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Abstract
An abdominal aortic aneurysm (AAA) is a pathological dilation that is 3 cm or greater resulting in a bulging
or balloon appearance. To meet a personalized therapeutic approach for patients, artificial intelligence (AI)
can exhibit an array of applications ranging from decoding patterns from large data sets to predicting new
data. The review aims to discuss how AI can assist and improve the standard of care and management plans
for these patients. A comprehensive non-systematic literature review was carried out for published material
on the use of AI relating to AAAs. The PubMed and Google Scholar databases were used to scout for articles
relating to the title of this review. The review included 54 literature papers in this study. AI is involved on a
genomic level, which assists in screening, diagnosing, and identifying individual risk factors of a patient.
Personalized management plans can be created with AI predictions using patient data to reduce the risk of
in-hospital mortality following a repair or due to complications. AI represents a promising group of
programs aimed at improving patient management and assisting surgeons in making beneficial decisions to
improve the patient’s prognosis.

Categories: Cardiac/Thoracic/Vascular Surgery
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Introduction And Background
An abdominal aortic aneurysm (AAA) is a pathological dilation that is 3 cm or greater, which occurs when a
weakness in the wall causes a bulging or balloon appearance. A progression to focal dilation can predispose
the abdominal aorta to rupture once the dilation grows beyond 5.5 cm [1]. When managing patients with
AAA according to the guidelines of the European Society for Vascular Surgery, evaluating the balance
between the risk of AAA rupture and the surgical risk is key [2]. To formulate a personalized therapeutic
approach for patients, AI can display an array of applications, from understanding patterns within large data
sets to predicting new data and genomic analysis [3]. The complexities of AI build the foundation for new
approaches to diagnosis, prognosis, and therapy tailored for individual patients. The difficult prediction of a
rupture or complications following a repair makes a surgical approach challenging. These constraints could
be alleviated through predictive machine learning (ML), which incorporates individual patient data as
variables creating an accurate outcome using adaptive algorithms [4]. The review aims to discuss how
artificial intelligence (AI) can improve and enhance the management of patients with AAA.

Review
Methods
A comprehensive non-systematic literature review was carried out for published material on the use of AI
relating to AAAs. The research was gathered primarily but not limited to PubMed and Google Scholar as the
major databases to scout articles relating to the combination of the following terms: “abdominal aortic
aneurysm,” “artificial intelligence,” “artificial neural network,” and “machine learning.” All materials
published before 22 June 2024 were acceptable sources for this review. Articles that were not published in
English were not included in this literature review.

Genomic ML
ML utilizes specific approaches to identify biomarkers using random forest (RF) [5]. RF is a non-parametric
classification method that isolates specific biomarker data according to decision trees. This allows data
separation and categorization to predict biomarkers with outstanding accuracy [6]. RF identified two
biospecific markers used to distinguish between large/small AAAs and dilated AAAs. G0S2 exhibited
significant upregulation in AAA tissues, and heparinase (HPSE) showed significant upregulation in small
AAA samples. ROC curve analysis further underscored G0S2’s capability to accurately diagnose large AAAs.
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By assessing these biomarkers, health management can focus specifically on controlling the aneurysm and
preventing its rupture by creating a new therapeutic and diagnostic reference point relating to the size of the
dilation [5]. An individual study created HEAL (hierarchical estimate from agnostic learning) from ML, which
successfully identified disease-associated components by grouping data from population genomes. When
combined with health records, it displayed the relationship between the individuals’ baseline genome and
their lifestyle choices, which can influence AAA predisposition, presenting its potential as a personal health
management tool [7]. Genomic-inspired predictive AI can be valuable for developing clinical tests that
target disease prediction and lead to improved prevention.

Prediction of AAA growth
ML has paved a path to predict outcomes from individual data sets of a patient enabling the creation of
personalized health management plans for patients with an AAA. It uses the baseline flow-mediated dilation
(FMD) and the AAA diameter. Using these figures and following benchmark techniques involving non-
linear kernel SVR, the kernel allows the AI to understand non-linear patterns between FMD and AAA
diameter allowing concise conclusions to be drawn despite being presented with complexified patterns [8]. It
groups data processing, interference, and model evaluation creating an accurate prediction model [9].
Through these ML techniques, the AI successfully predicted individual AAAs within 2 mm in 85% and 71%
of patients at 12 and 24 months, respectively [8]. The development of an accurate predictor of AAAs would
revolutionize the way we manage patients with AAA. It would minimize premature screenings and
surveillance scans relieving economic burdens by fractioning the total number of scans carried out. The
patient outlook is also boosted as having a prediction of growth would allow for a streamlined health plan
concerning lifestyle balance and planned surgical interventions, which can alleviate patients' concerns and
worries. The confluence of AI-assisted prediction with personalized management plans has a promising
outlook on the patient's overall care and quality of life.

Predicting in-hospital mortality following repair of AAA
A rising number of AI tools are available to explore and predict hospital mortality after repair or ruptured
AAA. Artificial neural networks (ANNs) are AI programs designed to model a data set where it is taught to
interlink and solve complex relationships between variables and create predicted outcomes [10].
Reintervention is another risk that must be assessed by surgeons following repair, and difficulties can arise
due to the unpredictable nature of an aneurysm [11]. Through ML, using common preoperative data, the AI
was able to categorize patients’ five-year risk from both endograft complications and all-cause mortality
[12]. Similarly, ML programs are using Bayesian networks (BN) to predict hospital mortality in patients
undergoing open repair of AAA. These networks can work with incomplete data sets and determine the
probability of a specific outcome associated with the likelihood of patient survival after surgery. When the
computational complexity is reduced, BN reaches an accuracy of 96.1%, a sensitivity of 86.8%, and a
specificity of 96.8% [13]. In alternative studies where the intelligent network was compared to clinicians,
ANN models outcompeted clinicians for the prediction of mortality following AAA repair [14]. These
predictive networks could assist the surgeon in carrying out a personalized risk assessment when dealing
with patients at different stages of their AAA. By evaluating the impact of interventions and treatment,
before, during, or after the post-operative stage, the resource management could be optimized and
distributed on a case-to-case basis to reduce total mortalities from AAA. AI can supplement the learning of
trainee clinicians by giving them a more informed prognosis and sharpening their clinical judgment for
patient management.

Currently, surveillance after the endovascular repair is based on the incidence of endograft complications;
however, with prediction intelligence, the patient can be assessed individually and follow a specific care
plan, which would prevent mortality due to unexpected complications. It has been documented that most
re-interventions due to complications arise from symptoms, rather than periodic surveillance [15]. The
number of unnecessary surveillance scans could be as high as 90% with 15% of patients experiencing
complications despite normal findings on the scans [16]. Comparatively speaking, a predictive AI would not
only prevent the number of scans that can be reallocated for other patients but it would allow for timelier
surgical intervention reducing mortality and essentially allowing the surgeon to devise intervention plans
curated to the patient's situation [17].

Automated detection of AAA
AI algorithms are essential for the automated detection of AAA through the analysis of various medical
imaging scans, including CT scans, MRIs, and ultrasounds. AI is becoming commonly utilized in the
evaluation and care of AAA. Studies have shown that AI enhances image segmentation enabling automated
assessments and morphological descriptions of AAA. This disease is life-threatening with treatment being
limited to open or endovascular surgery. Evaluating the need for surgery has been difficult in the clinical
setting, and there is hope that AI may provide new insights and assist in the evaluation and risk assessment
[4]. In the realm of CT scans, AI has displayed sensitivity and specificity, in identifying AAA, boasting a
sensitivity of 95% and specificity of 96.6% [18]. Similarly, in the detection of acute findings in abdominal CT
scans, an AI-based system achieved a sensitivity of 93% and specificity of 97% [19]. A recently developed
deep learning technique that can automatically detect and evaluate the maximum aortic diameter is
augmented radiology for vascular aneurysms (ARVR). It utilizes pre- and post-operative contrast-enhanced
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computed tomography angiography (CTA) data, allowing it to measure the exterior diameter of the aortic
wall from the ascending aorta to the iliac bifurcations with accuracy, increasing the early detection of AAA.
This automatic method provides a potentially reliable AI tool to assist clinical practice [20]. However, the
AortaScan, a 3D ultrasound tool that automatically gauges the diameter of the abdominal aorta has been
noted to have lower levels of sensitivity and specificity of 81% when compared with CT imaging. The
AortaScan can identify AAA without the assistance of a trained operator, but more technological
advancement is required to boost sensitivity [21]. AI can also analyze hazard analysis reports and
observations to provide insights on conditions, activities, incident causes, and measures, for risk reduction
[22]. The potential for AAA screening during echocardiography has been demonstrated, highlighting its
viability, and indicating room for enhancement through AI technology [23]. Using AI in imaging has the
potential to significantly enhance the accuracy and efficiency of AAA screening compared to traditional
methods.

DSS
Decision support systems (DSS) powered by AI are increasingly utilized in the management of AAAs to assist
with various tasks. These systems have been applied to forecast AAA growth and rupture, assess AAA
morphology and fluid dynamics, and enhance image segmentation. Additionally, they have been used to
create customized treatment plans and support preoperative planning [4]. It has been demonstrated that
DSS is beneficial in raising patient awareness and reducing decisional conflict, which enhances informed
consent and patient involvement in treatment choices. In the traditional surgeon-patient encounter, it is
challenging to communicate detailed, personalized, and well-rounded information. Patients may mistakenly
believe that they have no choice in the matter regarding which procedure they have or whether to have AAA
surgery at all. It is important that the patient understands and is aware of the need, risks, benefits,
implications, and consequences of the surgery as well as the time and healing process. Typically, there is a
significant amount of complex information to convey, and the surgeon's preference may impact how options
are presented to patients. These difficulties imply that patients would gain from an interactive, evidence-
based decision tool [24]. In primary care practices, time constraints greatly limit a physician's capacity to
provide preventative services during a normal 15-minute primary care session. This can further complicate
an undiagnosed AAA, causing it to progress to fatal levels. It has been discovered that utilizing a web-based
clinical DSS significantly streamlines the provision of treatment and guarantees that eligible patients receive
critical preventive AAA screening. However, it is important to ensure that these systems are developed
based on comprehensive information and patient preferences and to monitor final treatment decisions [25].
AI-based DSS have transformed AAA management by supporting treatment planning, assessment, and
forecasting. These systems ensure prompt screening in primary care, improve patient awareness, and
expedite preventive measures. A thorough understanding of patient preferences and complete information
are essential for the successful implementation of DSS. Continued monitoring and refinement are crucial for
optimizing patient outcomes in AAA management (Table 1).

Study
Year of
publication

Method AI model Cohort Results

Raffort, et al.
[4]

2020

Data extraction was done, and titles and
abstracts were assessed independently
by two authors. 34 studies with distinct
methods, goals, and research designs
were found after a thorough review of the
published literature.

Various AI
models
(not
specified)

34 studies

In addition, several prognostic and
predictive instruments were
developed to assess patient
outcomes after surgery, including
death rates and complications after
endovascular aneurysm repair.  

Xiong, et al. [5] 2022

By employing various ML techniques to
discern biomarkers distinguishing large
AAA from small AAA. Validation of these
biomarkers was conducted using GEO
datasets. Employing CIBERSORT,
evaluation of immune cell infiltration in
AAA tissues alongside the exploration of
correlation between biomarkers and
infiltrating immune cells.

LASSO,
SVM-RFE,
and RF

288
differentially
expressed
genes

G0/G1 switch 2 (G0S2) showed
strong discriminatory power as an
AAA biomarker with AUC values of
0.861, 0.875, and 0.911 in
GSE57691, GSE47472, and
GSE7284, respectively. For large
AAA, heparinase (HPSE) had AUC
values of 0.669 and 0.754 in
GSE57691 and GSE98278,
respectively, confirmed by qRT-
PCR.

Cabrera, et al.
[6] 2023

The study employed the RF algorithm to
analyze data from the ACS-NSQIP
database spanning 2008 to 2018. It
aimed to predict outcomes including
LOS, readmission, reoperation,
transfusion, and infection rates following

RF
algorithm

12,913
patients

The ACS-NSQIP database
analysis identified key patient
characteristics and perioperative
events for elective PCDF, such as
post-operative infection, age, BMI,
operative time, LOS, preoperative
hematocrit, and white blood cell
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elective PCDF. Independent clinical
variables' significance in predicting these
outcomes was evaluated using the
reduction in the Gini index.

count. The study highlighted risk
factors for reoperation,
readmission, hospital LOS,
transfusion needs, and post-
operative infection, along with their
respective AUC values.

Lee, et al. [8] 2018

To predict the future growth of AAA for
individual patients, a benchmark ML
method known as non-linear Kernel SVR
is used. The approach taken used
baseline FMD and AAA diameter as input
variables.

Non-linear
Kernel
SVR

94 patients
from
OxAAA

Growth data were prospectively
collected from 94 patients at 12
months and from 79 patients at 24
months. The average increase in
AAA diameter was 3.4% at 12
months and 2.8% annually at 24
months. The ML algorithm
accurately predicted individual
AAA diameters within a 2 mm
margin of error for 85% and 71% of
patients at 12 and 24 months,
respectively.

Karthikesaling-
am, et al. [12]

2016

Aneurysm morphology was assessed
pre-operatively, and endograft
complications were monitored for up to 5
years post-surgery. Using ANN,
researchers predicted patients' risk
levels for endograft complications or
mortality. Centre 1 data trained the ANN,
and Centre 2 data validated it. ANN
performance was evaluated using
Kaplan-Meier analysis, comparing the
occurrence of complications and
mortality between predicted low-risk and
high-risk patients.

ANN
761
patients

A total of 761 patients, with a
mean age of 75 +/- 7 years,
underwent EVAR, and were
followed up for an average of 36+/-
20 months. The ANN, which
integrated morphological features,
effectively forecasted the risk of
endograft complications and
mortality. External validation
revealed significant differences in
the five-year freedom rates from
aortic complications, limb
complications, and mortality
between low-risk and high-risk
groups (p<0.001).

Monsalve-
Torra A, et al.
[13]

2016

The study employed various ML
techniques including multilayer
perceptron, radial basis function, and
BNs to develop a predictive system for
in-hospital mortality in patients
undergoing open repair of AAA.

Multilayer
perceptron,
radial basis
function,
BNs

57
attributes
from 310
cases

The examined algorithms showed
over 91% accuracy, but sensitivity
and specificity varied. Feature
selection improved performance,
particularly for RBF and BN
algorithms. The highest sensitivity
for death prediction was 86.8%,
with specificity between 96.8% and
98.6%. Combining the three
algorithms notably increased the
sensitivity of mortality rate
prediction.

Hadjianastassi-
ou, et al. [14]

2006

The study included 1205 elective and
546 emergency AAA patients, using four
independent physiological variables to
predict in-hospital mortality. Both multiple
regression and ANN models were
developed, trained on 75% of the patient
population, and tested on the remaining
25%. The evaluation included calibration,
discrimination, and comparison with
clinicians' estimates.

ANN

1205
elective
surgery
patients
and 546
emergency
surgery
patients

In-hospital mortality rates were
9.3% for elective surgery (95% CI:
7.7%-11.1%) and 46.7% for
emergency surgery (95% CI:
42.5%-51.0%). Both the ANN and
statistical models outperformed
clinicians' predictions in accuracy.
However, only the statistical model
maintained internal validity in the
validation set, with good
calibration (Hosmer-Lemeshow C
statistic: 14.97; P=0.060) and
discrimination (AUC: 0.869; 95%
CI: 0.824-0.913).

The review assesses opportunistic
screening models, specifically the Digital

image 355 cases

The review focused on automated
AAA detection or segmentation in
non-contrast abdominal CT scans.
The mean sensitivity value was
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Kodenko, et al.
[18]

2022

interpretation of noncontrast CT scans
including the abdominal aorta. The index
test, evaluating AAA detection via AI
algorithms, requires fully automatic
segmentation of noncontrast CT images.
Manual expert segmentation serves as
the reference standard, evaluated using
agreement metrics or observer expertise
level.

processing
algorithms,
Hough’s
algorithm,
NN, and
non-NN
logical
algorithm

from eight
studies,
with 273
cases
(77%)
containing
AAA

95%, the mean specificity value
was 96.6%, and the mean
accuracy value was 95.2%.
However, high study heterogeneity
was observed, and further
research with balanced
noncontrast CT datasets and
adherence to reporting standards
is needed to validate the high
sensitivity value obtained.

Adam, et al.
[20]

2021

A neural network pipeline, trained on 489
CTAs, automates the measurement
process. Validation used a separate set
of 62 CTAs, including controls,
aneurysmal aortas, and aortic
dissections, scanned before and/or after
endovascular or open repair.

ARVA

Training -
489 CTAs
and
validation -
62 CTAs,
including
controls,
aneurysmal
aortas, and
aortic
dissections

The range of median absolute
differences compared to expert
measurements varied from 1 mm
to 2 mm across all annotators, with
ARVA showing a median absolute
difference of 1.2 mm.

Berman, et al.
[24]

2011

An interactive decision support tool,
incorporating the latest outcomes data
and input from surgeons and patients,
was developed and piloted with AAA
repair candidates. Recruited from a
university vascular surgery clinic and a
VA hospital, patients used the tool before
meeting their surgeons. Feasibility and
acceptability were gauged by
participation rates, time required,
assistance needed, and patient opinions.
Effectiveness was evaluated by
assessing changes in knowledge and
decisional conflict using paired t-tests.

Decision
support
tool

12 patients

All approached patients (n=12)
agreed to participate in the study.
The tool was used for a median
duration of 35 minutes (range: 25-
45 minutes), and patients
navigated the program with
minimal technical assistance.
Knowledge scores showed a
significant increase from 56% to
90% (P<0.005), while decisional
conflict scores decreased from
29% to 8% (P<0.04). Patients
reported that the tool provided
balanced information across
treatment options, presented
information clearly, helped them
organize their thoughts, and
prepared them for discussions with
their surgeon.

TABLE 1: Demonstrates a summary of the utilities of AI in the enhancement of AAA management
according to the sources used.
AAA, abdominal aortic aneurysm; ML, machine learning; SVR, support vector regression; ANNs, artificial neural networks; BN, Bayesian networks; LOS,
length of stay; PCDF, posterior cervical decompression with instrumented fusion; ARVA, augmented radiology for vascular aneurysm; HPSE, heparinase

The infancy of AI
The initial areas of focus for AI research in medicine emphasized clinical decision-making and reasoning
under uncertainty, knowledge representation, and systems integration [26]. This was achieved by the
development of rule-based expert systems such as MYCIN and INTERNIST, which were the foremost AI
technologies to gain clearance from the FDA [27]. Such applications have also been used to diagnose patients
medically, interpret results from chemical studies, and develop computer models of human behavior [28].
Today, AI in medicine is more oriented toward making predictions about future events based on deep
learning or other ML methods rather than answering questions posed by scientific investigations or guiding
clinical practice [29]. MYCIN and INTERNIST played a crucial role in the foundation of AI research in
medicine. These rule-based expert systems, developed in the 1970s, were among the first to demonstrate the
potential of AI in medical diagnosis and treatment [27]. MYCIN, for instance, was designed to treat blood
infections, while INTERNIST-1 could make complex diagnoses in internal medicine [30]. MYCIN used a rule-
based system and utilized production rules to represent its knowledge [31]. Similarly, INTERNIST-1
employed a combination of frames and production rules, with a focus on representing prototypical
knowledge [32]. Both systems also utilized domain-independent software shells for constructing knowledge
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bases [33]. Additionally, INTERNIST-I incorporated properties into its knowledge representation scheme to
embody essential medical information [34]. Such methods allowed the systems to represent and apply
medical knowledge in their respective domains efficiently. But with this, issues arise about the scalability
and adaptability of such technologies. Scalability has to be reinforced with accuracy, provided by the AI
systems in diagnostics and therapeutic recommendations. Given the ethical standpoint, a question of
liability arises with the AI making the decisions, leaving the attending physician liable for any mistakes.
With adaptability, despite the AI making rapid decisions, an intense training regime is required for the
practitioners to utilize and effectively deploy the system to aid patient health. This requires lots of time,
additional training, and increased funding, which may prove to be a limiting factor in some healthcare
systems with less funding [30]. These rule-based expert systems, such as INTERNIST-1 and MYCIN, faced
several notable criticisms and have undergone significant development to address these issues. INTERNIST-
1, for instance, struggled with accurately representing pathophysiologic causality, failing to properly
attribute symptoms and disease manifestations to their causes. It also had limitations in accounting for the
interdependence of symptoms and their severity, as well as in reasoning about the timing and anatomical
location of symptoms. A significant concern with INTERNIST-1 was its inadequate explanation capability,
which impacted user trust and acceptance. Physicians often prefer systems that can provide clear
explanations for diagnostic and treatment decisions, although studies, such as those by Erdman, have
indicated that the availability of explanations might sometimes lead to overconfidence in incorrect
judgments. Furthermore, the need for explanations can vary depending on the user’s experience, with
novices potentially requiring more detailed explanations than experienced clinicians. MYCIN, while
different in approach, was among the first to emphasize the importance of explanation capabilities. It
provided explanations by detailing the rules invoked for decisions, but these explanations could sometimes
be superficial due to the heuristic nature of many of its rules. This approach revealed limitations in handling
complex, multisystem diseases, and in providing a deep understanding of the underlying pathology. Rule-
based systems, like MYCIN, face additional challenges, including the importance of the order in which rules
are applied. The sequence can influence the meaning and interaction of the rules, which may not always be
apparent to users. Moreover, the structure and application of rules can lead to confusion and may not be
well-suited for complex diseases that involve multiple systems [33]. These early AI systems sought to assist
clinical decision-making processes by offering tools for more accurate and objective decision-making in
infectious disease settings [35]. Such systems were designed to increase the quality of healthcare decisions
using huge amounts of data that generated useful information [36]. They also sought to enhance the abilities
of doctors in gathering, understanding, and drawing conclusions from patient data, especially in advanced
imaging-based clinical DSS [37]. Moreover, AI had been perceived as a potential means for identifying risk
profiles, grading severity levels, and ongoing monitoring of patient’s health, although concerns were raised
about data bias and misapplication [38]. The development of AI systems for clinical decision-making in the
early stages faced several challenges. These challenges included the need for robust clinical evaluation, the
difficulty of implementing AI systems in clinical practice, and the existence of disparity in communication
between AI scientists and medical personnel [39]. Other challenges included the need for regulatory
approval, interpretability, interoperability, and the use of structured data and evidence [40]. Despite these
challenges, the potential for AI to enhance and complement human judgment and expertise in biomedicine
is realized [29].

Challenges faced by early AI systems in the medical field have seen significant advancements, particularly
with the integration of DSS powered by AI. These modern systems have greatly enhanced the management
of conditions like AAAs by assisting with forecasting growth and rupture, assessing morphology and fluid
dynamics, and improving image segmentation. DSS have also proven beneficial in raising patient awareness
and reducing decisional conflict, which in turn enhances informed consent and patient involvement in
treatment choices [24]. Traditional surgeon-patient interactions often struggle to convey the detailed,
personalized, and comprehensive information required for making informed decisions. An interactive,
evidence-based decision tool can help patients understand the necessity, risks, benefits, and consequences
of surgery, thereby addressing the communication gaps present in traditional methods [25]. AI has further
transformed AAA management by providing predictive capabilities and personalized health management
plans. ML techniques, such as RF and non-linear kernel SVR, have been utilized to predict AAA growth and
rupture by analyzing individual patient data, including biomarkers and baseline measurements [5,6,8,9].
These advancements allow for the creation of customized treatment plans that minimize unnecessary
screenings and improve patient outcomes by focusing on lifestyle balance and planned interventions. For
example, AI systems have demonstrated high sensitivity and specificity in detecting AAAs through the
analysis of CT scans, MRIs, and ultrasounds, showcasing the potential of AI to enhance accuracy and
efficiency in medical imaging [18,19,20,21,22,23]. 

While the potential benefits of AI techniques in managing AAAs are substantial, several critical issues and
limitations require attention for a balanced perspective. First, relying on baseline FMD and AAA diameter as
primary inputs for ML models may oversimplify the prediction process. AAAs are influenced by numerous
factors, including genetic predisposition, lifestyle, and comorbid conditions. Focusing mainly on FMD and
diameter might miss other critical variables, reducing the model's accuracy and reliability. Moreover, the
effectiveness of the non-linear kernel SVR in identifying complex patterns is highly dependent on the
quality and diversity of the training data. If the dataset is not representative of the broader patient
population, the predictions could be biased and less generalizable. This limitation is concerning given the
diverse health profiles and disease progression in AAA patients. The reported accuracy rates of 85% and 71%
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for predicting AAA growth within 2 mm at 12 and 24 months, respectively, are promising but indicate a
significant margin of error. Underestimating AAA growth could delay necessary interventions, increasing
the risk of rupture, while overestimating it could cause unnecessary anxiety, additional surveillance, and
premature surgical procedures. While economic benefits through reduced premature screenings and
surveillance scans are highlighted, the initial costs of implementing and maintaining sophisticated ML
systems are substantial. These costs include acquiring high-quality datasets, training specialized personnel,
and integrating these systems into existing healthcare infrastructure. Ongoing system updates and
recalibration to ensure continued accuracy can further add to the economic burden. Another significant
concern is the interpretability of ML models. Many ML techniques, especially those involving non-linear
kernels, function as "black boxes," providing predictions without clear explanations. This lack of
transparency can be problematic in medical contexts, where understanding the reasoning behind a
prediction is crucial for clinical decision-making and gaining the trust of healthcare professionals and
patients. Finally, while AI-assisted predictions are suggested to improve patient outlook and quality of life,
the potential psychological impacts are not sufficiently addressed. Continuous health monitoring by an
algorithm might increase patient anxiety, and prediction errors could undermine trust in medical
technology. [8,9]

Medical ethics in AI
AI is on the rise with its importance in the medical field but still being premature, there are some hurdles to
jump before it can be properly integrated with current medical management of AAAs. Having access to large
data sets and private information leaves AI prone to data breaches for hacking, which exposes patient
confidentiality. Patients may not feel comfortable putting their data at risk, which would hold back the full
utilization of AI [41]. Furthermore, other studies question the reliability of this data as AI has not been
incorporated for enough time to make accurate solutions for risk stratification in patients with AAA, and
with natural errors occurring in all types of ML, these could lead to fatal results if not identified [42-44].

Patients' perceptions of the benefits and risks of AI in managing AAAs are influenced by various factors. It
has been determined that technological, ethical, and regulatory concerns significantly contribute to the
perceived risks of using AI applications in healthcare. These concerns are further influenced by the type of
health condition and the nature of the clinical encounter [45]. It is reported that patients generally have
minimal levels of prior information about AI but are comfortable with sharing health data with certain
entities, such as the National Health Service and universities if matters regarding privacy, consent
procedures, and the reidentification of anonymized healthcare data were addressed. However, they are less
comfortable with sharing data with commercial organizations [46]. While some patients see the benefits of
AI in healthcare, a significant portion would refuse to integrate AI-based tools into their care [47]. These
findings suggest that patients' willingness to share personal data for AI-driven healthcare solutions is
influenced by their perceptions of the benefits and risks of AI, as well as their trust in the entities involved
in data sharing.

There are several ethical and regulatory issues associated with the use of AI in healthcare while managing
AAA. Among these are problems of transparency, bias, privacy, safety, responsibility, fairness, and
autonomy [48]. The legal and ethical aspects of AI healthcare applications including algorithmic
transparency, privacy, and cyber security present additional complications to the integration of AI into
health systems [49]. A comprehensive approach that involves policymakers, developers, healthcare
providers, and patients must be put in place to tackle these issues and to achieve a robust ethical and
regulatory framework for AI applications in healthcare [50]. A variety of ethical standards and regulatory
frameworks have been established to govern the ethical and responsible implementation of AI in healthcare,
striking a balance between fostering innovation and addressing patient safety and privacy concerns [51].

Several obstacles stand in the way of the broad use of AI technologies in the management of AAA, such as
the unequal relationship between medical professionals and patients, the requirement for AI-enabled
medical equipment in remote areas, and the difficulty of training doctors to use AI [52]. Even if AI can
automate tasks and boost revenue, its application in the healthcare industry is hampered by the
requirements for thorough clinical evaluation, comprehensible performance measures, and suitable
regulation. Addressing algorithmic bias, boosting generalizability, and improving the interpretability of ML
predictions are necessary for the translation of AI research into clinical practice [53]. Despite these
difficulties, AI has demonstrated the potential to enhance patient care, estimate the likelihood of injuries,
and interpret imaging [54].

Conclusions
From its promising predictive computational complexities down to the genomic level, the rapid expansion
and utilization of AI in the medical landscape will only continue to flourish thanks to its immense learning
capabilities. Surgeons in AAA management would be able to make better decisions based on the data
provided by AI, from screening to post-operative care. The application of AI holds true value across patient
care as it allows an organized approach for surveillance and intervention, which will inevitably lead to
reduced mortality from AAA and its complications. Supplementing the prognostic intelligence is vital for
training surgeons and the incorporation of AI will only assist these clinicians in making knowledgeable
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decisions regarding patient care. While there may be ethical concerns surrounding patient consent, data
privacy, and effects on patient-physician interactions, AI continues to hold value in the medical sector,
providing potential advantages in AAA management when these concerns are handled with care.

Additional Information
Author Contributions
All authors have reviewed the final version to be published and agreed to be accountable for all aspects of the
work.

Concept and design:  Usman Khalid, Hristo A. Stoev

Drafting of the manuscript:  Usman Khalid, Hristo A. Stoev, Boyko Yavorov

Acquisition, analysis, or interpretation of data:  Areeb Ansari, Boyko Yavorov

Critical review of the manuscript for important intellectual content:  Areeb Ansari, Boyko Yavorov

Supervision:  Hristo A. Stoev, Boyko Yavorov

Disclosures
Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the
following: Payment/services info: All authors have declared that no financial support was received from
any organization for the submitted work. Financial relationships: All authors have declared that they have
no financial relationships at present or within the previous three years with any organizations that might
have an interest in the submitted work. Other relationships: All authors have declared that there are no
other relationships or activities that could appear to have influenced the submitted work.

References
1. Haque K, Bhargava P: Abdominal aortic aneurysm. Am Fam Physician. 2022, 106:165-72.
2. Wanhainen A, Verzini F, Van Herzeele I, et al.: Editor’s choice - European Society for Vascular Surgery

(ESVs) 2019 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur J
Vasc Endovasc Surg. 2019, 57:8-93. 10.1016/j.ejvs.2018.09.020

3. Rubinger L, Gazendam A, Ekhtiari S, Bhandari M: Machine learning and artificial intelligence in research
and healthcare. Injury. 2023, 54 Suppl 3:S69-73. 10.1016/j.injury.2022.01.046

4. Raffort J, Adam C, Carrier M, et al.: Artificial intelligence in abdominal aortic aneurysm . J Vasc Surg. 2020,
72:321-33.e1. 10.1016/j.jvs.2019.12.026

5. Xiong T, Lv XS, Wu GJ, et al.: Single-cell sequencing analysis and multiple machine learning methods
identified G0S2 and HPSE as novel biomarkers for abdominal aortic aneurysm. Front Immunol. 2022,
13:907309. 10.3389/fimmu.2022.907309

6. Cabrera A, Bouterse A, Nelson M, et al.: Use of random forest machine learning algorithm to predict short
term outcomes following posterior cervical decompression with instrumented fusion. J Clin Neurosci. 2023,
107:167-71. 10.1016/j.jocn.2022.10.029

7. Li J, Pan C, Zhang S, et al.: Decoding the genomics of abdominal aortic aneurysm . Cell. 2018, 174:1361-
72.e10. 10.1016/j.cell.2018.07.021

8. Lee R, Jarchi D, Perera R, Jones A, Cassimjee I, Handa A, Clifton DA: Applied machine learning for the
prediction of growth of abdominal aortic aneurysm in humans. EJVES Short Rep. 2018, 39:24-8.
10.1016/j.ejvssr.2018.03.004

9. Shamout F, Zhu T, Clifton DA: Machine learning for clinical outcome prediction . IEEE Rev Biomed Eng.
2021, 14:116-26. 10.1109/RBME.2020.3007816

10. Baxt WG: Application of artificial neural networks to clinical medicine . Lancet. 1995, 28:1135-8.
10.1016/s0140-6736(95)91804-3

11. Soliman H, Elkorety M, Abouelazayem M, Girish G: Short-term re-intervention of endovascular abdominal
aortic aneurysm repair. Cureus. 2021, 13:e16810. 10.7759/cureus.16810

12. Karthikesalingam A, Attallah O, Ma X, et al.: An artificial neural network stratifies the risks of
reintervention and mortality after endovascular aneurysm repair; a retrospective observational study. PLoS
One. 2015, 10:e0129024. 10.1371/journal.pone.0129024

13. Monsalve-Torra A, Ruiz-Fernandez D, Marin-Alonso O, Soriano-Payá A, Camacho-Mackenzie J, Carreño-
Jaimes M: Using machine learning methods for predicting inhospital mortality in patients undergoing open
repair of abdominal aortic aneurysm. J Biomed Inform. 2016, 62:195-201. 10.1016/j.jbi.2016.07.007

14. Hadjianastassiou VG, Franco L, Jerez JM, Evangelou IE, Goldhill DR, Tekkis PP, Hands LJ: Informed
prognosis [corrected] after abdominal aortic aneurysm repair using predictive modeling techniques
[corrected]. J Vasc Surg. 2006, 43:467-73. 10.1016/j.jvs.2005.11.022

15. Boufi M, Ozdemir BA: Commentary: surveillance after EVAR: still room for debate . J Endovasc Ther. 2019,
26:542-3. 10.1177/1526602819858622

16. Schlösser FJ, Gusberg RJ, Dardik A, Lin PH, Verhagen HJ, Moll FL, Muhs BE: Aneurysm rupture after EVAR:
can the ultimate failure be predicted?. Eur J Vasc Endovasc Surg. 2009, 37:15-22. 10.1016/j.ejvs.2008.10.011

17. Kokkinakis S, Kritsotakis EI, Lasithiotakis K: Artificial intelligence in surgical risk prediction. J Clin Med.
2023, 12:4016. 10.3390/jcm12124016

 

2024 Khalid et al. Cureus 16(8): e66398. DOI 10.7759/cureus.66398 8 of 10

https://pubmed.ncbi.nlm.nih.gov/35977132/
https://dx.doi.org/10.1016/j.ejvs.2018.09.020
https://dx.doi.org/10.1016/j.ejvs.2018.09.020
https://dx.doi.org/10.1016/j.injury.2022.01.046
https://dx.doi.org/10.1016/j.injury.2022.01.046
https://dx.doi.org/10.1016/j.jvs.2019.12.026
https://dx.doi.org/10.1016/j.jvs.2019.12.026
https://dx.doi.org/10.3389/fimmu.2022.907309
https://dx.doi.org/10.3389/fimmu.2022.907309
https://dx.doi.org/10.1016/j.jocn.2022.10.029
https://dx.doi.org/10.1016/j.jocn.2022.10.029
https://dx.doi.org/10.1016/j.cell.2018.07.021
https://dx.doi.org/10.1016/j.cell.2018.07.021
https://dx.doi.org/10.1016/j.ejvssr.2018.03.004
https://dx.doi.org/10.1016/j.ejvssr.2018.03.004
https://dx.doi.org/10.1109/RBME.2020.3007816
https://dx.doi.org/10.1109/RBME.2020.3007816
https://dx.doi.org/10.1016/s0140-6736(95)91804-3
https://dx.doi.org/10.1016/s0140-6736(95)91804-3
https://dx.doi.org/10.7759/cureus.16810
https://dx.doi.org/10.7759/cureus.16810
https://dx.doi.org/10.1371/journal.pone.0129024
https://dx.doi.org/10.1371/journal.pone.0129024
https://dx.doi.org/10.1016/j.jbi.2016.07.007
https://dx.doi.org/10.1016/j.jbi.2016.07.007
https://dx.doi.org/10.1016/j.jvs.2005.11.022
https://dx.doi.org/10.1016/j.jvs.2005.11.022
https://dx.doi.org/10.1177/1526602819858622
https://dx.doi.org/10.1177/1526602819858622
https://dx.doi.org/10.1016/j.ejvs.2008.10.011
https://dx.doi.org/10.1016/j.ejvs.2008.10.011
https://dx.doi.org/10.3390/jcm12124016
https://dx.doi.org/10.3390/jcm12124016


18. Kodenko MR, Vasilev YA, Vladzymyrskyy AV, et al.: Diagnostic accuracy of AI for opportunistic screening of
abdominal aortic aneurysm in CT: a systematic review and narrative synthesis. Diagnostics (Basel). 2022,
12:3197. 10.3390/diagnostics12123197

19. Winkel DJ, Heye T, Weikert TJ, Boll DT, Stieltjes B: Evaluation of an AI-based detection software for acute
findings in abdominal computed tomography scans: toward an automated work list prioritization of routine
CT examinations. Invest Radiol. 2019, 54:55-9. 10.1097/RLI.0000000000000509

20. Adam C, Fabre D, Mougin J, et al.: Pre-surgical and post-surgical aortic aneurysm maximum diameter
measurement: full automation by artificial intelligence. Eur J Vasc Endovasc Surg. 2021, 62:869-77.
10.1016/j.ejvs.2021.07.013

21. Abbas A, Smith A, Cecelja M, Waltham M: Assessment of the accuracy of aortascan for detection of
Abdominal Aortic Aneurysm (AAA). Eur J Vasc Endovasc Surg. 2012, 43:167-70. 10.1016/j.ejvs.2011

22. Garvin T, Kimbleton S: Artificial intelligence as Ally in hazard analysis . Process Saf Prog. 2021, 40:43-9.
10.1002/prs.12243

23. Aboyans V, Bataille V, Bliscaux P, et al.: Effectiveness of screening for abdominal aortic aneurysm during
echocardiography. Am J Cardiol. 2014, 114:1100-4. 10.1016/j.amjcard.2014.07.024

24. Berman L, Curry L, Goldberg C, Gusberg R, Fraenkel L: Pilot testing of a decision support tool for patients
with abdominal aortic aneurysms. J Vasc Surg. 2011, 53:285-92.e1. 10.1016/j.jvs.2010.08.075

25. Knops AM, Goossens A, Ubbink DT, Legemate DA: Regarding "pilot testing of a decision support tool for
patients with abdominal aortic aneurysms". J Vasc Surg. 2011, 53:1757. 10.1016/j.jvs.2010.12.071

26. Patel VL, Shortliffe EH, Stefanelli M, Szolovits P, Berthold MR, Bellazzi R, Abu-Hanna A: The coming of age
of artificial intelligence in medicine. Artif Intell Med. 2009, 46:5-17. 10.1016/j.artmed.2008.07.017

27. Chang AC: History of artificial intelligence in medicine . Intelligence-Based Medicine. Elsevier eBooks, 2020.
29-42. 10.1016/B978-0-12-823337-5.00003-2

28. Coles LS: The application of artificial intelligence to medicine . Futures. 1977, 9:315-23. 10.1016/0016-
3287(77)90097-0

29. Kulikowski CA: Beginnings of artificial intelligence in medicine (AIM): computational artifice assisting
scientific inquiry and clinical art - with reflections on present aim challenges. Yearb Med Inform. 2019,
28:249-56. 10.1055/s-0039-1677895

30. Jaiswal R, Sapra RL, Jha GK, Nundy S: Artificial intelligence in medical diagnosis. J Curr Med Res Pract. 2020,
10:286. 10.4103/cmrp.cmrp_56_20

31. Davis R, Buchanan B, Shortliffe E: Production rules as a representation for a knowledge-based consultation
program. Artif Intell. 1977, 8:15-45. 10.1016/0004-3702(77)90003-0

32. Aikins JS: Prototypical knowledge for expert systems . Artif Intell. 1983, 20:163-210. 10.1016/0004-
3702(83)90017-6

33. Perry CA: Knowledge bases in medicine: a review . Bull Med Libr Assoc. 1990, 78:271-82.
34. Masarie FE, Miller RA, Myers JD: INTERNIST-I properties: representing common sense and good medical

practice in a computerized medical knowledge base. Comput Biomed Res. 1985, 18:458-79. 10.1016/0010-
4809(85)90022-9

35. Garcia-Vidal C, Sanjuan G, Puerta-Alcalde P, Moreno-García E, Soriano A: Artificial intelligence to support
clinical decision-making processes. EBioMedicine. 2019, 46:27-9. 10.1016/j.ebiom.2019.07.019

36. Walczak S: The role of artificial intelligence in clinical decision support systems and a classification
framework. Int J Comput Clin Pract. 2018, 3:31-47. 10.4018/978-1-7998-1204-3.ch021

37. Shaikh F, Dehmeshki J, Bisdas S, Roettger-Dupont D, Kubassova O, Aziz M, Awan O: Artificial intelligence-
based clinical decision support systems using advanced medical imaging and radiomics. Curr Probl Diagn
Radiol. 2021, 50:262-7. 10.1067/j.cpradiol.2020.05.006

38. Giordano C, Brennan M, Mohamed B, Rashidi P, Modave F, Tighe P: Accessing artificial intelligence for
clinical decision-making. Front Digit Health. 2021, 3:645232. 10.3389/fdgth.2021.645232

39. Rathinam AK, Lee Y, Chek Ling DN, Singh R, Selvaratnam L, Pamidi N: Artificial intelligence in medicine: a
review of challenges in implementation and disparity. IEEE. 2021. 16:1-6.
10.1109/InHeNce52833.2021.9537270

40. Varghese J: Artificial intelligence in medicine: chances and challenges for wide clinical adoption . Visc Med.
2020, 36:443-9. 10.1159/000511930

41. Farhud DD, Zokaei S: Ethical issues of artificial intelligence in medicine and healthcare . Iran J Public
Health. 2021, 50:i-v. 10.18502/ijph.v50i11.7600

42. Haller SJ, Azarbal AF, Rugonyi S: Predictors of abdominal aortic aneurysm risks . Bioengineering (Basel).
2020, 7:79. 10.3390/bioengineering7030079

43. Keskinbora KH: Medical ethics considerations on artificial intelligence. J Clin Neurosci. 2019, 64:277-82.
10.1016/j.jocn.2019.03.001

44. Tang L, Li J, Fantus S: Medical artificial intelligence ethics: a systematic review of empirical studies . Digit
Health. 2023, 9:20552076231186064. 10.1177/20552076231186064

45. Esmaeilzadeh P: Use of AI-based tools for healthcare purposes: a survey study from consumers'
perspectives. BMC Med Inform Decis Mak. 2020, 20:170. 10.1186/s12911-020-01191-1

46. Aggarwal R, Farag S, Martin G, Ashrafian H, Darzi A: Patient perceptions on data sharing and applying
artificial intelligence to health care data: cross-sectional survey. J Med Internet Res. 2021, 23:e26162.
10.2196/26162

47. Tran VT, Riveros C, Ravaud P: Patients' views of wearable devices and AI in healthcare: findings from the
ComPaRe e-cohort. NPJ Digit Med. 2019, 2:53. 10.1038/s41746-019-0132-y

48. Pasricha S: AI ethics in smart healthcare. IEEE Consumer Electronics Magazine. 2022.
49. Naik N, Hameed BM, Shetty DK, et al.: Legal and ethical consideration in artificial intelligence in

healthcare: who takes responsibility?. Front Surg. 2022, 9:862322. 10.3389/fsurg.2022.862322
50. Prakash S, Balaji JN, Joshi A, Surapaneni KM: Ethical conundrums in the application of artificial intelligence

(AI) in healthcare-a scoping review of reviews. J Pers Med. 2022, 12:1914. 10.3390/jpm12111914
51. Corrêa NK, Galvão C, Santos JW, et al.: Worldwide AI ethics: a review of 200 guidelines and

recommendations for AI governance. Patterns (N Y). 2023, 4:100857. 10.1016/j.patter.2023.100857

 

2024 Khalid et al. Cureus 16(8): e66398. DOI 10.7759/cureus.66398 9 of 10

https://dx.doi.org/10.3390/diagnostics12123197
https://dx.doi.org/10.3390/diagnostics12123197
https://dx.doi.org/10.1097/RLI.0000000000000509
https://dx.doi.org/10.1097/RLI.0000000000000509
https://dx.doi.org/10.1016/j.ejvs.2021.07.013
https://dx.doi.org/10.1016/j.ejvs.2021.07.013
https://dx.doi.org/10.1016/j.ejvs.2011
https://dx.doi.org/10.1016/j.ejvs.2011
https://dx.doi.org/10.1002/prs.12243
https://dx.doi.org/10.1002/prs.12243
https://dx.doi.org/10.1016/j.amjcard.2014.07.024
https://dx.doi.org/10.1016/j.amjcard.2014.07.024
https://dx.doi.org/10.1016/j.jvs.2010.08.075
https://dx.doi.org/10.1016/j.jvs.2010.08.075
https://dx.doi.org/10.1016/j.jvs.2010.12.071
https://dx.doi.org/10.1016/j.jvs.2010.12.071
https://dx.doi.org/10.1016/j.artmed.2008.07.017
https://dx.doi.org/10.1016/j.artmed.2008.07.017
https://dx.doi.org/10.1016/B978-0-12-823337-5.00003-2
https://dx.doi.org/10.1016/B978-0-12-823337-5.00003-2
https://dx.doi.org/10.1016/0016-3287(77)90097-0
https://dx.doi.org/10.1016/0016-3287(77)90097-0
https://dx.doi.org/10.1055/s-0039-1677895
https://dx.doi.org/10.1055/s-0039-1677895
https://dx.doi.org/10.4103/cmrp.cmrp_56_20
https://dx.doi.org/10.4103/cmrp.cmrp_56_20
https://dx.doi.org/10.1016/0004-3702(77)90003-0
https://dx.doi.org/10.1016/0004-3702(77)90003-0
https://dx.doi.org/10.1016/0004-3702(83)90017-6
https://dx.doi.org/10.1016/0004-3702(83)90017-6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC225405/
https://dx.doi.org/10.1016/0010-4809(85)90022-9
https://dx.doi.org/10.1016/0010-4809(85)90022-9
https://dx.doi.org/10.1016/j.ebiom.2019.07.019
https://dx.doi.org/10.1016/j.ebiom.2019.07.019
https://dx.doi.org/10.4018/978-1-7998-1204-3.ch021
https://dx.doi.org/10.4018/978-1-7998-1204-3.ch021
https://dx.doi.org/10.1067/j.cpradiol.2020.05.006
https://dx.doi.org/10.1067/j.cpradiol.2020.05.006
https://dx.doi.org/10.3389/fdgth.2021.645232
https://dx.doi.org/10.3389/fdgth.2021.645232
https://dx.doi.org/10.1109/InHeNce52833.2021.9537270
https://dx.doi.org/10.1109/InHeNce52833.2021.9537270
https://dx.doi.org/10.1159/000511930
https://dx.doi.org/10.1159/000511930
https://dx.doi.org/10.18502/ijph.v50i11.7600
https://dx.doi.org/10.18502/ijph.v50i11.7600
https://dx.doi.org/10.3390/bioengineering7030079
https://dx.doi.org/10.3390/bioengineering7030079
https://dx.doi.org/10.1016/j.jocn.2019.03.001
https://dx.doi.org/10.1016/j.jocn.2019.03.001
https://dx.doi.org/10.1177/20552076231186064
https://dx.doi.org/10.1177/20552076231186064
https://dx.doi.org/10.1186/s12911-020-01191-1
https://dx.doi.org/10.1186/s12911-020-01191-1
https://dx.doi.org/10.2196/26162
https://dx.doi.org/10.2196/26162
https://dx.doi.org/10.1038/s41746-019-0132-y
https://dx.doi.org/10.1038/s41746-019-0132-y
https://arxiv.org/pdf/2211.06346
https://dx.doi.org/10.3389/fsurg.2022.862322
https://dx.doi.org/10.3389/fsurg.2022.862322
https://dx.doi.org/10.3390/jpm12111914
https://dx.doi.org/10.3390/jpm12111914
https://dx.doi.org/10.1016/j.patter.2023.100857
https://dx.doi.org/10.1016/j.patter.2023.100857


52. Nizam V, Aslekar A: Challenges of applying AI in healthcare in India . J Pharm Res Int. 2021, 33:203-9.
10.9734/jpri/2021/v33i36B31969

53. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D: Key challenges for delivering clinical impact
with artificial intelligence. BMC Med. 2019, 17:195. 10.1186/s12916-019-1426-2

54. Ramkumar PN, Kunze KN, Haeberle HS, Karnuta JM, Luu BC, Nwachukwu BU, Williams RJ: Clinical and
research medical applications of artificial intelligence. Arthroscopy. 2021, 37:1694-7.
10.1016/j.arthro.2020.08.009

 

2024 Khalid et al. Cureus 16(8): e66398. DOI 10.7759/cureus.66398 10 of 10

https://dx.doi.org/10.9734/jpri/2021/v33i36B31969
https://dx.doi.org/10.9734/jpri/2021/v33i36B31969
https://dx.doi.org/10.1186/s12916-019-1426-2
https://dx.doi.org/10.1186/s12916-019-1426-2
https://dx.doi.org/10.1016/j.arthro.2020.08.009
https://dx.doi.org/10.1016/j.arthro.2020.08.009

	The Expansion of Artificial Intelligence in Modifying and Enhancing the Current Management of Abdominal Aortic Aneurysms: A Literature Review
	Abstract
	Introduction And Background
	Review
	Methods
	Genomic ML
	Prediction of AAA growth
	Predicting in-hospital mortality following repair of AAA
	Automated detection of AAA
	DSS
	TABLE 1: Demonstrates a summary of the utilities of AI in the enhancement of AAA management according to the sources used.

	The infancy of AI
	Medical ethics in AI

	Conclusions
	Additional Information
	Author Contributions
	Disclosures

	References


