the structure and functionality of the protein.

Our initial classification of nsSNPs was based on how they might affect the structure and

functionality of RTEL1 protein. Different bioinformatics tools have different threshold cut-off

values for classifying SNPs as damaging or benign, which can occasionally lead to misleading

predictions for SNPs with prediction scores close to the threshold cut-off value. Therefore, 19

web tools depending on the structural and sequential homology approaches were used to over-

come this limitation to predict functionally and structurally deleterious nsSNPs. For the analy-

sis, we employed the isoform 2 (1219 amino acid) sequence, as it is represented as a canonical

sequence in the Uniport database. Using ten computational SNP prediction tools—SIFT,

PROVEAN, Polyphen-2, PANTHER, SuSPect, PredictSNP, PredictSNP2, P-Mut, SNAP2, and

SNP&GO—we screened out 43 significantly harmful nsSNPs from the 1392 nsSNPs

Table 7. Analysis of wild-type and mutant protein’s binding affinity and interaction with DNA.

Docked

Molecules

Interacting Residues Total HWa

Count

Total VdWb

count

Total Nucleotide

Interaction Count

Docking

Score

Confidence

Score

Ligand

RMSD (Å)

AF-DNA H1123,D1090,R1121, P1122,K1087,Q1014,

A1011,T1010, Q1015,E1020

9 70 25 -162.78 0.5636 163.85

F15L-DNA P943,K944,Q1078 2 40 11 -108.52 0.3037 150.61

M25V - DNA N947,P887,Q950, K1005,T1007,S1009 1 2 6 -147.45 0.4873 150.56

R141Q - DNA R433,A1011,K1087, R1121,P1122,D1090,

H1123,Q1126

1 45 19 -199.3 0.7283 159.89

A252V - DNA A1011,E1020,K1087, Q1014,Q1015,Q1088,

R1121

2 57 26 -137.35 0.4371 158.6

G480R - DNA R895,Q954,Q1088, K1087,R1121, D1089,

D1090

0 19 11 -129.01 0.3966 166.48

R639H - DNA A440,A1101, K1106,W441 0 24 11 -137.36 0.4371 147.05

G645D - DNA R433,S1009,T1010, A1011,A1012,K1087,

Q1088,D1089,D1090, R1121,H1123

5 46 23 -180.79 0.6493 154.45

R697Q-DNA A440,T443,K1087, Q1088,D1089,D1090,

R1121, H1123

3 40 16 -147.01 0.4851 160.21

R700Q-DNA Q436,R447,K1087, Q1088,D1090,R1121,

P1122, H1123, H1124

5 72 20 -177.62 0.6347 156.1

G706R-DNA E312,E313,T287, A316,K319,W441 0 21 9 -186.84 0.6763 146.61

H960R-DNA T1010,A1011,Q1014, K1087, Q1088,D1089,

D1090,R1121,P1122, H1123

7 82 24 -196.81 0.7183 166.68

aHW: H-bonding
bVdW: Van der Waals

https://doi.org/10.1371/journal.pone.0309713.t007
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mentioned in the NCBI dbSNP database. Based on the prediction scores produced by these

ten web tools, the 43 harmful nsSNPs were chosen. The structural impact of the filtered

nsSNPs was analyzed in two categories—mCSM, SDM, Duet, I-Mutant, INPS-MD, MuPro,

and Dynamut2 was used for the prediction of stability change, whereas Mutpred2 and Project

HOPE were utilized for phenotypic effects prediction.

Protein stability, which governs protein conformational shape, determines how well a pro-

tein performs its function. Protein misfolding, disintegration, or aberrant protein aggregation

can occur due to any alteration to the stability of the protein [93]. According to research,

amino acid changes that reduce the stability of proteins by a few kcal/mol account for 80% of

missense mutations linked to diseases [94]. The ΔΔG value we received as an output from the

tools was used to assess the pathogenicity and the consequences of SNPs on the protein’s sta-

bility. The folding free energy change, or ΔΔG, separates the mutant from the wild type, which

measures the effect of mutation on the protein’s stability [95]. Hence, a decline in ΔΔG value

implies the mutant protein is losing its stability. Thus, we concentrated on the effects of the 43

harmful nsSNPs on the stability of the RTEL1 protein. Of these 43 nsSNPs, 13 nsSNPs (F15L,

M25V, R141Q, A252V, G480R, F559L, R639H, G645D, R697Q, R700Q, G706R, R729C,

H960R) were commonly predicted to have negative ΔΔG value by seven web servers, indicat-

ing a destabilizing effect on the protein. The phenotypic consequences of these variants were

examined through MutPred2 and HOPE where MutPred2 predicted every potential gain, loss,

or modification of different molecular properties, and HOPE thoroughly examined them.

Except for the F559L and R729C mutations, all of the mutations were predicted to have a dam-

aging effect on the protein (Fig 9). SNPs with glycine as wild-type residues (G480R, G645D,

G706R) are highly conserved due to their small size and less steric hindrance of side chains, a

crucial aspect for protein flexibility. Therefore, the flexibility required for protein function is

compromised by its replacement [96]. Additionally, conformational flexibility is the primary

factor influencing the aggregation tendency of protein. Thus, any alteration in protein flexibil-

ity may increase the likelihood of protein being aggregated and forming fibril [97, 98]. More-

over, arginine is a positively charged amino acid; variants where arginine is replaced with

neutral or less basic amino acids (R141Q, R639H, R697Q, R700Q,) may lead to loss of interac-

tion with other molecules, whereas in the case of H960R, it is predicted by HOPE to cause

Fig 9. The final positions of 11 nsSNPs are shown within the RTEL1 protein. The domains are represented by transparent blue (Dead 2 domain) and light

purple (Helicase C2 domain) horizontal bars, and nsSNPs are displayed as arrows where blue arrows indicate the nsSNP that falls under the Dead 2 domain,

pink arrows depict that are in the Helicase C2 Domain and yellow indicates the one that does not belong to any domains. Both the scaling of the domains and

nsSNPs positions are provided as approximations.

https://doi.org/10.1371/journal.pone.0309713.g009
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repulsion of ligand or other molecules of similar charges. Apart from these, changes in size

and hydrophobicity due to the SNPs may also result in a destabilizing effect on proteins or a

potential loss of external interactions. Because of the disparity in size, M25V is projected to

result in a vacant space in the core of the protein. This result was also verified through the eval-

uation of interatomic interactions where all of the mutations have been observed to gain or

lose some interactions with nearby atoms due to the substitution of amino acids. The most sig-

nificant changes were observed in R141Q, G480R, R639H, G645D, R700Q, and G706R muta-

tions. Besides, the domain and cluster information of these 11 nsSNPs were identified through

Mutation3D. Two domains were identified in the RTEL1 protein where R141Q and A252V

mutations are in the Dead 2 domain and R639H, G645D, R697Q, R700Q, and G706R, muta-

tions are in the Helicase C2 domain. Also, 4 mutations (R639H, R697Q, R700Q, G706R) were

found to form a cluster. Dead 2 domain is a part of RAD3-related DNA binding helicases

involved in DNA repair, regulation of transcription, and metabolic process of nucleic acid and

nucleotide. Whereas the Helicase C2 domain falls under the C terminal helicase domain,

which is thought to be necessary for helicase activity [4] and the common phenotypic outcome

seen in patients with HHS or DC, particularly short telomeres is predicted to be responsible

for the altered activity of C terminal domain [4, 12]. Therefore, the mutations in these two

domains of RTEL1 protein could impose a more deleterious effect.

Moreover, mutations in cancer tissues tend to form clusters in specific positions of protein

[99]. It is worth mentioning here that evaluation of oncogenic susceptibility revealed the onco-

genic potential of all of the 11 nsSNPs, and 2 (G480R, and G706R) of them were found to be

directly associated with liver, and endometrial cancer. Thus, cluster-forming mutations could

cause diseases due to the damaging impact on the protein’s functionality.

In secondary structure analysis, it has been found that all 11 mutations contain fewer beta

and gamma turns than the wild type. All mutant structures displayed a larger RMSD value

when mutant and wild-type structures were superimposed, which justifies the structural devia-

tion resulting from single amino acid substitution in the protein. Although changing the seed

value may slightly alter the structural configuration and hence the RMSD, we maintained con-

sistency by using the same default seed value for generating all mutant structures. We acknowl-

edge that the slight discrepancies in RMSD values could be influenced by the methods utilized

in creating the structures. Our use of consistent modeling parameters was aimed at minimiz-

ing these discrepancies.

Additionally, evolutionary conservation of the protein sequence plays an essential role in

evaluating the adverse effect of mutation on species. Therefore, using the ConSurf server, first,

we identified the evolutionary conservation profile of each amino acid position in the RTEL1

protein, where all of the SNP positions were predicted to be conserved in the protein. For fur-

ther evaluation, we executed multiple sequence alignments of ten species using MEGA11 soft-

ware, and the result showed that all 11 positions are conserved in ten species. The phylogenetic

tree also showed that the closest relatives of the human RTEL1 protein are orthologs in the pri-

mate species, chimpanzees, and gorillas.

The molecular docking analysis of telomeric DNA with native and 11 nsSNPs revealed

alterations in binding affinity, which point to a shift in the interaction pattern of the complex.

Usually, the better orientated the ligand is at the binding pocket of the receptor, the more neg-

ative the binding affinity becomes [100]. Hence, less negative binding affinity demonstrates

the change in the binding orientation of the ligand to the receptor molecule, resulting from the

substitution of amino acid residues. Out of 11 mutations, six mutations—F15L, M25V,

A252V, G480, R639H, and R697Q were found to have less negative docking score than the

wild-type protein, indicating a less stable binding complex. On the other hand, compared to

the complex generated by the wild-type protein, mutations like R141Q, G645D, R700Q,
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G706R, and H960R revealed a stiffer DNA binding complex with a more negative docking

score. Moreover, there was a discernible reduction of H-bond and Van der Waals interactions

in the binding pocket.

Interestingly, a remarkable change in the receptor-interacting residues has been observed

in F15L, M25V, and G706R mutations, where the DNA was found to bind with an entirely dis-

tinct set of residues than the wild-type. Additionally, nsSNPs F15L, R141Q and R697Q identi-

fied in our analysis were also reported in the ClinVar database. These variants were specifically

associated with diseases such as dyskeratosis congenita, pulmonary fibrosis, bone marrow fail-

ure and telomere-related diseases. However, the clinical significance of these variants was cate-

gorized as uncertain. This ambiguity suggests that the available data is insufficient to confirm a

definitive pathogenic role of these variants, despite some evidence linking them to certain dis-

orders. On that point, our study provides definitive in silico evidence about the potential path-

ogenic role of these variants. Among the non-coding SNPs, two of them (rs1291208 &

rs114023340) were predicted to have the most likelihood of having a regulatory influence on

RTEL1 protein as the exhibited predictions involved eQTL/caQTL, TF binding, matched TF

motif, matched Footprint, and chromatin accessibility. Furthermore, rs2297441 was predicted

in a miRNA’s target region, and its presence may impede the regulation of RTEL1 by miR-

615-3p. miR-615-3p plays a multifaceted role in cancer, promoting proliferation, migration,

and inhibiting apoptosis in gastric cancer, enhancing adverse outcomes in prostate cancer,

facilitating the epithelial-mesenchymal transition and metastasis in breast cancer, and partici-

pating in the repression of hTERT and tumorigenesis in collaboration with HoxC5, while also

promoting hypoxia-induced glycolysis in non-small cell lung cancer through interaction with

HMGB3 [101–104]. It is noteworthy that the majority of the single-nucleotide polymor-

phisms/variants (SNPs/ SNVs) that have been discovered through genome-wide association

studies (GWAS) as risk factors for complex diseases, commonly reside within non-coding

regions of the genome [105–112]. Therefore, the presence of SNPs within the non-coding

region can have a substantial impact on the regulatory elements and pathways involved in dis-

ease susceptibility progression.

The findings reported in this study have several important implications for clinical practice and

research. The identified deleterious variants could be integrated into genetic diagnostic panels,

improving the accuracy of risk assessments for patients with RTEL1-related disorders. This would

facilitate earlier and more precise diagnosis of conditions like DC and HHS, potentially leading to

timely interventions and personalized management strategies. Understanding the specific muta-

tions that affect RTEL1 function can pave the way for personalized therapeutic approaches. For

instance, mutations like F15L, M25V, A252V, G480, R639H, and R697Q which significantly alter

DNA binding affinity, could be potential targets for drug development to compensate for potential

functional losses. Future research should focus on experimentally validating these in silico findings

through laboratory techniques and cellular models to confirm the functional impacts of the identi-

fied variants. Additionally, to further confirm the oncogenic potential of the nsSNPs identified in

our study, high-risk variants such as G480R and G706R should be examined in the context of liver

and endometrial cancers, while the other highly oncogenic variants (R639H, G645D, R697Q,

R700Q) also warrant detailed exploration. Understanding how these mutations contribute to can-

cer development and progression could provide valuable insights into their potential as biomarkers

for cancer susceptibility and their role in the malignancy process.

Conclusion

Our study identified 11 nsSNPs and 3 non-coding SNPs of the RTEL1 gene that are predicted

to be deleterious. These mutations were discovered to have a deleterious impact on the
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structural and functional properties of the RTEL1 protein, which may disrupt the conforma-

tion of the native protein. This extensive study can, therefore, be constructive in future

research on RTEL1, opening the door to the possibility of looking into potential disease-caus-

ing SNPs and facilitating the identification of potent drugs or pharmacological targets. Hence,

experimental mutational research, genome-wide association studies, and clinical-based studies

are further required to validate these findings.
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