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Abstract 
Motivation: Single cell RNA sequencing (scRNA-seq) technique enables the transcriptome profiling of hundreds to ten thousands of 
cells at the unprecedented individual level and provides new insights to study cell heterogeneity. However, its advantages are hampered 
by dropout events. To address this problem, we propose a Blockwise Accelerated Non-negative Matrix Factorization framework with 
Structural network constraints (BANMF-S) to impute those technical zeros. 
Results: BANMF-S constructs a gene-gene similarity network to integrate prior information from the external PPI network by the 
Triadic Closure Principle and a cell-cell similarity network to capture the neighborhood structure and temporal information through a 
Minimum-Spanning Tree. By collaboratively employing these two networks as regularizations, BANMF-S encourages the coherence of 
similar gene and cell pairs in the latent space, enhancing the potential to recover the underlying features. Besides, BANMF-S adopts a 
blocklization strategy to solve the traditional NMF problem through distributed Stochastic Gradient Descent method in a parallel way 
to accelerate the optimization. Numerical experiments on simulations and real datasets verify that BANMF-S can improve the accuracy 
of downstream clustering and pseudo-trajectory inference, and its performance is superior to seven state-of-the-art algorithms. 
Availability: All data used in this work are downloaded from publicly available data sources, and their corresponding accession numbers 
or source URLs are provided in Supplementary File Section 5.1 Dataset Information. The source codes are publicly available in Github 
repository https://github.com/jiayingzhao/BANMF-S. 
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Introduction 
The improvements in RNA measurement resolution have signifi-
cantly transformed genomic studies [1]. Contrary to bulk RNA-seq 
technique, where gene expressions are quantified by the average 
transcript counts across the ensemble of samples [2], scRNA-
seq technique enables the transcriptome profiling of hundreds 
to ten thousands of cells at the unprecedented individual level 
[3]. Being able to characterize transcriptional variants in hetero-
geneous populations, scRNA-seq technique provides new insights 
to study transcriptional dynamics [4], to explore the changes in 
cell states [5], to identify transitional cell states [6],  and to dissect  
cell subpopulations [7]. 

However, the advantages of scRNA-seq data are hampered 
by its substantial sparsity. The phenomena of having excessive 
zeros in scRNA-seq data are referred to as dropout events in the 
context of scRNA-seq data analysis [8]. Those zeros mainly come 
from two sources. First, a proportion of them, known as “true 
zeros,” comes from biological fluctuations. For example, a gene 
may not express RNA in the sample due to changes of external 
micro-environments. As cells exhibit heterogeneity, some genes 
may have low or even no expression in specific cell types, cell 
states, or at special stage of a cell cycle. Second, other zeros are 
caused by technical reasons, and some genes may be expressed 

but not captured due to technical limitations during the reverse 
transcriptional process, such as the limited transcript detection 
rate and the low sequencing depths. For instance, droplet-based 
protocols such as Drop-Seq and 10x Genomics protocols are only 
able to cover 1000 to 200 000 reads per cell [9]. Since most down-
stream analyses are based on computations on the expression 
matrix, the extensive technical dropouts may be detrimental to 
downstream analyses such as clustering and trajectory inference 
and introduce false discoveries. 

Several methods have been proposed to deal with the presence 
of dropout events [10], which address the problem mainly from 
three perspectives [11]. The first category explores the vertical 
structure of the underlying data. Those imputation models focus 
on exploiting gene–gene similarity to estimate the possible loca-
tions of technique zeros and recover their values, such as SAVER 
[12]. The second category explores the horizontal structure of the 
expression matrix. Those models assume that similar cells hold 
similar expression level and then recover missing values from 
a cell–cell perspective. Typical algorithms include MAGIC [13], 
scImpute [14], DrImpute [15], bayNorm [16], and scRMD [17]. The 
third category explores the diagonal structure of the expression 
matrix, and they assume that the matrix should follow a low-
rank structure and typically adopt matrix-factorization based
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models to capture linear relationships in the latent space. Those 
methods project the observed expression data into a low-
dimensional space and recover the expression values through 
low-rank matrices multiplication, for instance, ALRA [18]. Besides, 
deep-learning based methods are capable of capturing the 
non-linear relationship between cells and try to recover the 
expression levels through different decoders. AutoImpute uses 
an auto-encoder to estimate a latent space that learns the 
inherent distribution of the scRNA-data, and it can impute 
those dropout events and preserve the true zeros at maximal 
level [19]. scMultiGAN imputes the cell-type specific dropout 
based on multiple GANs [20]. Although existing methods have 
demonstrated some strengths in imputation, there is still room 
for improvement. First of all, the first and second classes of 
methods fail to jointly learn the gene and cell similarity; therefore, 
they may tend to favor certain situations where the observed 
gene/cell expressions are consistent and under-perform in other 
cases. Besides, the third class fails to incorporate gene and cell 
similarity so that the underlying structure may not be fully 
utilized. Secondly, the existing methods do not fully integrate 
prior information. For example, STRING is a comprehensive 
database for Protein–Protein Interaction (PPI), providing extensive 
information about functional associations between proteins, such 
as physical interactions, co-expression, and shared pathways 
[21], foreshadowing gene–gene similarity. However, none of 
the above-mentioned methods takes full advantage of those 
prior information. Thirdly, contemporary methods mainly 
characterize cell (or gene) similarity simply by calculating the 
Euclidean distance between their low-dimensional expression 
representations, and this may fail to further exploit the high-
order relationships. Fourthly, existing methods fail to assimilate 
temporal information, which may overlook the information in the 
developmental progressions from samples. 

To fully address these problems, we try to incorporate both 
gene similarity and cell similarity to impute scRNA-seq data. The 
proposed method is called Blockwise Accelerated Non-negative 
Matrix Factorization imputation with Structural network con-
straints, shorted as BANMF-S. In a nutshell, BANMF-S is based 
on the framework of non-negative matrix factorization; it con-
structs a gene–gene similarity network to integrate prior infor-
mation from the external PPI network by the Triadic Closure 
Principle (TCP) [22] and a cell–cell similarity network to capture 
the neighborhood structure and temporal information through a 
Minimum-Spanning Tree (MST), so as to assimilate internal infor-
mation from observations. By collaboratively employing these two 
networks as regularization, BANMF-S encourages the coherence 
of similar gene and cell pairs in the latent space, enhancing the 
potential to recover the underlying features, which are demon-
strated by simulation studies in Section 3. Downstream exper-
iments on clustering and lineage reconstruction validate that 
BANMF-S outperforms other seven state-of-the-art methods in 
both simulated and real cases (see Results section). To tackle the 
large-scale problem in scRNA-seq data, we applied a stratified 
matrix blocklization strategy, which enables the optimization 
process through distributed Stochastic Gradient Descent (SGD) 
method in a parallel way. The computational efficiency and scal-
ability of BANMF-S are shown in Results section. 

Materials and methods 
Problem formulation 
Given the raw counts X̃ ∈ Rm×n from scRNA-seq experiments 
for m cells and n genes, we normalized each library (row) to 

104 counts per cell, added one pseudocount, and performed log2 
transformation (see a detailed illustration in Supplementary File 
Section 7.2 Data Preprocessing). The processed matrix is denoted 
as X0 and X is used to denote the genuine expression matrix 
(without technical noise). The relationship of X and X0 is obtained 
by a binary mask operator M ([M]ij = 0, if  [X0]ij = 0) as Eq.  (1) 
suggests where ◦ is the Hadamard product operator, 

X0 = M ◦ X. (1)  

Previous argument states that only a few biophysical functions 
trigger the functioning transcription factors [ 23], indicating that 
the generated expression matrix lies in a low-dimensional space. 
We assumed that the genuine matrix can be factorized into the 
product of two low-dimensional nonnegative matrices, that is, 
X = WH, where  W ∈ Rm×p and H ∈ Rp×n with p � m, n. Here,  
W represents the low-dimensional cell matrix and H represents the 
low-dimensional gene matrix. The NMF was then obtained by solving 
the following optimization problem: 

min 
W≥0,H≥0 

||X0 − M ◦ (WH)||2 
F , (2)  

where || · ||F is the Frobenius norm and ‘≥ 0’ indicates the matrices 
are non-negative. However, the non-negativity constraints in Eq. 
(2) cannot guarantee the coherence of gene or cell similarity, and 
it fails to exploit the underlying gene and cell structure, which 
may result in the failure of W and H to recover biological variants. 
To take into account these concerns, we proposed a structural 
network constraints regularized framework to incorporate gene 
and cell similarities, and they are illustrated as follows. 

Gene similarity 
We integrated the prior knowledge of a PPI network to ensure the 
consistency of similar genes. First, a PPI network was obtained 
from the STRING database through R package STRINGdb version 
2.10.1. Then, we employed TCP to quantify the structural simi-
larity of proteins from their physical and functional interactions 
provided by PPI [21]. Since the structure of a protein is determined 
by its gene sequence [24], we use the computed protein structural 
similarity to quantify the similarity of gene pairs. We call it gene 
high-order similarity for two reasons: firstly, the gene similarity 
is quantified by its downstream products rather than the direct 
sequences. On the other hand, the similarity is characterized 
by the higher-order relationships between nodes rather than the 
direct interactions. Rooted in social network analysis, TCP asserts 
that two individuals are more likely to know each other if they 
have more common friends. Accordingly, we assumed that two 
proteins are more likely to be structurally similar if they share 
more common neighbors in the PPI network. This can be explained 
from a structural perspective illustrated in Fig. 1c: if two proteins 
P1 and P2 share multiple interaction partners, then they may 
have similar interaction interfaces, which further reflects in the 
similarity of gene pairs. 

Hence, we quantified the similarity of Gene i and Gene j by the 
ratio of shared neighbors of their corresponding proteins Pi and Pj. 
To be precise, let S be the adjacent matrix of the gene similarity 
network, then its (i,j)th entry can be calculated by the Jaccard 
Index as shown below 

Sij := J(Pi, Pj) = 
|NPi ∩ NPj | 
|NPi ∪ NPj |

, (3)



BANMF-S | 3 

Figure 1. BANMF-S schematic: (a) BANMF-S mainly contains five steps; a raw cell-by-gene expression matrix is required as input, then in the network 
construction step, BANMF-S obtains gene similarity network by integrating PPI network from STRING database based on TCP and computes cell similarity 
network from the reciprocal of geodesic distance of the MST on the complete graph generated by the first 50 principal components of the input 
matrix, and the core module of BANMF-S solves the constrained NMF problem in parallelization by adopting a blocklization strategy; the imputation 
is completed by recovering expression levels from the outputs of gene and cell matrices, which can be used in downstream analysis studies, such as 
clustering and trajectory inference; (b) an example of MST on a 5-node complete graph; (c) an illustration for TCP that demonstrates the pair who shares 
a large amount interacted proteins are structurally similar; (d) an example of blocklization strategy for a 10-by-15 expression matrix where K = 5. 

where NPi is the set of neighbors of the protein Pi, i = 1, 2. Then, 
we added the graph regularization Tr(HLHT) [25] to the objective 
function to capture the gene similarity structure where L := 
diag(S ·1)−S is the Laplacian to S and 1 is the constant one vector. 
The geometric interpretation of the graph regularization Tr(HLHT) 
is given in Supplementary File Section 1. 

Cell similarity 
We then incorporated the underlying knowledge of temporal 
information in cell development to absorb cell similarity. Firstly, 
we applied dimension reduction to the observed expression 
matrix X0 by using Principal Component Analysis. We selected 
top 50 principal components, the resulting matrix was denoted
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as XPC ∈ R
m×50. Then, a fully connected undirected graph 

G(V, E) was constructed from XPC, where  V = {v1, v2, · · ·  , vm}, 
and E = {eij, i, j ∈ {1, 2, · · ·  , m}}. Node  vi represents the ith cell, 
and eij denotes the edge connecting cell i and cell j of which the 
weight ωij can be calculated as the Euclidean distance between 
the ith row and the jth row of XPC. Secondly, we computed the 
minimum spanning tree of G(V, E) and denoted it by T. Contrary to 
previous methods [13] where Euclidean distance was directly used 
to characterize affinity, we used the reciprocal of the geodesic 
distance of T to measure the similarity between cells. Specifically, 
let A be the adjacency matrix of cell similarity network, then Aij 

was computed by 

Aij =
{

0, i = j 
1/length(ShortestPath(T(i, j))), i �= j, 

(4) 

where ShortestPath (T(i, j)) is the shortest path between i and 
j on T and length(·) indicates the total Euclidean length of that 
path. For example, as shown in Fig 1b, the left subgraph is fully 
connected and undirected, each edge measures the distance 
between its corresponding two nodes, the middle subgraph gives 
a possible spanning tree, and the right subgraph shows the 
minimum spanning tree. Following above instructions, similarity 
score for the unconnected pair of nodes in the upper right should 
be 1/4, since the shortest length between them is 4. Notably, we 
chose this quantification for two reasons. First, Costa et al. [26] 
proposed that MST-based matrix is more capable of preserving 
the local invariance property than Euclidean-based distance 
on the approximation of local neighborhood structure. Second, 
MST is intrinsically related to cell differentiation since loads of 
trajectory inference methods are based on MST spanned on the 
reduced dimensional observation [27]. Hence, Eq. (4) captures  
the ordering of cells along the developmental progression, 
assimilating temporal information. 

In this paper, we adopted the regularization term ‖A − WWT‖2 
F 

to ensure that similar cells would show similar expression pat-
terns. This regularization term was initially added to address 
the graph clustering problem in [28], and here, we used it to 
inherit cell neighborhood structure from cell similarity network. 
Besides, the cell structural regularization ‖A − WWT‖2 

F has intrin-
sic relationships with graph regularization term Tr(WL̃WT) (See 
Supplementary File Section 1); here L̃ refers to the normalized 
graph Laplacian for the cell similarity network. 

Finally, we added the terms ‖H‖2 
F and ‖W‖2 

F to ensure sparsity. 
To wrap up, our objective function becomes 

min 
W≥0,H≥0 

OW,H = ||X0 − M ◦ (WH)||2 
F 

+γ1‖A − WWT‖2 
F + γ2Tr(HLHT) 

+α1‖W‖2 
F + α2‖H‖2 

F , 
(5) 

where α1, α2, γ1, andγ1 are hyper-parameters. 

Blockwise acceleration 
When optimizing the objective function (5), we need to compute 
the following gradients: 

∂O 
∂W 

= −2X0H + 2γ1(M ◦ (WH))HT − 2[(A − WWT) 
+(A − WWT)T]W + 2α1W 

∂O 
∂H 

= −2WTX0 + 2γ2WT(M ◦ (WH)) 
+H(LT + L) + 2α2H. 

(6) 

The total computational costs would be O(mnp + m2p + n2p) for 
each iteration. Since sizes of gene similarity network are usually 
very huge, the traditional implementation of gradient descent 
method could be computationally expensive and it is not ideal for 
recovering large-scale expression profiles. We considered employ-
ing a blocklization strategy to accelerate the implementation 
through a distributed version of SGD. 

In the distributed SGD, original data matrix was firstly 
divided into blocks. Let K be the prescribed number of splits, 
let md = 
 m 

K � and nd = 
 n 
K �. We divided X0, A, M, W, H and L 

into K2 blocks of various sizes, see a toy example in Figure 1(d), 
detailed illustrations were provided in the Supplementary 
File Section 2. Superscripts are used to denote blocks, for 
instance, let Aij represent the jth column split at ith row split 
in A. Afterward, the traditional optimization is accelerated 
in parallelization by simultaneously updating interchangeable 
blocks over multiple processes. In more details, at the tth iteration, 
quadruples of indices Ut := {(it 1, jt 1, rt 

1, st 
1), (i

t 
2, jt 2, rt 

2, st 
2), · · · }  were 

first randomly generated. Then, the corresponding quadruples of 
blocks {(Wit 1 , Wjt 1 , Hrt 

1 , Hst 
1 ), (Wit 2 , Wjt 2 , Hrt 

2 , Hst 
2 ), · · · }  were separately 

updated in various processes to minimize the objective function 
(5) by gradient descent. Take (i, j, r, s) ∈ Ut for instance, in the 
parallelized process of its own, Wi and Wj were updated to 
approximate Aij, similarly, Hr and Hs were updated to minimize 
Tr(HrLrs(Hs)T). Also, Wi (or Wj) and  Hr (or Hs) were updated to 
approximate Xir 

0 (or Xjs 
0 ,Xis 

0 ,Xjr 
0 , respectively). Then, the overall loss 

function can be rewritten as the sum of blockwise loss 

OW,H =
∑
i,j,r,s 

ÕWi ,Wj ,Hr ,Hs , 

where 

ÕWi ,Wj ,Hr ,Hs 

= 
1 
K2

{
1 
4

‖Mir ◦ (Xir 
0 − Wi Hr )‖2 

F + 
1 
4

‖Mis ◦ (Xis 
0 − Wi Hs )‖2 

F 

+ 1 
4

‖Mjr ◦ (Xjr 
0 − Wj Hr )‖2 

F + 
1 
4

‖Mjs ◦ (Xjs 
0 − Wj Hs )‖2 

F 

+γ1‖Aij − Wi (Wj )T‖2 
F + γ2Tr(Hr Lrs (Hs )T ) 

+ 
α1 

K

(
1 
2

‖Wi‖2 
F + 

1 
2

‖Wj‖2 
F

)
+ 

α2 

K

(
1 
2

‖Hr‖2 
F + 

1 
2

‖Hs‖2 
F

)}
. 

To ensure the independence of each process, interchangeability 
[ 29] of the index quadruple set Ut should be maintained so that the 
optimization of (Wi, Wj, Hr, Hs) would not affect another pairs (see 
Supplementary File Section 3 for details). For each subprocess, let 
θ i,j,r,s = {Wi, Wj, Hr, Hs}, then  θ i,j,r,s can be updated through gradient 
descent, where 

θ
i,j,r,s 
t+1 = θ i,j,r,s 

t − ηt∇ÕWi ,Wj ,Hr ,Hs . 

Here, ηt is the step-size at the tth iteration. The algorithm for solv-
ing Equation (5) is summarized in Algorithm 1 in Supplementary 
File Section 4. 

Results 
We conducted various simulated and real experiments to 
test the performance of BANMF-S, where eight scRNA-seq 
datasets and one bulk RNA-seq dataset were used (see summary 
Supplementary File Section 7.1 Datasets), and chose seven
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methods (see summary and a brief illustration in Supplementary 
Table 2 and Supplementary Section 7 Experiments) for compari-
son. For all the methods, we followed their online vignettes and 
adopted default parameters. For BANMF-S, all parameters are 
provided in Supplementary Table 10 (see Supplementary Section 
12 for details). 

BANMF-S outperforms state-of-the-art 
algorithms in simulations 
We generated simulations from PBMC dataset to investigate 
the performance of BANMF-S in recovering the true biological 
signals. Since the genuine dropout locations are usually unknown, 
we considered two simulation setups to manually curate the 
ground truth and then randomly removed several captured 
entries and regarded them as missing values. The results were 
assessed from two perspectives (RMSE and cell-wise correlation, 
see Supplementary File Section 7.4 Evaluation). 

In the first simulation approach, the ground truth was created 
by selecting high-quality genes and samples with large cover-
age from the PBMC dataset, and this generated a dense matrix. 
The filtered PBMC dataset contains 11.75% non-zero entries. By 
retaining genes with capture rates in the first half quantile and 
cells with library depths in the first 80% quantile, we obtained 
a reference matrix of 1578 cells and 4586 genes with 22.01% 
non-zero values, whose entries are treated as true expression. 
Afterward, we added additional noises on the curated matrix 
through a Binomial down-sampling procedure. To be specific, 
we randomly removed non-zero reads by Binomial distribution 
B(n, pi); pi was the dropout rate for ith gene. To study the impu-
tation results under various dropout rates, we perturbed pi at 
levels 30%, 35%, 40%, 45%, 50%, 55%, and  60%, to ensure the den-
sity of the simulated matrices was within 0.75 ∼ 1.35 of the 
original matrix’s density (see Supplementary Table 3). Then, we 
evaluated the similarity of imputed matrices and the 7 genuine 
matrices by RMSE and cell-wise correlation. The RMSE values 
are given in Supplementary Table 5, and the relative ranks of 
RMSE within each simulated datasets are given in the simulation 
1 in Fig. 2a. The results of RMSE demonstrate that BANMF-S and 
ALRA are the best two methods in simulation 1, while the model-
based methods bayNorm and SAVER lack the capability to recover 
overall expression level accurately. Also, the results indicate that 
BANMF-S performs better in sparse cases (downrate 50, 55, and  
60). Figure 2b provides the violin plots of cell-wise correlation for 
each cell types in simulation 1, which  shows  that  BANMF-S  and  
MAGIC are the best two methods to recover sample-level biolog-
ical similarity. Besides, the violin plots demonstrate that BANMF-
S, MAGIC, scImpute, and scRMD are more consistent with low 
variances. 

In the second approach, bulk immune cell RNA-seq data 
(GSE74246) was used to curate ground truth. The bulk RNA-seq 
dataset contains four samples for each cell types of B cell, CD4+ 
T cell,  CD8+ T cell, NK cell, and Monocyte. It can be regarded 
as well-defined expression references of PBMC in our study. 
In simulation 2, we used multinomial distribution to simulate 
the ground truth, where the bulk profiles were used for gene 
expression distributions and the single cell data library sizes were 
used as true library depths. We used Monocyte as an example to 
illustrate the simulation. Denote the gene reads proportion in 
bulk Monocyte data as pi, where  i indicates samples, i = 1, · · ·  , 4. 
The library lengths of Monocytes in single cell RNA-seq dataset 
are nc, where  c = 1, · · ·  ,Cmonocyte, and  Cmonocyte is the number of 

Monocyte cells. Then, we generated the ground truth expression 
profile for cth cell as 

Multinomial(nc, pi), (7)  

and we obtained 4 × Cmonocyte artificial Monocyte cell expression 
profiles. Then, we applied Binomial down-sampling procedure 
to obtain noisy matrices similar to simulation 1 and the down-
sampling rates for each cell types are given in Supplementary 
Table 4. Figure 2a shows that BANMF-S performs best in B 
cell (RMSE: 1.1385), CD8+ T cell (RMSE: 1.1974), and Monocyte 
(RMSE: 1.0603). Figure 2c provides the violin plots for the five 
datasets in simulation 2, which shows that BANMF-S and MAGIC 
are the best two methods to recover sample-level biological 
similarity. 

BANMF-S improves the performance of cell type 
clustering 
Clustering serves as an essential step in scRNA-seq data analysis, 
aiming to partition individuals within a heterogeneous population 
into distinct groups. A good imputation method is supposed to 
improve the outcomes of clustering, which helps gain valuable 
insights into the inherent structure and patterns of the expression 
profile. We assessed the impact of our method on seven real 
datasets (see Supplementary File Section 7.1 for details). After 
processing datasets and applying imputation methods as sug-
gested by Section 7 Experiments in Supplementary File, we first 
explored the results of Pollen by UMAP, a nonlinear dimensionality 
reduction technique that helps visualize high-dimensional data. 
UMAP results for other datasets are provided in Supplementary 
File Section 9. As is shown in Fig. 3a, all methods except bayNorm 
(5 cliques) and scRMD (5 cliques) give a more consistent pro-
filing of the number of clusters in the latent space than no 
imputation (Raw: 5, BANMF-S: 9, ALRA: 11, DrImpute: 6, MAGIC: 
9, SAVER: 8, scImpute: 8), improving the characterization of the 
heterogeneous composition. Among them, BANMF-S outperforms 
ALRA and MAGIC by accurately gathering Kera and K562 cells. 
Moreover, BANMF-S outperforms SAVER, scImpute, and DrImpute 
by indentifying more cliques. 

Then, we performed k-means clustering (R stats package, ver-
sion 4.0.4), an unsupervised clustering method, on the top 10 prin-
cipal components of the imputed and observed data, where we 
used true cell type number as the number of clusters for param-
eter centers. We also considered the clustering results on cell 
matrix W, results are named by BANMF-S-latent, shown in Fig 3b. 
The outcomes are evaluated by ARI and NMI (see Supplementary 
File Section 7.4 Evaluation), where larger values indicate better 
consistency between inferred clusters and true cell type labels. 
As is shown in Fig. 3, BANMF-S and BANMF-S-latent demonstrate 
an overall higher accuracy compared with raw data (denoted 
by noimp in Fig. 3b), indicating its capability to enhance the 
performance of downstream clustering analysis. The ARI and NMI 
values are also recorded in Supplementary Tables 6 and 7. More-
over, we can also conclude from overall ARI and NMI values that 
BANMF-S and BANMF-S-latent are superior to other 7 imputation 
methods. Specifically, BANMF-S and BANMF-S-latent achieve the 
best two places in PBMC and Petropoulos. BANMF-S-latent has the 
best ARI performance in Pollen (ARI: 0.7473) and Baron_Ms (ARI: 
0.5806), indicating that BANMF-S is able to improve the accuracy 
of identifying subpopulations from tissue and cell line data. As 
BANMF-S-latent demonstrates the best performance among all
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Figure 2. Simulation results: (a) rank of RMSE; (b) violin plots of cell-wise correlation for five cell types in simulation 1; (c) violin plots of cell-wise correlation 
for five cell types in simulation 2. 

methods, we recommend using the our cell matrix outcomes for 
computational cell annotations in future studies. 

BANMF-S improves the performance of 
pseudotime trajectory reconstruction 
Cell lineage reconstruction is a crucial downstream analysis for 
scRNA-seq data, where computational approaches [30] are uti-
lized to reconstruct the developmental trajectories of samples 
based on their gene expression profiles. An effective imputation 
method is expected to enhance the performance of pseudotime 
trajectory reconstruction by accurately recovering the continuous 
topological structure of the data. 

To evaluate our method, we conducted experiments on two 
publicly available time-serial scRNA-seq datasets: the Petropoulos 
[31] and the Scialdone [32] datasets, and compared our results 
with other seven methods (see Supplementary Table 2) as well 
as the results on the raw data. Pseudotime labels for all cells 
were obtained by monocle2 with default parameters, and we 
then calculated the Pearson and Kendall’s correlation between 
Pseudotime labels and experimentally recorded time stamps, 
and used these two correlation scores to evaluate accuracy for 
each method. Results are presented in Table 1. Visualizations 
of the inferred trajectories are provided in Supplementary File 
Section 11. In Petropoulos dataset, BANMF-S exhibits both higher 
Pearson correlation score (0.9216) and Kendall’s correlation score 
(0.7868) compared with raw data (0.9018 and 0.7310, respectively). 
Similarly, in Scialdone dataset, BANMF-S achieves a Pearson 

correlation score of 0.8621, a Kendall’s correlation score of 
0.6432, whereas the score for raw data are 0.7984 and 0.5557, 
respectively. These results demonstrate that BANMF-S can 
improve the performance of downstream pseudotime analysis. 
When compared with other imputation methods, it can be 
observed that BANMF-S achieves the highest correlation scores 
among the counterparts for Pearson Correlation. As for Kendall’s 
rank correlation, BANMF-S obtains the best accuracy (0.7858) in 
Petropoulos dataset and the third highest accuracy (0.6432) in 
Scialdone dataset, where the accuracy gaps between BANMF-S, 
scImpute (0.6542), and SAVER (0.6465) are close and acceptable. 

BANMF-S is an efficient algorithm 
In this section, we evaluate the time and memory costs of imputa-
tion methods being implemented on an AMD EPYCTM 7742 server 
(64 CPU Cores; 512GB RAM; 480GB SSD). Starting from here, we 
use italic font for datasets and telegram font for variables in 
the source codes of the corresponding methods. We performed 
cell downsampling and gene downsampling on pbmc10k dataset 
to assess the computational efficiency at different scales of cells 
and genes. To be specific, we first selected 104 genes and cells 
of most reads to obtain cell 10k dataset. Then, we generated 
cell 1k, 3k, 5k, 7k, 10k datasets by randomly subtracting sub-
matrices of corresponding cell numbers from cell 10k. The  gene 
1k, 3k, 5k, 7k, 10k datasets could be obtained in a similar gene 
downsampling way, i.e. by randomly subtracting submatrices of 
corresponding gene numbers from cell 10k. For BANMF-S, we
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Figure 3. Clustering Evaluation: (a) UMAP plot for Pollen dataset; (b) clustering accuracy evaluation (ARI and NMI) results. 

Table 1. Trajectory correlation 

Dataname ALRA bayNorm BANMF-S MAGIC Raw SAVER scImpute scRMD DrImpute 

Petropoulos (Kendall) 0.6107 0.7425 0.7868 0.7751 0.7370 0.6985 0.7614 0.7183 0.7615 
Scialdone (Kendall) 0.6368 0.5807 0.6432 0.5548 0.5557 0.6465 0.6542 0.6025 0.6298 
Petropoulos (Pearson) 0.8248 0.9041 0.9216 0.9187 0.9018 0.8812 0.9131 0.8962 0.9145 
Scialdone (Pearson) 0.8564 0.8384 0.8621 0.8263 0.7984 0.8536 0.8520 0.8546 0.8481 

assumed that the gene and cell similarity networks were known 
and skipped the network construction step. Computational time 
(in hour) and memory usage (in GB) were obtained by Slurm 
command sacct with job accounting field elapsed and MaxRSS. 
To mitigate the potential impact of systems fluctuations in the 
execution time, all methods were repeated five times on each 
dataset and the averaged time and memory records were used for 
evaluation. 

We first assessed the computational efficiency of all methods 
on large-scale dataset by using the results of cell 10k from Fig. 4a. 

From the distances of scatter dots to origin, it can be inferred 
that scImpute, DrImpute, SAVER, and scRMD demonstrate poor 
performance, while MAGIC, BANMF-S, ALRA, and bayNorm are 
computationally efficient. Using parallelization, the computa-
tional time of BANMF-S (0.1142 h) is close to the fastest methods, 
the matrix-based method ALRA (0.0650 h) and MAGIC (0.0904 h), 
indicating the effectiveness of the blocklization strategy. In terms 
of memory usage, BANMF-S (5.7086 GB) demonstrated signifi-
cant improvement compared with matrix-based method scRMD 
(21.8855 GB).
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Figure 4. Time and memory usage evaluation: (a) gives the results of cell 10k dataset; (b) time and memory cost for cell sampling datasets; (c) time and 
memory cost for gene sampling datasets. 

Then, we evaluate the scalability of the methods from 
Figs 4b and c, where we manually scale the y-axis limits to 
30 GB and 5 h to focus on efficient results. The time results 
of scImpute and DrImpute on gene sampling datasets (Fig. 4c) 
all exceed 5h since they need to compute cell–cell similarity 
matrix for 104 cells, showing poor scalability for large-scale cell 
datasets. Close to the x-axis, time plots of Fig. 4 b and c show that 
ALRA, MAGIC, and BANMF-S are the three fastest methods with 
indistinguishable difference. As for the memory usage, memory 
plots of Fig. 4b and c indicate that BANMF-S gives an overall 
outperformance over bayNorm, DrImpute, SAVER, scImpute, and 
scRMD across all cases. Though BANMF-S requires larger disk 
memory than ALRA in small datasets (cell 1k, gene 1k), BANMF-
S surpasses ALRA in other situations, indicating the scalability 
and the effectiveness of blocklization. Figure 4b and c shows 
that MAGIC has less memory usage than BANMF-S in all cases, 
since BANMF-S requires the storage of gene and cell networks. 
The resulted memory differences for MAGIC and BANMF-S are 
acceptable, as the memory outperformance of MAGIC comes at 
the cost of losing cell and gene information. 

The blocklization strategy improves the computational effi-
ciency in two ways. On the one hand, it enables BANMF-S to 
solve the traditional NMF problem by SGD in parallelization, 
saving wallclock time for large-scale datasets. On the other hand, 
it allows BANMF-S to improve computational memory cost by 
circumventing direct large-scale matrix computations, and there-
fore, avoids the storage of numerous large-scale intermediate 
matrices. As is shown in the memory plots in Fig. 4b and c, the  
slopes for the matrix-based methods, scRMD and ALRA, are larger 
than BANMF-S. This is because scRMD and ALRA failed to deal-
locate many intermediate m−by−n matrices during optimiza-
tion. With those redundant variables, scRMD and ALRA may 
be resource-acceptable for small-scale datasets, but resource-
intensive, even detrimental when confronted with large-scale 
datasets. Back to BANMF-S, our method first restores X0, M ∈ Rm×n, 
A ∈ Rm×m, and  L ∈ Rn×n in the global environment. In the core 
computational module, rather than the direct manipulation of the 
m−by−n matrix, we tackled matrices ofO(mdnd). At each iteration, 
we sampled block quadruples to K registered pipes (processes 
in the context of parallelization), where each pipe contained 
variables of {Aij ∈ Rmd×md , Lrs ∈ Rnd×nd , Wi, Wj ∈ Rmd×p, Hr, Hs ∈ 
R

p×nd , Xir 
0 , Xis 

0 , Xjr 
0 , Xjs 

0 , Mir, Mis, Mjr, Mjs ∈ Rmd×nd } and the derivatives 

{∇Wi Õ, ∇Wj Õ ∈ R
md×p, ∇Hr Õ, ∇Hs Õ ∈ R

K×nd }. To  sum  up  all  pro-
cesses, the maximum memory requirement of our computational 
module can be regarded as K · mdnd + K · m2 

d + K · n2 
d, which  

demonstrates considerable improvements in terms of memory 
compared with the whole scale. A detailed illustration is provided 
in Supplementary File Section 8. 

Discussions 
In this paper, we propose a novel NMF framework by jointly 
incorporating the similarity information from external and inter-
nal sources, namely that the cell similarity network and the 
gene similarity network were added as graphical constraints. 
We integrated STRING database to preserve gene structure for 
gene matrix and incorporated temporal orders to assimilate the 
intrinsic information along the biological progression to enhance 
the cell structure for the cell matrix. Our constrained framework 
bridges the gap that none of existing methods tackles the dropout 
problem from a collaborative view of gene and cell similarity while 
assimilating prior and temporal information. Experiments and 
downstream analyses on real and simulated data demonstrate 
the effectiveness of our network constraints. Besides, we made our 
method scalable by adopting a blocklization strategy, by which we 
solved the optimization problem in parallelization. By employing 
BANMF-S on datasets of different scales, we demonstrate that our 
method is computationally efficient. 

There are several possible improvements for future studies. 
Firstly, the cell similarity network could be constructed through 
cluster-based MST (cMST) to alleviate the tedious computations 
for large-scale MST. To be specific, similar to monocle2 [33], 
we could first perform unsupervised clustering to identify cell 
states, then construct the “backbone” MST on these centers. After-
ward, the temporal orders could be inferred by geometric pro-
jections on the cMST. Secondly, with the development of spatial 
transcriptomics, high-quality spatial information for cells are 
available and leveraging the spatial similarity of cells should 
be considered into the construction of cell similarity network. 
Thirdly, in our work, the gene similarity network is quantified 
from PPI network only. However, there are other gene information 
that could be integrated, such as ChIP-Seq data. The way to 
deal with various sources of prior information still needs further 
investigation.
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