Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Mar 15;298(Pt 3):751–755. doi: 10.1042/bj2980751

Purification and some characteristics of the acetylxylan esterase from Schizophyllum commune.

N Halgasová 1, E Kutejová 1, J Timko 1
PMCID: PMC1137924  PMID: 8141793

Abstract

Acetylxylan esterase from Schizophyllum commune was purified using ion-exchange and hydrophobic chromatography. The enzyme has a molecular mass of 31 kDa, as determined by SDS/PAGE, or 18 kDa, according to gel filtration. Glycosylation of the enzyme was not detected. Acetylxylan esterase is relatively stable under laboratory conditions; it retains full activity at pH 6.2-8.5 upon incubation at 25 degrees C for 7 h, but loses nearly the whole activity upon incubation at 60 degrees C for 30 min. The pH optimum of the enzyme activity is 7.7 and its temperature optimum lies between 30 and 45 degrees C. Ca2+ and Co2+ inhibit markedly the activity of acetylxylan esterase at a concentration of 10 mM, as do Mn2+, Zn2+, Fe2+ and Cu2+ at a concentration of 1 mM.

Full text

PDF
751

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann S. L., McCarthy A. J. Purification and Cooperative Activity of Enzymes Constituting the Xylan-Degrading System of Thermomonospora fusca. Appl Environ Microbiol. 1991 Aug;57(8):2121–2130. doi: 10.1128/aem.57.8.2121-2130.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Faulds C. B., Williamson G. The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. J Gen Microbiol. 1991 Oct;137(10):2339–2345. doi: 10.1099/00221287-137-10-2339. [DOI] [PubMed] [Google Scholar]
  3. Gilbert M., Breuil C., Yaguchi M., Saddler J. N. Purification and characterization of a xylanase from the thermophilic ascomycete Thelavia terrestris 255B. Appl Biochem Biotechnol. 1992 Spring;34-35:247–259. doi: 10.1007/BF02920549. [DOI] [PubMed] [Google Scholar]
  4. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  5. Lee H., To R. J., Latta R. K., Biely P., Schneider H. Some Properties of Extracellular Acetylxylan Esterase Produced by the Yeast Rhodotorula mucilaginosa. Appl Environ Microbiol. 1987 Dec;53(12):2831–2834. doi: 10.1128/aem.53.12.2831-2834.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lüthi E., Jasmat N. B., Bergquist P. L. Overproduction of an acetylxylan esterase from the extreme thermophile "Caldocellum saccharolyticum" in Escherichia coli. Appl Microbiol Biotechnol. 1990 Nov;34(2):214–219. doi: 10.1007/BF00166783. [DOI] [PubMed] [Google Scholar]
  7. McDermid K. P., Forsberg C. W., MacKenzie C. R. Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl Environ Microbiol. 1990 Dec;56(12):3805–3810. doi: 10.1128/aem.56.12.3805-3810.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980 Jul 1;105(2):361–363. doi: 10.1016/0003-2697(80)90470-4. [DOI] [PubMed] [Google Scholar]
  9. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  10. Trimble R. B., Maley F. Optimizing hydrolysis of N-linked high-mannose oligosaccharides by endo-beta-N-acetylglucosaminidase H. Anal Biochem. 1984 Sep;141(2):515–522. doi: 10.1016/0003-2697(84)90080-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES