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Abstract

Tuberculosis(TB) of the Central nervous system (CNS) is a rare and highly destructive dis-

ease. The emergence of drug resistance has increased treatment difficulty, leaving the

Bacillus Calmette-Guérin (BCG) vaccine as the only licensed preventative immunization

available. This study focused on identifying the epitopes of PknD (Rv0931c) and Rv0986

from Mycobacterium tuberculosis(Mtb) strain H37Rv using an in silico method. The goal

was to develop a therapeutic mRNA vaccine for preventing CNS TB. The vaccine was

designed to be non-allergenic, non-toxic, and highly antigenic. Codon optimization was per-

formed to ensure effective translation in the human host. Additionally, the secondary and

tertiary structures of the vaccine were predicted, and molecular docking with TLR-4 was car-

ried out. A molecular dynamics simulation confirmed the stability of the complex. The results

indicate that the vaccine structure shows effectiveness. Overall, the constructed vaccine

exhibits ideal physicochemical properties, immune response, and stability, laying a theoreti-

cal foundation for future laboratory experiments.

1. Introduction

Primarily affecting humans, Mtb is an acid-fast aerobic, non-motile, spore-forming bacterium

[1]. According to the World Health Organization (WHO) Global TB Report 2022,10.6 million

people were diagnosed and 1.6 million people died from TB in 2021. This marks a 3.6%

increase from 2020 [2]. It is worth noting that CNS TB is a form of TB, predominantly present-

ing as tuberculous meningitis (TBM) with a notably high mortality rate [3]. In patients with

HIV, the mortality rate for TBM is close to 50% [4]. At the population level, the incidence is

highest in children aged 2–4 years [5]. Previous studies have shown that Mtb deposits develop

during hematogenous dissemination in the brain parenchyma and meninges, leading to the

gradual formation of tuberculoma. The physical rupture of the tuberculoma allows the bacte-

rium to spread directly into the cerebrospinal fluid (CSF), ultimately resulting in tuberculous

meningitis. Clinical symptoms primarily manifest as infarction due to vasculitis [6]. Children
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and HIV co-infected individuals are considered high-risk groups for CNS TB [7]. Despite the

existence of antibiotics and effective treatment options, there are several chemotherapy-related

complications that persist, such as prolonged treatment durations, severe adverse reactions,

poor adherence, and the emergence of multidrug resistance. Consequently, the global manage-

ment of anti-TB treatment encounters significant obstacles [8–10].

Therapeutic vaccination has emerged as a potential new approach for treating TB [11].

While prophylactic vaccines like BCG can help prevent Mtb infection or active TB develop-

ment, therapeutic vaccines aim to prevent recurrence post-cure or serve as adjuvant therapy

[12]. Current TB vaccine candidates include inactivated, live attenuated, subunit, viral vector,

DNA, and mRNA vaccines [13]. The large-scale production of mRNA vaccines has shown a

trend towards industrialization during the COVID-19 epidemic [14]. However, no mRNA

vaccine has yet been developed for CNS TB. mRNA vaccines work by transferring exogenous

mRNA encoding antigen into cells through the expression system, leading to an immune

response upon antigen synthesis [15, 16]. These vaccines offer several advantages. Firstly,

mRNA can encode and express all genetic information of various proteins, allowing for opti-

mized vaccine development through mRNA sequence modification [17]. Secondly, most

mRNA vaccines can be produced and purified using similar procedures, which paves the way

for the development of other similar mRNA vaccines [15]. Lastly, in vitro transcription simpli-

fies the production of mRNA vaccines [17].

In this study, two proteins, PknD and Rv0986, from Mtb strain H37Rv were examined. PknD
(Rv0931c) encodes a eukaryotic serine-threonine protein kinase with extracellular (sensor) and

intracellular kinase domains that are uniquely found in CNS TB [18]. On the other hand,

Rv0986 is a component of the ABC transporter complex and plays a role in host cell binding

through secretion of adhesion factors or maintenance of mycobacterium cell envelope integrity,

also specific to CNS TB [19]. The objective of this research was to develop a new multi-epitope

mRNA therapeutic vaccine targeting a protein associated with CNS TB. Various in silico meth-

ods which had been used in previous studies such as Immune Epitope Database (IEDB),

NetCTLpan1.1, NetMHCIIpan-4.0, and SVMtrip were employed to analyze the antigen epitopes

of PknD and Rv0986. Additionally, Cytotoxic T lymphocyte(CTL), Helper T lymphocyte(HTL),

and B cell epitopes were connected using AAY, GPGPG, and KK linkers [20]. To investigate the

relationship between T cells and alleles, molecular docking was conducted [21]. Furthermore,

an analysis of the physicochemical properties, antigenicity, allergenicity, and toxicity of the

mRNA vaccine was performed, followed by immune simulations to validate the hypothesis.

Codon optimization of the mRNA vaccine was carried out to ensure accurate translation in the

host. Subsequently, predictions on the secondary and tertiary structures of the vaccine were

made. The resulting tertiary structure was then molecularly docked with TLR-4. Finally, a

molecular dynamics simulation was utilized to confirm the stability of the compound [22].

2. Materials and methods

2.1 Sequence source

The amino acid sequences of the target proteins PknD and Rv0986 were retrieved from the

UniProt database(https://www.uniprot.org/). Homology analysis of these selected proteins was

conducted using MAFFT(version 7) and showed in Jalview(2.11.3.3) software [23]. The

research process of this paper is shown in (Fig 1).

2.2 Selection of target proteins

The software Prot Param(https://web.expasy.org/protparam/) was used to analyze the physico-

chemical properties of the selected proteins and MEVs. The antigenicity of the protein was
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analyzed using Vaxi Jen2.0(http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html)

[24]. AllergenFPv.1.0(http://www.ddg-pharmfac.net/AllerTOP)was used to analyze the sensiti-

zation and ToxinPred(https://webs.iiitd.edu.in/raghava/toxinpred/multi_submit.php) was

used to analyze the toxicity of the protein.

2.3 Prediction of signal peptides

Before predicting protein epitope, the signal peptide sequence should be removed first. We

used SignalP6.0(https://services.healthtech.dtu.dk/service.php?SignalP-6.0) [25] and Signal

BLAST(http://sigpep.services.came.sbg.ac.at/signalblast.html) [26] to predict the signal peptide

of the protein.

2.4 Prediction of protein T-cell epitopes

Major histocompatibility complex (MHC) molecules play a crucial role in binding and pre-

senting antigenic peptides for recognition by T lymphocytes. MHC class I molecules interact

with the CD8T cell subset, while MHC class II molecules interact with the CD4T cell subset.

Human leukocyte antigen (HLA) genes are synonymous with human MHC genes [22, 27].

HLA alleles exhibit specificity based on geographical and population factors [28]. In this study,

Fig 1. The experimental process of this study.

https://doi.org/10.1371/journal.pone.0307877.g001
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we focused on alleles commonly found in Xinjiang (HLA-A*1101, HLA-A*0201,

HLA-A*0301, HLA-DRB1*0701, HLA-DRB1*1501, HLA-DRB1*0301) to predict CTL epi-

topes and HTL epitopes [29]. CTL epitopes were predicted using IEDB(http://tools.

immuneepitope.org/) [30] and NetCTLpan-1.1(https://services.healthtech.dtu.dk/service.php?

NetCTLpan-1.1) with an epitope length of 9, and overlapping sequences were screened [31]. It

is important to note that NetCTLpan-1.1 indexing starts from 0, so adding 1 is necessary for

alignment with IEDB sequences. For HTL epitope prediction, NetMHCIIpan-4.0 (https://

services.healthtech.dtu.dk/service.php?NetMHCIIpan-4.0) [32] and IEDB tools were

employed. NetMHC-IIpan-4.0 was configured with the original threshold and an epitope

length of 15, with dominant epitopes selected based on overlapping sequences.

2.5 Prediction of protein B-cell epitopes

B cell epitope includes linear epitope and conformational epitope.SVMtrip (sysbio.unl.edu/

SVMTriP/prediction.php) was used to predict linear B cell epitopes, and the epitope length

was set to 20 [33]. The conformational epitope was predicted by Ellipro of IEDB.

2.6 T-cell epitopes molecular docking to HLA alleles

To examine the relationship between T cell epitopes and alleles, we used the HDOCK(http://

hdock.phys.hust.edu.cn/) server to select class HLA-I (HLA-A * 02:01) and class HLA-II

(HLA-DRB1 * 07:01) alleles for molecular docking with T cell epitopes. Finally, the LIGPLOT

(v.2.2.8) was used to evaluate the interactions between epitopes and various residues of MHC

alleles.

2.7 mRNA vaccine structure design

To produce mRNA vaccines, highly antigenic, non-allergic, and non-toxic epitopes are con-

nected using linkers such as AAY, GPGPG, and KK for CTL, HTL, and B-cell epitopes, respec-

tively [20]. In order to facilitate the detection and purification of the recombinant protein

later, we added a set of HHHHHH sequences to the C-terminal of the amino acid sequence

and connected them with GGGS linkers [34]. The 5’-cap structure, essential for mRNA trans-

lation, initiates mRNA translation and boosts mRNA stability and efficiency [35]. Translation

and degradation efficiency of mRNA can be regulated by 5´- and 3´-UTRs [36]. The Kozak

sequence includes a start codon [37]. The tPA Signal (UniProt ID: P00750) aids in secreting

the signal sequence of epitopes, enhancing vaccine immunogenicity [38]. It is important to

note that we used only the precursor sequence of the tPA signal peptide, which can be tran-

scribed but not translated. Adjuvant resuscitation promoting factor (RpfE) (Rv2450c) can

improve adaptive immune response. CTL epitopes are guided to the MHC-I region of the

endoplasmic reticulum by the 3’ MITD (Uniprot ID: Q8WV92) [39]. The addition of a Poly

(A) tail can facilitate protein translation and enhance mRNA stability [35]. These elements

contribute to the successful construction of mRNA vaccines.

2.8 Prediction of homology between vaccine and humans

Non-homologous proteins can be reduced to stimulate the body to produce an adverse

immune response [40]. By using NCBI BlastP (https://blast.ncbi.nlm.nih.gov/Blast.cgi) data-

base, comparing vaccine and Homo sapiens (TaxID: 9606) to reduce the risk of autoimmune.

An E value greater than 0.5 is considered non-homologous and suitable for vaccine construc-

tion [41].
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2.9 Assessment of vaccine structure

An effective vaccine must possess appropriate physical and chemical properties. Parameters

such as molecular weight, theoretical isoelectric point, amino acid composition, instability

index, aliphatic index, and total average hydrophilicity (GRAVY) were evaluated using Prot-

Param. The isoelectric point (pI) indicates the pH at which a molecule or surface is neutral

and impacts solubility at specific pH levels. The aliphatic index is a measure of a protein’s ther-

mal stability, with proteins considered unstable if their instability index exceeds 40. A positive

GRAVY value signifies hydrophobicity, while a negative value indicates hydrophilicity [42].

Antigenicity, which refers to an antigen’s ability to selectively bind to antibodies or lympho-

cytes, was assessed using VaxiJen2.0 during vaccine design. Furthermore, allergic reactions

were assessed using AllerTOP2.0 to ensure the vaccine does not induce sensitization [43]. Tox-

inPred was utilized to evaluate the vaccine’s toxicity, confirming that the constructed vaccine

does not produce any toxic effects [44].

2.10 Immune response simulation

C-Immsim was utilized to model the three injection intervals of 1, 84, and 168 to replicate the

immunological response induced by the vaccine in the body [45]. The analysis focused on high

frequency alleles—HLA-A*1101, HLA-A*0201, HLA-B*5101, HLA-B*3501,

HLA-DRB1*0701, and HLA-DRB1*1501—in the Xinjiang population. The simulation param-

eters included a random seed of 12345, a simulation volume of 50, a simulation step of 1050,

and a dose of 1000 units [46].

2.11 Optimization of mRNA codons and in silico cloning

The online codon optimization server JCat tool was utilized for codon optimization and analy-

sis [47]. Escherichia coli was chosen as the expression host [48] and BamHI and XHOI restric-

tion sites were deliberately excluded to obtain the desired DNA sequences. PVAX1 was

employed as the vector for electronic cloning, with primers being added and amplified using

Snap Gene. The GC content ranged between 30% and 70%, while the primer length was set

between 15–30 bp. It was ensured that the upper and lower annealing temperatures were simi-

lar. Finally, the amplification process was completed using BamHI and XHOI restriction

enzymes.

2.12 Agarose gel electrophoresis

Agarose gel electrophoresis of target genes (post-PCR), vectors, and recombinant plasmids in

Snap Gene was done in a TBE buffer at 1% agarose concentration.

2.13 Prediction of secondary structure of mRNA vaccine

To ensure the effectiveness of mRNA transcription, we used the RNAfold(http://rna.tbi.univie.

ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi)server to predict the secondary structure of single-

stranded RNA sequences. Currently, it can handle sequences up to 10,000 nt for minimum

free energy predictions and up to 7,500 nt for partition function computations. The server also

predicts the center of mass secondary structure and minimal free energy (MFE) of mRNA.

2.14 Prediction of secondary and tertiary structure of vaccines

The specific conformation formed by the polypeptide backbone atoms spiraling or folding

along a defined axis is known as a protein’s secondary structure. To ensure that the vaccine

proteins are translated correctly, we analyze the distribution of α helix, β sheet, random coil,
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and extended chain components of the vaccine, we utilized the SOPMA(http://npsa-pbil.ibcp.

fr/cgibin/npsa_automat.pl?page=/NPSA/npsa_sopma.html) server. The SWISS-MODEL

(https://swissmodel.expasy.org/assess) tool was employed to predict the stoichiometry and

overall structure of the complex through homology modeling, involving steps such as input

data submission, template search, template selection, modeling, and model quality assessment.

Subsequently, the predicted tertiary structure was refined using the GalaxyWEB(http://galaxy.

seoklab.org/) server, which enhances the core structure based on multiple templates and opti-

mizes unreliable loops or termini. This refinement method is recognized for its high perfor-

mance in template-based modeling [49]. The final 3D model was rendered using Discovery

Studio(2019) software.

2.15 Quality testing of models

The PROCHECK(https://saves.mbi.ucla.edu/) server was utilized to assess the quality of the

tertiary structure, which indicates the level of agreement between the model structure and the

experimental data, along with the geometric features. The server mainly includes PRO-

CHECK, WHATCHECK,ERRAT,Verify-3D and PROVE five commonly used tests. PRO-

CHECK analysis takes high-resolution crystal structure parameters in PDB as reference, and

gives a series of stereochemical parameters of the submitted model. After the analysis was com-

pleted, the percentage of amino acids in the "most favoured regions"," additional allowed

regions", "generously allowed regions ", and" disallowed regions" were listed in the Ramachan-

dran Plot line. It is generally required that the amino acid residues in the optimal region

account for more than 90% of the whole protein, and the number of amino acids in the disal-

lowed region should be less than 5% of the total amino acids. It is considered that the confor-

mation of the model conforms to the rules of stereochemistry [50]. Additionally, ProSA

(https://prosa.services.came.sbg.ac.at/prosa.php) was employed to validate the protein struc-

ture, ProSA is a tool for examining potential errors in 3D structural models of proteins, which

uses X-ray analysis, NMR spectroscopy, and theoretical calculations for structural verification

of proteins. From this we can get the z-score and its residue energy graph. The z-score repre-

sents the overall mass of the model and measures the energy distribution deviation of the total

energy of the structure relative to the random conformation. A z-score outside the characteris-

tic range of a natural protein indicates a faulty structure. Energy diagram show local model

mass by plotting energy as a function of amino acid sequence position. In general, a positive

value corresponds to a problem or error in the model [51].

2.16 Molecular docking

MEV activates the immune system as an antigen, triggering an immune response. In our

study, we utilized the HDOCK server to perform molecular docking of MEV with TLR4 (PDB

ID: 3FXI). HDOCK employs intrinsic scoring functions for protein-protein and protein-

DNA/RNA docking, streamlining the docking process. The procedure involves inputting the

FASTA format of MEV and TLR-4, conducting a sequence similarity search to identify homol-

ogous sequences in the PDB database, generating homologous templates for the receptor and

ligand, comparing these templates to select the best ones, and performing modeling and com-

parison using Modler and ClustalW, respectively. Global docking is then carried out using the

FFT docking program to predict the binding orientation, and the most favorable model is

selected from the generated models [52].
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2.17 Molecular dynamics simulation

In this study, Gromacs2022.3 was used to simulate the molecular dynamics (MD) of

MEV-TLR4 complex [53]. The water molecule (Tip3p water model) served as the solvent in

the simulation, which was run at a static temperature of 300K and atmospheric pressure of 1

Bar. The overall charge of the simulated system was neutralized by adding the proper number

of Na+ ions. The force field used in the simulation was Amber99sb-ildn. Using a coupling con-

stant of 0.1 ps and a duration of 100 ps, the molecular dynamics simulation system first uses

the steepest descent method to minimize the energy. It then performs the isothermal isobaric

ensemble (NPT) equilibrium and isothermal isocorph system (NVT) equilibrium for 100,000

steps, respectively. Lastly, a simulation using free molecular dynamics was run. The entire

operation took 100ns and involved 5000000 steps, each with a step length of 2fs. Following the

completion of the simulation, the trajectory was analyzed using the software’s built-in tool to

calculate metrics such as root-mean-square deviation (RMSD), root-mean-square fluctuation

(RMSF), hydrogen bonds, protein Radius of Gyration(Gyrate) and Solvent Accessible Surface

Area(SASA) for each amino acid trajectory. These calculations were then combined with data

on free energy (MMGBSA), free energy topography, and other relevant information.

3. Results

3.1 Selection of target proteins

The UniProt search numbers for PknD and Rv0986 proteins are P9WI79 and P9WQK1, respec-

tively. The amino acids of PknD and Rv0986 are 664aa and 248aa, respectively. In silico methods

were used to analyze the antigenicity and sensitization of these proteins, resulting in antigenicity

values of 0.5633 for PknD and 0.4736 for Rv0986, both exceeding 0.4. It was determined that both

PknD and Rv0986 are non-allergens. Furthermore, the physicochemical properties (Table 1) of

PknD and Rv0986 were examined, indicating that they are hydrophilic stable proteins.

3.2 Sequence retrieval

The high accuracy (Fig 2) of MAFFT in jalview indicates that the two proteins share several

homologies, suggesting that they may derive from the same gene and have similar roles in the

immune response.

Table 1. Physicochemical properties of amino acids.

Amino acids Serial number Antigenicity Allergenicity Instability index (II) Grand average of hydropathicity (GRAVY)

PknD P9WI79 0.563 non-allergen 26.84 -0.055

Rv0986 P9WQK1 0.473 non-allergen 32.44 -0.625

https://doi.org/10.1371/journal.pone.0307877.t001

Fig 2. Homologous sequence alignment of proteins. The blue portions represent similar amino acid sequence (The darker the blue, the more conservative it is).

https://doi.org/10.1371/journal.pone.0307877.g002
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3.3 Prediction of signal peptides

While we used SignalP6.0 and Signal BLAST to predicte signal peptide of the PknD and

Rv0986, there was no signal peptide in the end. Therefore, PknD and Rv0986 proteins are not

directed to other suborganelles of the cell or secreted to play roles outside the cell after synthe-

sis (Fig 3) (S1 and S2 Figs).

3.4 Prediction of T-cell epitopes

Select two of the top 10 epitopes of the software and pick the overlapping sequence. The anti-

genicity of epitopes was analyzed by VaxiJen. Allergen v1.0 was used to predict epitope sensiti-

zation; Use ToxinPred to predict epitope toxicity. In the end, we obtained 3 CTL dominant

epitopes and 11 HTL dominant epitopes (Tables 2 and 3). These epitopes are highly antigenic,

non-allergenic and non-toxic (S1–S8 Tables).

3.5 Prediction of B-cell epitopes

Three linear epitopes of 20 amino acids were obtained by analysis (S9 Table). For conforma-

tional epitopes, we finally selected two discontinuous epitopes with a length greater than 5

amino acids. The predicted score of Rv0986 is 0.812, and the predicted score of PknD is 0.681

(Tables 4 and 5) These epitopes are highly antigenic, non-allergenic and non-toxic (Fig 4).

3.6 Molecular docking of T-cell epitopes to HLA alleles

We performed molecular docking simulations to demonstrate the interaction of HLA alleles

with selected T cell epitopes. Results for ITAPWGIAV(CTLs) interacting with HLA-A*02:01,

Docking Score:-171.21 Confidence Score:0.6045 ligand RMSD (Å):109.11. FQFFNLIPTLTV-

LEN(HTLs) interacting with HLA-DRB1*07:01 Results, Docking Score-123.45 Confidence

Score:0.3703 ligand RMSD (Å):55.09. These results indicate a high affinity for the docking

complex (Figs 5 and 6).

Fig 3. (A-B) Protein signal peptide was analyzed by SignalP6.0. Other: the probability that the sequence does not have any signal peptides.

https://doi.org/10.1371/journal.pone.0307877.g003
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Table 2. Physical properties, antigenicity and scores of CTL dominant epitopes.

Serials CTL epitopes Molecular weight Instability index Grand average of hydropathicity (GRAVY) Theoretical PI Antigenicity Score

Rv0986 114–122 ELAGVSQRK 987.12 30.29 -0.756 8.85 1.0888 0.492

14–22 WTFREGETR 1181.27 -2.48 -1.767 6.14 1.515 0.423

PknD 593–601 ITAPWGIAV 927.11 6.13 1.467 5.52 0.939 0.731

https://doi.org/10.1371/journal.pone.0307877.t002

Table 3. Physical properties, antigenicity and scores of HTL dominant epitopes.

Serials HTL epitopes Molecular weight Instability index Grand average of hydropathicity

(GRAVY)

Theoretical PI Antigenicity Score

Rv0986 199–

213

TLIMATHSPSMTQHA 1625.88 52.75 0.033 6.61 0.586 0.388

94–108 FQFFNLIPTLTVLEN 1796.10 2.39 0.767 4.00 0.650 0.409

93–107 VFQFFNLIPTLTVLE 1781.12 2.39 1.280 4.00 0.665 0.317

150–

164

GEQQRVAISRALAHN 1649.83 52.95 -0.633 9.61 0.442 0.295

70–84 NGFAITQKTERDRTL 1749.94 2.10 -1.100 8.75 0.493 0.323

174–

188

TGNLDSDTGDKVLDV 1548.62 -16.15 -0.56 3.77 0.890 0.378

PknD 421–

435

GIDFRLSPSGVAVDS 1519.67 43.60 0.333 4.21 2.029 0.774

123–

137

AAALDAAHANGVTHR 1474.60 -12.01 -0.013 6.96 1.208 0.685

420–

434

TGIDFRLSPSGVAVD 1533.70 25.10 0.340 4.21 2.000 0.753

590–

610

PWGIAVDEAGTVYVT 1577.75 -31.53 0.513 3.67 0.716 0.871

510–

524

NYPEGLAVDTQGAVY 1596.71 -6.61 -0.260 3.67 0.487 0.755

https://doi.org/10.1371/journal.pone.0307877.t003

Table 4. Physical properties, antigenicity and scores of LBEs dominant epitopes.

Serials LBEs epitopes Molecular

weight

Instability

index

Grand average of hydropathicity

(GRAVY)

Theoretical PI Antigenicity Score

Rv0986 61–80 KPTTGDVTINGFAITQKTER 2177.44 -4.42 -0.72 8.59 0.942 0.562

PknD 50–69 YSDNAVFRARMQREADTAGR 2314.52 -6.03 -1.13 8.74 1.043 1.000

87–

106

QFFVEMRMIDGTSLRALLKQ 2383.85 14.94 0.125 8.75 0.5899 0.914

https://doi.org/10.1371/journal.pone.0307877.t004

Table 5. Physical properties, antigenicity and scores of CBEs dominant epitopes.

Serials Residues CCBEs Molecular

weight

Instability

index

Grand average of

hydropathicity

(GRAVY)

Theoretical

PI

Antigenicity Score

Rv0986 228–

248

A:V228,A:N229,A:R230,A:

E231,A:N232,A:Q233,A:

T234,A:D235,A:Q236,A:

P237,A:A238,A:S239,A:

T240,A:I241,A:L242,A:

L243,A:P244,A:T245,A:

S246, A:Y247,A:E248

VNRENQTDQPASTILLPTSYE 2376.56 39.03 -0.910 4.14 0.3140 0.812

PknD 242–

267

A:D242,A:S243,A:D244,A:

R245,A:T246,A:T261,A:

S262,A:L263,A:E264,A:

H265,A:H266,A:H267

DS DSDRTTSLEHHH 1434.44 12.65 -1.983 5.73 0.6945 0.681

https://doi.org/10.1371/journal.pone.0307877.t005
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3.7 Construction of novel mRNA vaccines

The mRNA vaccine is constructed from the N to C terminus as follows:5’m7GCap-5’UTR-Ko-

zak sequence-tPA(Signal peptide)-EAAAK Linker-RpfE(Adjuvant)-AAYELAGVSQRKAAYW
TFREGETRAAYITAPWGIAVGPGPGTLIMATHSPSMTQHAGPGPGFQFFNLIPTLTVLE
NGPGPGVFQFFNLIPTLTVLEGPGPGGEQQRVAISRALAHNGPGPGNGFAITQKTERDR
TLGPGPGTGNLDSDTGDKVLDVGPGPGGIDFRLSPSGVAVDSGPGPGAAALDAAHANGVT
HRGPGPGTGIDFRLSPSGVAVDGPGPGPWGIAVDEAGTVYVTGPGPGNYPEGLAVDTQ
GAVYKKKPTTGDVTINGFAITQKTERKKYSDNAVFRARMQREADTAGRKKQFFVEMRMID
GTSLRALLKQKKVNRENQTDQPASTILLPTSYEKKDSDRTVYVADRGNDRVVKLTSLEHHH
GGGSHHHHHH-MITD sequence-Stop codon-3’UTR-Poly(A)tail. The selected epitopes are

Fig 4. B cell conformational epitope predicted by Ellipro. The yellow spheres represent B cell conformational epitopes, the gray area represents the majority of

the polyprotein. (A)Rv0986 conformational epitope residues:V228,N229,R230, E231,N232,Q233,T234,D235,Q236,P237,A238,S239,T240,I241,L242,L243,P244,

T245,S246,Y247,E248. (B)PknD conformational epitope residues:D242,S243,D244,R245,T246,T261,S262,L263, E264,H265,H266,H267.

https://doi.org/10.1371/journal.pone.0307877.g004

Fig 5. Docking complex display (A)Molecular docking between ITAPWGIAV(CTLs) and HLA-A*02:01(B)Molecular docking between

FQFFNLIPTLTVLEN(HTLs) and HLA-DRB1*07:01.

https://doi.org/10.1371/journal.pone.0307877.g005

PLOS ONE Innovative multi-epitope mRNA vaccine against central nervous system tuberculosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0307877 September 6, 2024 10 / 25

https://doi.org/10.1371/journal.pone.0307877.g004
https://doi.org/10.1371/journal.pone.0307877.g005
https://doi.org/10.1371/journal.pone.0307877


connected using three linkers, AAY,GPGPG and KK, which function independently. The

linker AAY is breakable, GPGPG is rigid, and KK is flexible (Fig 7). Finally, after homology

comparison, we found that no significant similarity was found between the vaccine and the

host, and the E value was less than 0.05, indicating that the vaccine we constructed was reason-

able (S3 Fig).

3.8 Evaluate the physicochemical properties, antigenicity, allergenicity and

toxicity of the MEV

The MEV protein consists of 383 amino acids, with a molecular weight of 40.196 kDa and a

theoretical isoelectric point of 8.65. It contains 36 acidic amino acids (Asp+Glu) and 38 basic

Fig 6. (A-B)Epitopes and their corresponding MHC allele interaction using the LIGPLOT. Hydrogen bonds are represented by dotted green lines, and red

semicircular circles indicate residues involved in hydrophobic interactions.

https://doi.org/10.1371/journal.pone.0307877.g006
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amino acids (Arg+Lys). The formula for MEV is C1773H2765N521O541S5, with a total of 5,605

atoms. The instability index (II) is 7.49, indicating stability. The aliphatic index is 66.50 and

the Grand average of hydropathicity (GRAVY) is -0.472, suggesting hydrophilicity. Further-

more, the vaccine exhibits antigenicity, non-Allergen, and non-Toxicity. In conclusion, the

vaccine design appears to be feasible. Finally, (Table 6) presents all the final results.

3.9 Immune response simulation

Utilizing C-ImmSim online software, we simulated the immune response to three vaccine

injections. The results demonstrated a notable increase in the immune response to the second

and third injections as compared to the first. As the antigen content decreased, there was a

gradual rise in IgM and IgG levels, with IgM consistently surpassing IgG (Fig 8A). This trend

can be attributed to the development of immune memory post-antigen exposure, leading to an

increase in CTLS and HTL numbers (Fig 8B–8D). Similarly, the presence of memory cells

resulted in an augmentation of B cells, crucial for humoral immunity (Fig 8E and 8F). Den-

dritic cell numbers remained constant (Fig 8G), while macrophage numbers showed a gradual

increase (Fig 8H). Moreover, levels of IFN-γ, TGF-β, and IL-2 increased, with a lower Simpson

index (D) indicating immune response variations (Fig 8I). These results show that the dose

and time interval of injection are reasonable.

3.10 mRNA codon optimization and in silico cloning

Codon optimization tools play a crucial role in enhancing the translation of mRNA vaccines

within host cells. The quality of codon optimization is typically evaluated based on the codon

adaptation index (CAI) and GC content. A CAI value of 1.0 signifies optimal optimization,

Fig 7. Vaccine construct from N-terminal to C-terminal.

https://doi.org/10.1371/journal.pone.0307877.g007

Table 6. The physiochemical profiling of the mRNA vaccine.

Physiochemical profiling Measurement Indication

Number of amino acids 383 Appropriate

Molecular weight 40195.92 Appropriate

Theoretical pI 8.65 Basic

Total number of negatively charged residues (Asp + Glu) 36 -

Total number of positively charged residues (Arg + Lys) 38 -

Formula C1773H2765N521O541S5 -

Total number of atoms 5605 -

Instability index (II) 7.49 Stable

Aliphatic index 66.50 Thermostable

Grand average of hydropathicity (GRAVY) -0.472 Hydrophilic

Allergenicity NON-ALLERGEN Non-Allergen

Antigenicity 0.9510 Antigenic

Toxicity Non-Toxic Non-Toxic

https://doi.org/10.1371/journal.pone.0307877.t006
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with values above 0.8 considered favorable. Moreover, a GC content between 30–70% is

known to facilitate effective gene expression in human hosts. Post-optimization, the average

GC content was determined to be 56.74%. Following primer design principles, we developed

an upstream primer (5’-GGATCCGCTGCTTACGAACTGGCTGGT-3’) with a length of 27, an

aTm value of 68, and a GC content of 59%, incorporating the BamHI enzyme restriction site at

the 5’ end. Similarly, the downstream primer (5’-CTCGAGGTGGTGGTGGTGGTGGTGAGAA-3’)

was designed with a length of 28, an aTm value of 66, and a GC content of 61%, featuring the

XhoI enzyme restriction site at the 3’ end. Subsequently, the target gene was amplified using

Snap Gene, and for cloning purposes, the eukaryotic expression vector PVAX1 was selected.

The amplified target gene successfully inserted into the multiple cloning site (MCS) region of

the plasmid after removing the previously designed primer restriction site (Fig 9).

Fig 8. (A)Immunoglobulins in various states (B)The Helper T Cell Population in various states (C)The Helper T Cell Population in various states (D)The

Cytotoxic T Cell Population in various states (E)The B cell population in various states (F)The B Cell Population in various states (G)Dendritic Cell Population in

various states (H)Macrophage Population in various states (I)Cytokines and Interleukins Production with Simpson Index of the immune response.

https://doi.org/10.1371/journal.pone.0307877.g008
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3.11 Agarose gel electrophoresis

The amount of DNA was consistent with what had been predicted. The amplified sequence of

MEV was 1161bp, the vector size of PVAX1 was 2999bp and the recombinant plasmid was

4098bp (Fig 10).

3.12 Prediction of secondary structure of mRNA vaccine

The input was optimized and submitted to the RNAfold server to predict the mRNA structure

and free energy. It was observed that the mRNA exhibited the most favorable secondary struc-

ture with a minimum free energy (MFE) of -428.80 kcal/mol, while the centroid secondary

structure had a minimum free energy of -288.01 kcal/mol (Fig 11).

3.13 Prediction of secondary and tertiary structure of vaccines

The predicted secondary structure of the vaccine revealed that 8.36% consisted of α-helix,

8.62% of β-angle, 48.83% of irregular curling, and 34.20% of extended chain, aligning well with

the tertiary structure. The tertiary structure model of the vaccine was constructed using

SWISS-MODEL software, further refined on GalaxyWEB, and visualized with Discover

Fig 9. Codon optimization and plasmid vector construction (A)Sequence after adaptation (B)The cloned MEV was inserted into the PVAX1 vector (C)After

amplified(1161bp).

https://doi.org/10.1371/journal.pone.0307877.g009
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Studio. In the visualization, gray indicates random curling, cyan indicates beta-folding, green

indicates beta-turning, and red indicates alpha-spiraling (Fig 12).

3.14 Quality testing of models

We used PROCHECK to verify the validity of the tertiary structure, a server that can analyze

its geometry and overall structure, and the Ramachandran diagram (Fig 13A) showed that

Fig 10. (A)In silico cloning simulation. Codon-optimized multiepitope sequences (red) inserted between the restriction sites BamHI and XhoI in the PVAX1

expression vector (black). (B)Simulated agarose gel electrophoresis results. “1” stands for MEV-PCR,“2”stand for PVAX1,“3” stand for recombinant plasmid.

https://doi.org/10.1371/journal.pone.0307877.g010

Fig 11. (A)Optimal secondary structure (B)Centroid secondary structure.

https://doi.org/10.1371/journal.pone.0307877.g011
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92.1% of the residues were in the most favoured regions and 6.5% were in the additional

allowed regions and 0% were in the generously allowed regions and 1.4% were in the disal-

lowed regions. The results were consistent with stereochemical rules, indicating that the vac-

cine structure was reasonable. Using ProSA-web, the Z-score (Fig 13B) was predicted to be

-2.62, the energy diagram (Fig 13C) shows that most of the sequence positions are negative so

the 3D structure we built was appropriate.

3.15 Molecular docking

Molecular docking is an essential technique in structure-based molecular design and screening

as it forecasts the binding patterns and affinities between ligand and receptor molecules

Fig 12. (A-B)Prediction of vaccine secondary structure(C)Optimize the pre-tertiary structure(D)Optimize the post-tertiary structure.

https://doi.org/10.1371/journal.pone.0307877.g012
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through interaction analysis. The HDOCK server was utilized for docking, with model 1 cho-

sen for further analysis. The findings indicated a docking score of -321.20, ligand RMSD of

38.90A, and a confidence score of 0.9684 (Fig 14). The resulting structure was viewed using

Discover Studio, and the intermolecular forces were visualized using PyMOL.

3.16 Molecular dynamics simulation

In this experiment, MEV-TLR4 interaction was simulated by Gromacs software (Fig 15), and

the simulation results were analyzed. RMSD represents the distance between different struc-

tures and the same atom. A lower RMSD value indicates that the protein has high stability,

while a higher RMSD indicates that the skeleton has undergone a conformational change dur-

ing the simulation time.(Generally a range of less than 1 is normal) The blue Complex line in

(Fig 15A) represents the RMSD after MEV-TLR4 docking. It can be seen that the docking

Fig 13. (A)The Ramachsndran diagram was analyzed using PROCHECK (B)Analyze the Z-score using the Pro-SA server. (C) Energy diagram using the Pro-SA

server.

https://doi.org/10.1371/journal.pone.0307877.g013
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complex has been fluctuating in the range of 0.2–0.6, with the change range less than 1, and

the overall change is stable. The results showed that the MEV-TLR4 interaction showed good

characteristics and stability on the overall structure stability. RMSF indicates how flexible and

vigorous the protein is throughout the simulation. This parameter determines the applicability

of the ligand-receptor interaction over simulated time.(Fig 15B–15E)represents the receptor

chain with a variation range of less than 0.3nm from the beginning to the end of the simula-

tion, and (Fig 15F) represents the ligand chain with a variation range of 0.18nm from the

beginning of the simulation to 0.32nm. The fluctuation is less than 0.3nm, which indicates that

the protein-protein interaction has little effect on the stability of the internal structure of the

protein molecule. Hydrogen bonding plays an important role in protein conformation preser-

vation. The number of hydrogen bonds between (Fig 15G) remained between 2 and 14 during

the simulation. This indicates that MEV-TLR4 interaction has good characteristics and stabil-

ity. Gyrate was used to evaluate protein folding state. The Gyrate value between MEV-TLR4 in

(Fig 15H) was about 4.12nm from the beginning to the end of the simulation. This suggests

that the MEV-TLR4 interaction has little effect on the compactness of the overall structure of

the protein molecule. SASA is used to assess the surface area of the protein molecules exposed

to the solution and to assess the interactions between them and the stability of the protein

structure. The SASA value in (Fig 15I) increased from the initial 715nm2 to 725nm2 during the

Fig 14. Molecular docking result (A)Docking complex, blue is the vaccine structure, green is the TLR4 receptor. (B)The interaction of MEV-TLR4 docking

complex was demonstrated using PyMol. (C)The interaction of MEV-TLR4 complex and its 2D image were analyzed by Ligplot.

https://doi.org/10.1371/journal.pone.0307877.g014
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simulation, and the overall trend remained unchanged, indicating that MEV-TLR4 interaction

had little effect on the surface characteristics and stability of protein molecules.

4. Discussion

Infants and young children are particularly susceptible to CNS TB, a debilitating and poorly

understood illness. The antibiotic treatment regimen for CNS TB is based on the experience

gained from treating TB. However, the increasing resistance to isoniazid, rifampicin,

Fig 15. Molecular dynamics simulation results. (A) The RMSD locus of the receptor, ligand, and complex. The abscissa is the running time of MD simulation,

and the ordinate is RMSD-value. (B-F) The RMSF locus of acceptor-ligand, the horizontal coordinate is the amino acid residue base in the docking complex, the

ordinate is the rmsf value. (G-I) The trajectory of complex hydrogen bond, Gyrate and SASA respectively.

https://doi.org/10.1371/journal.pone.0307877.g015
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pyrazinamide, and ethambutol has made treatment more challenging [54–56]. The BCG vac-

cine is not 100% effective against TBM [57]. However, the development of therapeutic vaccines

has addressed this limitation. These vaccines are administered to individuals who are already

showing symptoms of the disease [58]. In this study, a multi-epitope mRNA therapeutic vac-

cine was designed using two proteins, PknD (Rv0931c) and Rv0986, from Mtb strain H37Rv.

Previous research has indicated that PknD plays a crucial role in invading the brain endothe-

lium and is a significant microbial factor in CNS diseases [18]. Rv0986 is part of the three-gene

operon RV0986-88, which shows strong expression in human blood-brain barrier models dur-

ing infection and is associated with the virulence and adherence of Mtb [19]. Our study reveals

that both PknD and Rv0986 exhibit high antigenicity, low sensitization, and non-toxicity, mak-

ing them promising candidates for developing multi-epitope vaccines. Furthermore, sequence

alignment analysis indicates homology between the two proteins, fulfilling the criteria for vac-

cine design.

SignalP6.0 was utilized to predict the signal peptides of PknD and Rv0986. Signal peptides,

short peptides located at the N-terminal of proteins, are prevalent in both prokaryotes and

eukaryotes, influencing protein translation [59, 60]. The unique structural characteristics of

signal peptides play a crucial role in the folding and transportation of proteins. Substituting

the signal peptide can alter the protein’s expression level [61]. Interestingly, our analysis

revealed the absence of signal peptides in either egg white, prompting further investigation.

mRNA vaccines induce responses from both CD4+ and CD8+ T cells, activating both the

innate and adaptive immune systems in a balanced manner with a specific response to antigens

[62]. Helper T lymphocytes (HTL) initiate both humoral and cell-mediated immune

responses, while cytotoxic T lymphocytes (CTL) work to halt the spread of viruses by eliminat-

ing virus-infected cells and releasing antiviral cytokines. B lymphocytes play a role in humoral

immunity, as they are triggered by antigens to produce memory cells and plasma cells that pro-

duce various specific antibodies in reaction to antigens [63, 64]. In order to identify appropri-

ate vaccine candidates, we utilized various online tools to predict CTL, HTL, and B cell

epitopes(BES) epitopes [65].

Multi-epitope mRNA vaccines have the ability to stimulate an immune response, leading to

the production of cellular and humoral immunity [66–68]. In this study, we utilized IEDB,

NetCTLpan1.1, and NetMHCIIpan-4.0 to predict CTL and HTL epitopes, while B-cell epi-

topes were predicted using IEDB and SVMtrip. Specific connectors were used to link antigen

epitopes [69]. The mRNA vaccine structure was optimized for translation and stabilization by

incorporating various elements such as 50 m7G cap sequences, a Poly (A) tail, Globin 5’and

30UTRs flanking the ORF of the mRNA, an adjuvant, the Kozak sequence, a tPA secretion sig-

nal sequence, and the MITD sequence. Molecular docking was performed using Xinjiang high

frequency alleles to assess the binding of ligands and receptors in vaccine design. Immunologi-

cal simulations involved three vaccination doses to evaluate the vaccine’s capacity to elicit

humoral and cellular immune responses. The results demonstrated the effectiveness of the vac-

cination in pathogen elimination, as indicated by a significant increase in IFN-γ over time

post-injection, providing further validation for the accuracy of our vaccine design [70–72].

Escherichia coli was selected as the host organism for expressing the recombinant protein

[73]. The online codon optimization tool Jact was employed to optimize the amino acid

sequence of the vaccine. Subsequently, upstream and downstream primers were added, with

BamHI and XhoI cleavage sites inserted at the 5’ and 3’ ends, respectively, to facilitate polymer-

ase chain reaction amplification of the target gene. The vaccine sequence was then cloned into

the PVAX1 vector, resulting in a recombinant plasmid of 4098 base pairs. Finally, electron aga-

rose gel electrophoresis was conducted to analyze the target gene, vector, and recombinant

plasmid.
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TLR-4, a receptor known to be recognized by Mtb, has been shown to activate macrophages

and dendritic cells, leading to both innate and adaptive immunity [74]. Upon docking the vac-

cine with TLR-4, we observed a high binding affinity. The stability of the complex was con-

firmed through the RMSD diagram and further analyzed using molecular dynamics (MD)

simulation. In summary, we employed various in silico methods to design an mRNA therapeu-

tic vaccine targeting CNS TB, laying the groundwork for potential future experimental

investigations.
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