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ST-GEARS: Advancing 3D downstream
research through accurate spatial
information recovery
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Chuan Chen1,2, Junfu Guo 3, Chang Shi3, Mei Li 2, Chao Liu 1,2 ,
Yuxiang Li 2,5,6 , Yong Zhang 2,5,6 & Shuangsang Fang 1,2

Three-dimensional Spatial Transcriptomics has revolutionized our under-
standing of tissue regionalization, organogenesis, and development. However,
existing approaches overlook either spatial information or experiment-
induced distortions, leading to significant discrepancies between reconstruc-
tion results and in vivo cell locations, causing unreliable downstream analysis.
To address these challenges, we propose ST-GEARS (Spatial Transcriptomics
GEospatial profile recovery system through AnchoRS). By employing innova-
tive Distributive Constraints into the Optimization scheme, ST-GEARS
retrieves anchors with exceeding precision that connect closest spots across
sections in vivo. Guided by the anchors, it first rigidly aligns sections, next
solves and denoises Elastic Fields to counteract distortions. Through mathe-
matically proved Bi-sectional Fields Application, it eventually recovers the
original spatial profile. Studying ST-GEARS across number of sections, sec-
tional distances and sequencing platforms, we observed its outstanding per-
formance on tissue, cell, and gene levels. ST-GEARS provides precise and well-
explainable ‘gears’ between in vivo situations and in vitro analysis, powerfully
fueling potential of biological discoveries.

Spatial transcriptomics (ST) is an omics technology that fuels biolo-
gical research based onmeasuring gene expression on each position-
recorded spot across sliced tissues1–3. Notably, a range of methods
has been developed. In vivo sequencing (ISS)4 platforms such as
Barcoded Anatomy Resolved by Sequencing (BARseq)5 and Spatially-
resolved Transcript Amplicon Readout Mapping (STARmap)6 rely on
amplification, hybridization and imaging process to capture gene
expression information. Next Generation Sequencing (NGS)7 plat-
form such as Visium1, Stereo-seq8 and Slide-Seq29 uses spatial bar-
coding and capturing in their implementations. These methods offer
various sequencing resolutions ranging from 100 µm10,11 to 500 nm8,

and can measure thousands5 to tens of thousands8 of genes
simultaneously.

Single-slice ST studies have unleashed discoveries, and facilitated
our understanding in diverse biological and medical fields9,12–15. Con-
sequently, numerous processing pipelines and analysis models have
been developed for ST data on a single section16–21. However, to truly
capture transcriptomics in the real-world context, three-dimensional
(3D) STwasdesigned to recover biological states andprocesses in real-
world dimensions, without restriction of the isolated planes in single
sectional ST studies. Various research has utilized the power of 3D ST
to uncover insights in homeostasis, development, and diseases.
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Among them, Wang et al. 22 uncovered spatial cell state dynamics of
Drosophila larval testis and revealed potential regulons of transcrip-
tion factors. Mohenska et al. 23 revealed complex spatial patterns in
Murineheart and identified novelmarkers for cardiac subsections. And
Vickovic et al. 24 explored cell type localizations in Human rheumatoid
arthritis synovium. The vast and large variety of downstream 3D
research has posted the need for a reliable and automatic recovery
method of in vivo spatial profile.

However, the collection process of ST data casts significant chal-
lenges onto the accurate reconstruction of 3D ST and the situation has
not been overcome by current explorations. Specifically, in 3D ST
experiments, individual slices are cross sectioned in a consistent
direction, then manually placed on different chips or slides14,25. This
operation introduces varying geospatial reference systems of distinct
sections, and coordinates are distorted compared to their in vivo
states. The distortions occur due to squeezing and stretching effects
during the picking, holding, and relocation of the sections. Such dif-
ferent geospatial systems and distortions complicates the recovery of
in vivo 3D profile. Among current recovery approaches, STUtility26

realizes multi-section alignment through the registration of histology
images, without considering either geospatial or molecular profile of
mRNA, which leads to compromised accuracies. Recently published
method PASTE27, and its second version PASTE228 achieve alignment
using both gene expression and coordinate information, through
optimization of mapping between individual spots across sections.
These methods cause inaccurate mappings and produces rotational
misalignments due to the nonadaptive regularization factors, and their
uniform sum of probability assigned to all spots upon presence of
spots without actual anchors. All above approaches only consider rigid
alignment, yet neglect the correction of shape distortions, resulting in
shape inconsistency across registered sections. Published method
Gaussian Process Spatial Alignment (GPSA)29 considers shape distor-
tions in its alignment, yet it doesn’t involve structural consistency in its
loss function, which can cause the model to overfit to local gene
expression similarities, leading to mistaken distortions of spatial
information. Moreover, its hypothesis space involves readout predic-
tion in addition to coordinates alignment, causing uncertainty in
direction of gradient descent, and vulnerabilities to input noises.
Another alignment approach, Spatial-linked alignment tool (SLAT)30

also focuses on anchors construction between sections, yet it doesn’t
provide a methodology to construct 3D transcriptomics profile. Other
tools focus on analysis and visualization of 3d data, such as Spateo31,
VT3D32 and StereoPy33.

To address these limitations, we introduce ST-GEARS, a 3D geos-
patial profile recovery approach designed for ST experiments. By
formulating the problem using the framework of Fused Gromov-
Wasserstein (FGW) Optimal Transport (OT)34, ST-GEARS incorporates
both gene expression and structural similarity into the Optimization
process to retrieve cross-sectional mappings of spots with the same
in vivo planar positions, also referred to as ‘anchors’. During this pro-
cess, we introduce innovative Distributive Constraints that allow for
different emphasis on distinct spot groups. The strategy addresses
importance of expression consistent groups and suppresses incon-
sistent groups from imposing disturbances to optimization. Hence it
increases anchor accuracy compared to current approaches. ST-
GEARS utilizes the retrieved anchors to initially perform rigid align-
ment of sections. Subsequently, it introduces Elastic Field guided by
the anchors to represent the deformation and knowledge to correct it
according to each spot’s location. To enhance the quality of the field,
Gaussian Smoothing is applied for denoising purposes. ST-GEARS then
applies Bi-sectional Application to correction of each section’s spatial
profile based on its denoised fields calculated with its neighboring
sections.With validity provedmathematically, Bi-sectional Application
eliminates distortions of sections, resulting in the successful recovery
of a 3D in vivo spatial profile.

To understand effects of ST-GEARS, we first studied its counter-
parts with innovations including anchors retrieval and elastic regis-
tration, respectively on Human dorsolateral prefrontal cortex
(DLPFC)35, and Drosophila larva22. We found an advanced anchors
accuracy of ST-GEARS compared to other available methods involving
anchor’s concept and unveiled Distributive Constraints as reason
behind the advancement. We validated the effectiveness of elastic
registration process of ST-GEARS on both tissue shape smoothness
and cross-sectional consistency. Then, we studied output of ST-GEARS
and other methods on their reconstruction of Mouse hippocampus
tissues36,Drosophila embryo individual22 and a completeMousebrain37.
The result was studied on morphological, cell and gene levels. ST-
GEARS was found to be the only method that correctly reconstruct on
all cases despite of cross-sectioning distance, number of sections, and
sequencing platforms, and it was found to output the most accurate
spatial information under both annotation type or clustering infor-
mation, and hybridization evidence.

Results
ST-GEARS algorithm
ST-GEARS uses ST data as its inputs, including mRNA expression,
spatial coordinates as well as approximate grouping information such
as clustering or annotation of each observation. Then it recovers 3D
geospatial profile in following steps (Fig. 1).

(1) Optimization problem formulation under scheme of FGW OT
with enhancement of Distributive Constraints. FGWOT formulation is
established to enable solving of ‘anchors’, which are the joining of pair
of spots with same in vivo planar positions. Noticeably, each solved
anchor is equipped with a probability that describes its strength of
connection, and each spot is solved to have zero to multiple anchors.
Among each two sections, section-specific groups of spots, and genes
are initially excluded from the formulation to avoid causing dis-
turbances to anchors computing. Considering that connected spots
are more spatially approximate, and more similar in gene expression
because of shared cell identity38,39, FGW was adopted to combine the
gene expression and structural terms in optimization, enabling highest
gene expression similarity between mapped spots, at the same time
keeping similar spot positions relative to their sections. Moreover, an
innovative Distributive Constraints setting is designed and integrated
into FGWOT’s formulation, to assign higher emphasis on spots or cells
whose annotation or cluster express high similarity across section, and
vice versa. Distributive Constraints leads registration to rely more on
expression-consistent regions of sections, hence largely enhancing
both accuracy of anchors and precision of following rigid and elastic
registration.

(2) Optimization problem solving utilizing self-adaptive regular-
ization and conditional gradient descent. Our designed Self-adaptive
Regularization strategy automatically determines the relative impor-
tance between gene expression and structural terms in the optimiza-
tion problem. This strategy leads to an optimal regularization factor
across different section distances, spot sizes, extent of distortions, and
data quality such as level of diffusion. Conditional Gradient34 is adop-
ted as optimizer, which updates anchors iteratively towards higher
expression and structural similarity with each iteration. The efficacy of
Conditional Gradient has been demonstrated through its convergence
to a local optimal point40, thereby ensuring the robustness and effec-
tiveness of our approach.

(3) Rigid registration by Procrustes Analysis41. After filtering out
anchors with relatively low probabilities, the optimal transformation
and rotation of each section are analytically solved through Procrustes
Analysis,whichminimizes summed spatial distances of spots anchored
to each other. With the transformation and rotation applied, sections
are positionally aligned.

(4) Elastic registration guided by anchors. Based on rigid regis-
tration result and anchors solved by FGW OT, elastic registration is
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implemented through the process including elastic field inference, 2D
Gaussian denoising, and bi-sectional fields application. Based on each
rigidly registered section, elastic fields is inferred leveraging the
location difference between its own spots and its anchored spots on
anterior and posterior neighbor sections. An elastic field is a 2D dis-
placement distribution, describing how displacement values are

distributed across different locations. Making use of continuity of
deformation at local scales, 2D Gaussian Denoising convolutes all over
the fields to reduce noises. With denoised fields, our designed Bi-
sectional Fields Application corrects each section’s deformation
according to its fields calculated with anterior and posterior neighbor
sections. The bi-sectional correctionmethod ismathematically proved
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to approximately recover each section’s spatial profile to its
original state.

Enhancement of anchor retrieval accuracy through distributive
constraints
As was unfolded, ST-GEARS is an algorithm flow jointly constituted of
probabilistic anchor computation and spatial information recovery.
Hence, to validate the effectivenessof ourmethod anddemonstrate its
underlying design philosophy, we conducted comprehensive studies
on the two counterparts using real-world data. To begin, we utilized
the DLPFC dataset35 to study our anchors retrieving accuracy with
emphasis on the effect of Distributive Constraints design.

To assess the effects of Distributive Constraints on anchor
accuracy, we compared ST-GEARS with and without this setting, and
with other constraints involving methods including PASTE, PASTE2
and SLAT. We investigated constraint values assigned by these
methods, as well as their solved number of anchors and maximum
anchor probability of each spot. Furthermore, we examined the
annotation types that were considered connected based on the
computed anchors to assess accuracy of anchors. Among the meth-
ods we compared, ST-GEARSwithDistributive Constraints was found
to assign different constraint values to spots within different neuron
layers, while the others assigned uniform constraints to all layers
(Fig. 2a, Supplementary Fig. 1). The results of ST-GEARS showed that
both number of anchors and the anchors’maximumprobabilities for
each spot were lower in Layer 2 and Layer 4 compared to the thicker
layers. However, this pattern was not observed in methods without
Distributive Constraints setting (Fig. 2a, Supplementary Fig. 1). To
illustrate the impact of this strategy on anchor accuracy, we tagged
each spot with annotation of its connected spot by anchor with
highest probability. We then compared this result to the tagged
spot’s original annotation (Fig. 2a, Supplementary Fig. 1). Under
Distributive Constraints, ST-GEARS achieved a significantly higher
proximity between annotations compared to PASTE and our method
without Distributive Constraints. PASTE2 also led to approximate
annotations, but it anchored multiple spots to spots from neigh-
boring layers, particularly those near layer boundaries. SLAT also
mapped multiple spots to spots from different tissue layers, parti-
cularly of spots located on layer 2, 4 and 6.

To evaluate the precision of anchors, we conducted a comparison
with the Mapping accuracy index introduced by PASTE27. This index
measures the weighted percentage

P
i,j,lðiÞ= lðjÞ πij of anchors that con-

nect spots with same annotation. As a result, ST-GEARS outperformed
PASTE2 and SLAT, and reached a score that was over 0.5 (out of 1)
higher than both PASTE and our method without Distributive Con-
straints (Fig. 2a, b, Supplementary Fig. 1).

To uncover the reasons behind the aforementioned phenomena,
as the functional area in between thicker neocortical layers, thinner
neocortical layershave comparable transcriptomic similaritywith their
adjacent layers in gene expression, than with its own annotation
type1,35. This implies that, in contrast to thicker layers, thinner layers
tend to introduce more disturbances during anchor computation.
However, the Distributive Constraints imposed suppression on these

annotation types by assigning a smaller sum of probability to each of
their spots. The suppression was reflected in above results where each
spot in Layer 2 and Layer 4 has fewer assigned anchors and a lower
maximum probability (Fig. 2a, Supplementary Fig. 1). Further analysis
on all spots in the DLPFC reveals that a certain percentage of spots
were suppressed in anchor generation due to the Distributive Con-
straints (Fig. 2c, Supplementary Fig. 2).

Recovery of in vivo shape profile through elastic registration
We then utilized Drosophila larva data to investigate the spatial profile
recovery effect of ST-GEARS, with an emphasis on our innovated
elastic registration. We first applied rigid registration to Drosophila
larva sections and observed a visually aligned configuration of indivi-
dual sections (Supplementary Fig. 3). By further mapping cell anno-
tations back to their previous sections, according to the strongest
anchors of each spot, the projected annotations are visually in match
with original ones (Supplementary Fig. 4). The accuracy of the map-
ping matching between annotations was quantified by Mapping
accuracy (Supplementary Fig. 5). The above findings validated that ST-
GEARS produced reliable anchors and accurately aligned sections
through rigid registration. However, when stacking the sections
together, we observed an inconsistency on the edge of lateral cross-
section of the rigid result (Supplementary Fig. 6). This inconsistency
doesn’t conform to the knowledge of intra-tissue and overall structural
continuity of Drosophila larvae.

After applying elastic registration to the rigidly-aligned larva, we
observed a notable improvement in the continuity of the cross section
above, indicating a closer-to-real spatial information being retrieved. To
further understand the effect of elastic operation on the dataset, we
compared the changes in area of the complete body and three indivi-
dual tissues (trachea, central nervous system (CNS), and fat body) on all
sections. We observed an enhanced smoothness in the curves of
elastically registered sections, which aligns with the continuous
morphology of the larva as expected by theoretical knowledge. To
quantify the smoothing effect, we calculated Scale-independent
Standard Deviation of Differences (SI � STD� DI = STDðfsi � si�1 : i 2
½1,2,:::,I� 1�gÞ=jmeanðfsi � si�1 : i 2 ½1,2,:::,I� 1�gÞj) onto the curves,
which measures the smoothness of area changes along the sectioning
direction (Fig. 3a and Methods). A decrease of SI-STD-DI on all tissues
and the body provided empirical evidence for the improved smooth-
ness. To further investigate the recovery of internal structures, we
introduced Mean Structural Similarity (MSSIM). MSSIM takes structu-
rally consistent sections as input, and measures pairwise internal simi-
larity of reconstructed result using annotations or clustering
information (Supplementary Fig. 7). (See Methods for details). An
improved MSSIM was noticed on all 4 sections, indicating that elastic
registration further recovers internal geospatial continuity on basis of
rigid operation(Fig. 3b). By comparing registration effect of individual
sections, we also observed that the elastic process successfully rectified
a bending flaw along the edge of the third section, (Fig. 3c). The shape
fixing highlighted that ST-GEARS not only yielded a more structurally
consistent 3D volume, but also provided a more accurate morphology
for single sections. The improved smoothness, the recovered structural

Fig. 1 | Three-Dimensional (3D) Spatial Transcriptomics (ST) Geospatial profile
recovery with ST-GEARS. a The automatic pipeline of ST-GEARS which recovers
ST-GEARS 3D in vivo spatial information by ordered steps including Fused Gromov
Wasserstein (FGW) Optimal Transport (OT) problem parameter computing, pro-
blem formulating and solving which outputs probabilistic anchors across sections,
rigid registration through Procrustes Analysis which solves optimal positional
alignment using the anchors, and finally elastic registration. The input of the
method is Unique molecular identifier (UMI) counts and location of each spot
measured by ST technology, along with their annotations or cross-section clus-
tering result. And the output of the method is recovered 3D in vivo spatial infor-
mation of the experimented tissue, or sample. b FGW OT problem parameter

computing, which assigns nonuniform weights to spots in preparation for future
problem formulating, based on cross-sectional similarity of annotation types or
clusters. c FGWOT problem formulating, whose setting aims to solve probabilistic
anchors joining spots with highest in vivo proximity, through optimizing the
combination of gene expression and structural similarity34. FGW OT problem sol-
ving, which is implementedbasedonConditional Gradient (CG)method, leading to
retrieved probabilistic anchors. d Elastic registration, which utilizes the anchors
again to compute and denoise distortion fields which guides the elimination of
distortions, then applies the fields bi-sectionally to positionally aligned sections,
leading to the recovered 3D in vivo spatial information.
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continuity, and the shape fixing collectively demonstrate that elastic
registration effectively recovers geospatial profile.

With elastic process validated and applied onto rigid registration
result, the recovery of spatial information was completed. Stacking
individual sections of the elastic result, a complete geospatial profile of
the larva was generated (Supplementary Fig. 8), visualizing the ST-
GEARS’ ability of in vivo spatial information recovery.

Application to sagittal sections of Mouse hippocampus
After validating the component phases of ST-GEARS, we proceeded to
apply the method to multiple real-world problems to recover geos-
patial profiles. We first focused on two sagittal sections of Mouse
hippocampus36 (Supplementary Fig. 9) that were 10μm apart,
accounting for 1–2 layers of Cornu Ammonis (CA) 1 neurons42. Con-
sidering the proximity of these sections, we assumed no structural
differences between them.

To compare the differences of registration effect among meth-
ods, we extracted CA fields and dentate gyrus (DG) beads (Supple-
mentary Fig. 10), then stacked the two sections for a more obvious
contrast (Fig. 4a). PASTE2 failed in performing the registration, leaving
the sections unaligned. By GPSA, the sections’ positions were aligned,
yet the 2nd section were squeezed into a narrower region than first
one, leading to a contradiction of region’s location. The ‘narrowing’
phenomena may be caused by the overfitting of GPSA model on gene
expression similarity, since it doesn’t involve structural similarity
between registered sections in loss function. The scale on horizontal
and vertical axis was distorted due to the equal scale range strategy
adopted inGPSA’s preprocessing. STalign alsomisaligned the sections,
leaving an obvious angle between two slices in registration result. This
may be due to the method’s processing of ST data into images which
completely relies on gene expression abundance to decide pixel
intensities. On the sagittal section of Mouse hippocampus, the
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Fig. 2 | Anchors generatedby ST-GEARSand their accuracy study. a (from left to
right) 1st and 2nd human dorsolateral prefrontal cortex (DLPFC) section of patient
#3 by Maynard et al.35 with their provided annotations and our anchors showcase,
(of the same section pair) probabilistic constraints settings in Optimal Transport
(OT) problem formulating, no. of anchors computed on each spot, max. anchor
probability value computed of each spot, and annotation type mapped back to
spots through computed anchors; (from top to bottom) respectively by PASTE,
PASTE2, SLAT, ours without distributive constraints setting, and ours. The dis-
tinction of different annotation types on the 1st section is marked by dotted lines.

Mapping accuracy is used tomeasure accuracy of anchors and ismarked alongside
respective annotation type mapping visualizations. bMapping accuracy measured
on anchors of sections pairs used in (b) by PASTE, PASTE2, SLAT, and ST-GEARS.
c Comparison of no. of anchors histograms between ST-GEARS and ST-GEARS
without distributive constraints, of sections pairs of 1st and 2nd, 2nd and 3rd, and
3rd and4th sections. The Probability Density Function (PDF) estimated byGaussian
kernel was plotted in dotted lines with the same color of histograms, to highlight
the distribution differences. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-51935-0

Nature Communications |         (2024) 15:7806 5

www.nature.com/naturecommunications


SI-STD-DI = 52.49

SI-STD-DI = 19.74

SI-STD-DI = 3.36
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Elastic 
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Fig. 3 | Distortion correction effect by elastic registration of ST-GEARS. a A
comparison of area changes of 3 tissues and complete body of Drosophila Larva,
between result of rigid registration and result of elastic registration appended to
rigid registration. The areas are calculated based on recovered spot position of
different tissues along cross-sectioning direction. Standard Deviation of Differ-
ences (SI-STD-DI) quantifying the smoothness is marked alongside each curve. b A
comparison of structural accuracy, measured by Mean Structural Similarity
(MSSIM), of selected section pairs from Drosophila Larva (L3), between result of

rigid registration only and result of elastic registration appended to rigid regis-
tration. The chosen sectionpairs are the structurally consistent ones. cComparison
of individual sections recoveredby rigid registrationonly andbyelastic registration
appended to rigid registration, of 1st to 5th section of Drosophila Larva (L3). Shape
correction of bended area in the 3rd section, and increased cross-sectional con-
sistency on the 4th and 5th section were highlighted by blue arrows. Source data
are provided as a Source Data file.
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abundance difference between regions may not provide sufficient
structural information required by registration. In the comparison
between PASTE and ST-GEARS, our method demonstrates a more
accurate centerline overlapping of CA fields and DG compared to
PASTE. This indicated an enhanced recovery of spatial structure con-
sistency and an improved registration effect. To quantitatively evalu-
ate these findings, we utilized the MSSIM index as a measure of
structural consistency and compared it among PASTE, PASTE2, GPSA,
STalign and ST-GEARS (Fig. 4b). Consistent with the results of cen-
terline, ST-GEARS achieved a higher MSSIM score than GPSA and
PASTE, surpassing PASTE2 and STalign by >0.2 out of 1. By comparing
memory efficiency across all methods, ST-GEARS and PASTE used
~1 GB less memory than PASTE2, GPSA and STalign, and the peak
memory across ST-GEARS and PASTE was almost the same (Supple-
mentary Fig. 11). In perspective of time efficiency, registration utilizing
ST-GEARS, STalign, GPSA and PASTE was much faster than PASTE2.

To understand reasons behind our enhancement, we thoroughly
examined the anchors generated by PASTE, PASTE2 and ST-GEARS, as
well as the effects of our elastic registration. By mapping cluster
informationof the 2nd section to the 1st, and the 1st to the 2nd through
anchors, we found correspondences between the projected and ori-
ginal annotations (Supplementary Fig. 12). Accordingly, our Mapping
accuracy was over 0.25 higher than PASTE and over 0.45 than PASTE2
(Fig. 4a), indicating our exceptional anchor accuracy. To understand
and further substantiate this advantage, we visualized the probabilistic
constraints and its resulted anchors probabilities (Supplementary
Fig. 13a). It is worth noting that ST-GEARS implemented Distributive
Constraints, in contrast to the uniformdistributions used by PASTE. As
a result, a certain percentage of spots were found to be suppressed in
anchors connection by ST-GEARS (Supplementary Fig. 13b) compared
to PASTE, leaving the registration to rely more on spots with higher
cross-sectional similarity and less computational disturbances, and

hence lead to a higher anchor accuracy. We excluded Distributive
Constraints from ST-GEARS, and noticed an obvious decrease of
mapping accuracy on the hippocampus dataset (Supplementary
Fig. 14), indicating the contribution of Distributive Constraints on
anchors accuracy. In the study of elastic effect, we found an increased
overlapping of centerlines by elastic registration than by rigid opera-
tion only when overlapping CA fields and DG (Fig. 4b). Quantitively by
MSSIM, the cross-sectional similarity was found to be increased by
elastic registration (Supplementary Fig. 15). These findings suggest
that the combination of Distributive Constraints and elastic process
contributed to the enhanced registration of the Mouse hippocampus.

To explore the potential effect of impact of our registration on
downstream analysis, we extracted region-specific annotation types
from the sections, and analyzed their overlapping through stacking
registered sections together (Fig. 4c). In all annotation types including
DG, Neurogenesis, subiculum, CA1, CA2 and CA3, the distribution
regions from both sections were nearly identical. The overlapping
result unveils that ST-GEARS integrated the spatial profile of same cell
subpopulations, enabling a convenient and accurate downstream
analysis of multiple sections.

Application to 3D reconstruction of Drosophila embryo
Besides tissue level registration ofMousehippocampus, to evaluate the
performance of ST-GEARS in reconstructing individual with multiple
sections, we further tested it on a Drosophila embryo. The tran-
scriptomics of embryo was measured by Stereo-seq, with 7 μm cross-
sectioning distance22. By quantifying the registration effect of spatial
information recovery and comparing it to PASTE, PASTE2, GPSA and
STalign, we found that ST-GEARS achieved the highest MSSIM in five
out of the six structurally consistent pairs (Fig. 5a). On the pair where
ST-GEARS did not result in highest MSSIM, it surpassed PASTE, and
achieved a similar score to PASTE2. By comparing area changes with

Fig. 4 | Registration ofMouse hippocampus, respectively by PASTE, PASTE2,
GPSA, STalign and ST-GEARS. a Stacked projections of Cornu Ammonis (CA)
fields and dentate gyrus (DG), of pre-registered and registered result of Mouse
hippocampus sagittal sections with 10 µmdistance, respectively by PASTE, PASTE2,
GPSA, STalign and ST-GEARS. b A comparison of bothMSSIMmeasuring structural
accuracy and Mapping accuracy measuring anchor accuracy of the 2 registered

sections, across PASTE, PASTE2, GPSA, STalign and ST-GEARS. c Stacked projec-
tions of region-specific annotation types including DG, Neurogenesis, subiculum,
CA1, CA2 and CA3, registered by ST-GEARS. Each column highlights the stacked
projection of a single annotation type. Source data are provided as a Source
Data file.
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Fig. 5 | Three-Dimensional (3D) reconstruction of Drosophila Embryo, respec-
tively by PASTE, PASTE2, GPSA, STalign and ST-GEARS. aA comparison ofMean
Structural Similarity (MSSIM) measuring structural similarity, of section pairs that
are structurally consistent from Drosophila Embryo (E14-16h), between recon-
struction results of PASTE, PASTE2, GPSA, STalign and ST-GEARS. b A comparison
of area changes of 3 tissues and complete body ofDrosophila Embryo, along cross-
sectioning direction, between reconstruction result of PASTE, PASTE2, GPSA,
STalign and ST-GEARS. Standard Deviation of Differences (SI-STD-DI) which mea-
sures structural consistency is marked alongside each curve to quantify the
smoothness. The smoothness difference of ST-GEARS compared to PASTE, PASTE2
and STalign are highlighted by orange rectangles. c Reconstructed individual sec-
tions with recovered spatial location of each spot. In result of PASTE, the incorrect
flipping on the 15th section was highlighted in orange. In result of PASTE2, gradual
rotations were marked by the 1st, 5th, 9th, 13th and 16th sections’ approximate

symmetry axis whereas symmetry axis of the 1st section was replicated onto the
16th for angle comparison. In result of GPSA, mistakenly distorted sections were
marked by purple arrows. In result of STalign, the incorrect flipping on the 13th
section was highlighted in orange. In result of ST-GEARS, the fix of dissecting area
on the 15th section wasmarked by a blue arrow. d Dorsal view of 3D reconstructed
Drosophila embryo by PASTE, PASTE2, GPSA, STalign and ST-GEARS. The inaccu-
rate regionalization of midgut was circled and pointed with arrow in orange. The
resulted extruding part of single section by PASTE2was circled and pointed in blue.
eMapping accuracyof all sectionpairs by PASTE, PASTE2 andST-GEARS. fBydorsal
view, regionalization of marker gene Cpr56F and Osi7 by PASTE, PASTE2, GPSA,
STalign and ST-GEARS, and their comparison with hybridization result from Ber-
keley Drosophila Genome Project (BDGP) database. The gathering expression
regions were highlighted by dotted lines. Source data are provided as a Source
Data file.
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SI-STD-DI quantification of the complete section, and three individual
tissues including epidermis, midgut and foregut, ST-GEARS yielded
higher smoothness on all regions than all other approaches, both
visually and quantitatively (Fig. 5b).

To compare the reconstruction effect, we studied both registered
individual section, and reconstructed 3D volume. Among themethods
compared, PASTE produced a wrong flipping on the 15th section along
A-P axis (Fig. 5c). Stacking sections back to 3D and investigating on
dorsal view, the wrong flipping caused a false regionalization of fore-
gut circled in orange (Fig. 5d). Along the first to last section registered
by PASTE2, a gradual rotation was witnessed (Fig. 5c), leading to over
20 degrees of angular misalignment between the first and the last
section. Similar to PASTE, this misalignment also caused the wrong
regionalization of foregut in 3D map (Fig. 4d). Equally induced by the
rotation, sections were found to extrude in the 3D result circled in
blue, breaking the round overall morphology of the embryo. GPSA
caused false distortion of 8 out of 16 sections as pointed by purple
arrows (Fig. 5c) and the stacked sections formed a dorsal view of an
isolated circle and an inner region (Fig. 5d). The phenomena may be
due to its overfitting onto expressions, which is caused by the con-
tradiction between its hypothesis of consistent readout across sec-
tions, and the large readout variation across 16 sections in this
application. Similar to PASTE, STalign also produced a wrong flipping,
on the 13th section along A-P axis (Fig. 5c). Stacking the projections
back to 3D, amistaken regionalization of foregut, caused by the wrong
flipping, was circled in orange (Fig. 5d). In contrast, ST-GEARS avoided
all of these mistakes in its results (Fig. 5c). From the perspective of
individual section profiles, noticeably in the 15th section, we observed a
significant reduction in the dissecting region between two parallel
lines, indicating the successful fixation of flaws in the session. By
comparing time usage across all methods, ST-GEARS achieved the 2nd
lowest time consumption in registration (Supplementary Fig. 11). In
terms of memory consumption, ST-GEARS, PASTE and STalign used
much less memory than PASTE2 and GPSA. The three most memory
efficient methods used almost identity peak memory, with the value
fluctuation of <7%.

To comprehend the rationale behind our improvement, we ana-
lyzed the anchors generated by the three methods and the impact of
our elastic registration. In the investigation of anchor accuracy, we
discovered that ST-GEARS achieves the highest mapping accuracy
among all section pairs (Fig. 5e), suggesting its advanced ability to
generate precise anchors, which forms the basis for precise spatial
profile recovery. To understand this advancement, probabilistic con-
straints and its resulted anchors distributions (Supplementary Fig. 16,
Supplementary Fig. 17) were studied. With Distributive Constraints
(Supplementary Fig. 16a), ST-GEARS generated different maximum
probabilities on different annotation types (Supplementary Fig. 16b),
which indicates that annotation types with higher cross-sectional
consistencywereprioritized in anchor generation. This selection led to
reduced computational disturbances, and hence higher accuracy of
anchors. We also compared anchor accuracy with and without Dis-
tributive Constraints adopted, and noticed an increase of mapping
accuracy on each pair of sections (Supplementary Fig. 18). In final
registration result, ST-GEARSwithoutDistributive Constraints failed to
fix the experimental flawon the 15th section (Supplementary Fig. 19), in
contrast to effect upon the setting adopted (Fig. 5c). Above findings
validate the contributive effect of Distributive Constraints in our
method. In study of elastic registration in shape smoothness, we wit-
nessed an increased level of smoothness of tissue epidermis, foregut,
and midgut, as well as the complete section, through area changes
quantified by SI-STD-DI index (Supplementary Fig. 20). In internal
structure aspect, an increased MSSIM of structural consistent pairs
were noticed (Supplementary Fig. 21). An experimental flaw on the 15th

section was also fixed by elastic registration (Supplementary Fig. 22).
Abovefindings point that the enhancement of registration accuracyon

Drosophila embryowas induced byDistributive Constraints and elastic
process.

By mapping spots back to 3D space, we further investigated the
effect of different method on downstream analysis, in the perspective
of genes expression (Fig. 5f). Cpr56F and Osi7 were selected as marker
genes, which were found to respectively highly express in foregut, and
foregut plus epidermis region22. InvestigatingCpr56F expression byST-
GEARS fromdorsal view,wenoticed threehighly expressing regions, at
anterior end, front region, and posterior end of the embryo. The
finding matches the hybridization result of stage 13-16 Drosophila
embryo extracted from Berkeley Drosophila Genome Project (BDGP)
database. In contrast, none of PASTE, PASTE2, GPSA and STalign pre-
sented high expression at all three locations. When analyzing the dis-
tribution of Osi7 by PASTE, PASTE2 and STalign, we noticed a sharp
decrease in expression from inner region to the outer layer marked by
purple arrows, contradicting the prior knowledgeof high expression in
the epidermis. This is probably because PASTE and PASTE2 do not
consider distortion correction aspart of theirmethods, leaving section
edges un-coincided and marker genes not obviously highly expressed
on the outermost region. Though involving distortion correction,
STalign lost certain amount of structural information by transforming
STdata to image utilizingonly information of regional gene expression
abundance. The registration did not adequately correct distortion
without support of enough structural messages. Similarly, PASTE2
failed to capture expression in outer layers and instead revealed a high
expression in one inter-connected area, which did not correspond to
the separate expression regions observed in hybridization result. No
spatial pattern was witnessed when analyzing distribution of Osi7 by
GPSA, which forms an obvious contrast to its hybridization evidence.
Comparably, none of the violations was shown in the result of ST-
GEARS. The comparison of spatial distribution indicated our potential
capability to better enhance the process of downstream gene-related
analysis.

Application to Mouse brain reconstruction
The design of 3D experiments involves various levels of sectioning
distances22,36,37. To further investigate the applicability of ST-GEARS on
STdatawith larger slice intervals, we applied themethod to a complete
Mouse brain hemisphere dataset, which consists of 40 coronal sections
(Supplementary Fig. 23a), with a sectioning distance of 200μm37. The
transcriptomics data was measured by BARseq, which includes
sequencing data and its cross-modal histology images. Each observa-
tion represents captured transcriptomics surrounded by the boundary
of a cell.

Through respectively applying PASTE, PASTE2, GPSA, STalign
and ST-GEARS onto the dataset, we observed multiple misaligned
sections produced by approaches including PASTE, PASTE2, GPSA
and STalign (Supplementary Fig. 23b, Supplementary Fig. 23c, Sup-
plementary Fig. 23d, Fig. 6a). In PASTE, these misalignments include
2 sections with ~ 180° angular misalignment (Supplementary
Fig. 23b). By PASTE2, 4 rotational misalignments and 8 positional
misalignments were noticed (Supplementary Fig. 23d). By GPSA,
12 sections were observed to be rotationally misaligned, and 3 sec-
tions were mistakenly distorted (Supplementary Fig. 23b), probably
due to its overfitting onto expressions discussed in analysis of Dro-
sophila embryo. The scale on horizontal and vertical axis was dis-
torted maybe due to the similar reason analyzed in Mouse
hippocampus. And by STalign, 7 rotational misalignments were gen-
erated (Supplementary Fig. 23e). As a clear contrast, our algorithm
correctly aligned all 40 sections with 200μm intervals (Supplemen-
tary Fig. 23f). Tomore accurately assess the result of our registration,
we employed the direction of the cutting lines induced during
tissue processing37, and compared the consistency of tilt angles of
these lines in the 20th, 25th, 26th, 27th, 33rd, 34th and 37th slices
where these lines are visible. Notably, neither visual angle differences
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nor cutting line curving were observed, indicating that the sections
were properly aligned by ST-GEARS (Fig. 6a, Supplementary Fig. 23f).
To quantify the registration accuracy in aspect of structural con-
tinuity, we calculated MSSIM scores of 11 section pairs that are
structural consistent (Fig. 6b). Consistent with the visual observa-
tions, PASTE2 presented a much larger score range than other

methods, which reflects its instability across sections in this dataset,
and GPSA exhibited the lowest median MSSIM score indicating its
suboptimal average performance. By comparison, PASTE yielded a
higher median score and a smaller variation, while ST-GEARS resulted
in the highest median score and the smallest variation among all
methods. In terms of computational efficiency, ST-GEARS achieved
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the 2nd lowest time consumption and lowest peak memory con-
sumption across all methods (Supplementary Fig. 11).

To understand the reasons behind our progress, we examined
anchor accuracy changes with regularization factors during ST-GEARS
computation (Supplementary Fig. 24). Out of 39 section pairs, we
observed a change in mapping accuracy >0.1 (out of 1) in 12 pairs. By
Self-adaptive Regularization which was designed to face varying data
characteristics which also includes varying section distances, regular-
ization factor that leads to optimal mapping accuracy was selected,
leading to an increased anchors accuracy in the 12 section pairs.
Notably, among these 12 pairs, pairs 29th & 30th, 31st & 32nd and 32nd
& 33rd were correctly aligned by ST-GEARS but misaligned by PASTE,
which doesn’t adopt any self-adaptive regularization strategy.

After validating the registration result, we investigated the
recovered cell-types’ distribution in the 3D space to assess the effec-
tiveness of the reconstruction and its impact on further analysis. We
observed that the completemorphology of hemispherewas recovered
by ST-GEARS, with clear distinction of different tissues on perspective,
lateral and anterior views (Fig. 6c). We further studied the distribution
of separate annotation types within cortex layers and found that 3D
regionalization of each annotation type was recovered by ST-GEARS
(Fig. 6d). The reconstructed result indicated the adaptability of ST-
GEARS across various scales of sectioning intervals, and its applic-
ability on both bin-level, and cell-level datasets on which histology
information is incorporated.

Discussion
We introduce ST-GEARS, a 3D geospatial profile recovery approach for
ST experiments. Leveraging the formulation of FGW OT, ST-GEARS
utilizes both gene expression and structural similarities to retrieve
cross-sectional mappings of spots with same in vivo planar coordi-
nates, referred to as ‘anchors’. To further enhance accuracy, it uses our
innovated Distributive Constraints to enhance the accuracy. Then it
rigidly aligns sections utilizing the anchors, before finally eliminating
section distortions using Gaussian-denoised Elastic Fields and its Bi-
sectional Application.

We validate counterpart of ST-GEARS including anchors retrieval
and elastic registration, respectively on DLPFC and Drosophila larva
dataset. In the validation of anchors retrieval, through Mapping
accuracy evaluation of retrieved anchors, ST-GEARS consistently out-
performed PASTE and PASTE2 across all section pairs. We show Dis-
tributive Constraints as reasons behind its distinguished performance,
which effectively suppressed the generation of anchors between spot
groups with low cross-sectional similarity while enhances their gen-
eration among groups with higher similarity. To investigate the
effectiveness of the elastic registration process,we evaluate the effects
of tissue area changes and cross-sectional similarity using the Droso-
phila larvae dataset. Both smoother tissue area curves and higher
similarity observed between structurally consistent sections confirm
the efficacy of the elastic process of ST-GEARS.

We demonstrate ST-GEARS’s advanced accuracy of reconstruc-
tion compared to current approaches including PASTE, PASTE2 and
GPSA, and its positive impact on downstream analysis compared to
existing approaches. Our evaluation encompasses diverse application

cases, including registration of two adjacent sections of Mouse hip-
pocampus tissue measured by Slide-seq, reconstruction of 16 sections
of Drosophila embryo individual measured by Stereo-seq, and recon-
struction of a complete Mouse brain measured by BARseq, including
40 sections with sectioning interval as far as 200 μm. Among the
methods, registered result by ST-GEARS exhibited the highest intra-
structural consistency measured by MSSIM for two hippocampus
sections separated by a single layer of neurons. On 16 sections of a
Drosophila embryo individual, our method’s outstanding accuracy is
indicated by both MSSIM and smoothness of tissue area changes.
Importantly, ST-GEARS provides more reliable embryo morphology,
precise tissue regionalization, and accurate marker gene distribution
under hybridization evidence compared to existing approaches. This
suggests that ST-GEARS provides higher quality tissues, cells, and
genes information. On Mouse brain sections with large intervals of
200 μm, ST-GEARS avoided positional and angularmisalignments that
occur in result of PASTE and PASTE2. The improvement was quantified
by a higher MSSIM. Both hemisphere morphology and cortex layer
regionalization were reflected in the result of 3D reconstruction by ST-
GEARS. The successful representation of important structural and
functional features in the aforementioned studies collectively under-
scores ST-GEARS’ reliability and capability for advancing 3D down-
stream research, enablingmore comprehensive and insightful analysis
of complex biological systems.

To further enhance and extend our method, opportunities in
various aspects are anticipated to be explored. Firstly, algorithm
aspects including hyperparameter sensitivity and scalability can be
further explored for a more enhanced method performance. Though
recommended values are provided for two of its hyperparameters,
method performance is still affected by parameter values, raising the
potential issue of overfitting and sensitivity which can be further stu-
died. In scalability aspect, ST-GEARS introduces obvious computa-
tional cost increasement when dealing with large-scale datasets.
Though strategy of Granularity adjusting is innovated to down-grade
complexity, opportunity of improving robustness on increasing scale
of data is expected to be further explored. Secondly, tasks aimed at
improving data preprocessing, including but not limited to batch
effect removal and diffusion correction, are expected to be integrated
into ourmethod, considering their coupling property with registration
task itself: inaccuracies in input data introduce perturbations to
anchors optimization, while recovered spatial information of our
method may assist data quality enhancement by providing registered
sections. Thirdly, the ST-GEARS’ Distributive Constraint takes rough
grouping information as its input, which may potentially introduce
computational burden during the reconstruction process. To address
this, an automatic step is expected to be developed to reliably cluster
spots while maintaining computational efficiency of the overall pro-
cess. This step can be integrated into our method either as pre-
processing, or as a coupling task, similarly to our expectation of data
quality enhancement. Finally, we envision incorporating a wider scope
of anchors applications into our existing framework. such as infor-
mation integration of sections across time, across modalities and even
across species. With interpretability, robustness and accuracy pro-
vided by ST-GEARS, we anticipate its applications and extension in

Fig. 6 | Three-Dimensional (3D) reconstruction ofMouse Brain, respectively by
PASTE, PASTE2, GPSA, STalign and ST-GEARS. a Reconstructed individual sec-
tions with recovered spatial location of each spot from the 25th to 36th section.
Positional misalignments are marked by arrows of green, and angular misalign-
ments are marked by arrows of orange. Visible cutting lines by ST-GEARS are
marked by dotted lines. b A comparison of Mean Structural Similarity (MSSIM)
score of 11 section pairs that are structurally consistent, between result of PASTE,
PASTE2, GPSA, STalign and our method. The 11 biological replicates were studied,
which were derived from different closest section pairs with each section pair
representing smallest unit of study. Non control group was used as a MSSIM close

to 1 is assumed to the idealized similarity value of the structurally similar pairs,
hence a higherMSSIMvalue indicates higher reconstruction accuracy. The red lines
positions show median score; the box extends from the first quartile (Q1) to the
third quartile (Q3) of scores; the lower whisker is at the lowest datum above
Q1−0.5 * (Q3-Q1), and the upper whisker is at the highest datum below
Q3+0.5*(Q3-Q1); scores out of whiskers range aremarked by circles. c Perspective,
Lateral and Anterior view of reconstructed Mouse brain hemisphere. d Anterior
view of layer annotation types distribution of reconstructed Mouse brain hemi-
sphere. Source data are provided as a Source Data file.
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various areas of biological and medical research. We believe that our
method can help address a multitude of questions regarding growth
and development, disease mechanisms, and evolutionary processes.

Methods
FGW OT description
Fused Gromov Wasserstein (FGW) Optimal Transport (OT) is the
modeling of spot-wise or cell-wise similarity between two sections,
with the purpose of solving optimal mappings between the spots or
cells, with mappings also called ‘anchors’. By FGW OT, the optimal
group of mappings enables highest gene expression similarity
between mapped spots, at the same time keeping similar positions
relative to their located sections.

The required input of FGWOT includes genes expression, spot or
cell locations before registration, and constraint values which assigns
different weight to the optimization on different spots or cells. For
gene expression, we introduce A 2 RnA ,m for section A, to describe
normalized count of unique molecular identifiers (UMIs) of different
genes of each cell or spot, thereinto nA denotes number of spots in
slice A, and m denotes number of genes that are captured in both
sections. Similarly, we describe gene expression on section B as
B 2 RnB,m, with genes arranged in the same order as in A. For spot or
cell locations, we introduce XA 2 RnA ,2 to describe spots locations of
section A, with the 1st column storing horizontal coordinates and the
2nd storing vertical coordinates. Similarly, we have XB 2 RnB,2 to
describe spots locations in section B. Spots are arranged in the same
order in gene expression and location matrices. Constraint values are
discussed in section of Distributive Constraints.

FGW OT solves:

π =argminπ2Π a,bð Þhð1� αÞM2
AB +αL

2ðCA,CBÞ � π,πi
=argminπ2Πða,bÞðð1� αÞhM2

AB,πi+αhL2ðCA,CBÞ � π,πiÞ

s:t:
X
j

π i,j =W
ðAÞ
i ,

X
i

π i,j =W
ðBÞ
j ð1Þ

Thereinto, MAB 2 RnA ,nB describes the similarity of each pair of
spots respectively on section A and B, formulated as
MðABÞ

i,j =KLðAi,:,Bj,:Þ. Be noted that MðABÞ
i,j still indicates spot-wise simi-

larityMAB, with section codeABbeingmoved to superscript and added
parenthesis for clarity, since subscript location are taken by spot index
i, j. KL denotes Kullback-Leibler (KL) divergence43. CA 2 RnA ,nA

describes spot-wise distancewithin section A, withCðAÞ
i,j =disðXðAÞ

i,: ,X
ðAÞ
j,: Þ,

and dis denoting Euclidean distance measure. Be noted that XðAÞ
i,: and

XðAÞ
j,: still indicate spot locationsXA, with section codeAbeingmoved to

superscript and added parenthesis for clarity, since subscript location
are taken by spot index i and j. CðAÞ

i,j refers to spot-wise distance CA for
the same reason. Similarly, CB 2 RnB ,nB describes spot-wise distance of
section B. L 2 RnA ,nB ,nA ,nB defines the difference between all spot pair
distance respectively on section A and B, with Li,j,k,l = jCðAÞ

i,k � CðBÞ
j,l j. ⊗

denotes Kronecker product of two matrices; 〈,〉 denotes matrix
multiplication.

Adjacency matrix π 2 RðnA ,nBÞ to be optimized stores strength of
anchors between spots from the two sections, with row index repre-
senting spots on section A, and column index representing spots on
section B. Sum of elements of π is 1. With hM2

AB,πi, the similarity of
mapped spots are measured. With hL2ðCA,CBÞ×π,πi, similarity
between distance of spot pairs on section A, with its anchored spot
pairs on section B, ismeasured. hL2ðCAl,CBÞ � π,πi describes similarity
between spatial structures under the anchors’ connection. α ∈ [0,1]
denotes regularization factor, which specifies the relative importance
of structure similarity compared to expression similarity. WA and WB

are constraint values that are introduced in section of Distributive
Constraints.

With the formulation above, FGW OT solves optimal anchors
between the spots, or cells, which enables maximum weighted com-
bination of gene expression similarity and position similarity of map-
ped spots or cells.

Distributive constraints
As adopted by constraint values in FGWOT, we introduce Distributive
Constraints, to assign different emphasis to spots or cells in the opti-
mization. Distributive Constraints utilizes cell type component infor-
mation to differentiate the emphasis: if an annotation or cluster
express high similarity across sections, its corresponding spots or cells
will be placed relatively high sum of probability, and vice versa. With
higher sum of probability, more anchors and anchors with higher
strength are generated, while less anchors are produced on spots with
lower sumof probability. This operation leads registration to relymore
on expression-consistent regions of sections, hence largely enhancing
both accuracy of anchors and precision of following rigid and elastic
registration.

The required inputs of Distributive Constraints include GA 2 RnA

and GB 2 RnB , which store the grouping information such as annota-
tion type or cluster of each spot in section A andB.We then summarize
the repeated annotations or clusters from GA and GB, and put the
unique values in g 2 Rngroup . ngroup is the number of unique annotation
type or clusters. Then implemented in ST-GEARS, for each annotation
type or cluster gi, we calculate the average gene expression across
spots:

avgA = 1
jIA j 1nA

Ai2IA ,:

avgB =
1

jIBj 1nB
Bi2IB ,:

where

IA = i0 2 f1,2,:::,nAgjGðAÞ
i0 =gi

n o

IB = i0 2 f1,2,:::,nBgjGðBÞ
i0

=gi

n o

Be noted that GðAÞ
i0 and GðBÞ

i0 still indicate grouping information GA

and GB, with section code A and B being moved to superscript and
added parenthesis for clarity, since subscript location are taken by
spot index i′ and j′. And 1nA

and 1nB
are both row vectors of ones.

With average gene expression of each annotation type or cluster,
with the formofdistribution,wemeasure its difference across sections
by KL divergence. Then the calculated distance is mapped by logistic
kernel, to further emphasize differences between relatively consistent
annotations or clusters.

dis =KLðavgA,avgBÞ

dismap = f logisticðdisÞ, where f logistic xð Þ= 1
1 + e�x � 0:5. Putting scaler

value dis of each annotation or cluster together, we have a vector
DISmap 2 Rncelltype . Finally, we transform the distance to similarity, map
the similarity result back to each spot:

sim= � 1 ×DISmap

W rawðAÞ
fijCðAÞ

i = cig
= simi

W rawðBÞ
fijCðBÞ

i = cig
= simi

We further apply normalization on the result:

WA = 1
ΣW rawðAÞ ðW rawðAÞ �minðW rawðAÞÞ× 1nA

Þ
WB =

1
ΣW rawðBÞ ðW rawðBÞ �minðW rawðBÞÞ× 1nB

Þ

Article https://doi.org/10.1038/s41467-024-51935-0

Nature Communications |         (2024) 15:7806 12

www.nature.com/naturecommunications


WA and WB are constraints values applied in (1). Since the values
are computed based on similarity measure using cell composition
information, weight of FGW OT is automatically redistributed, with
higher emphasis on more consistent regions across sections, and less
emphasis on less consistent area. Enhanced anchor accuracy hence
registration accuracy is then achieved.

Self-adaptive regularization
In FGW OT formulation, a regularization factor is included to specify
the relative importance of structural similarity compared to expres-
sion similarity during optimization. ST-GEARS includes a self-adaptive
regularization method that determines the factor value, that induces
highest overall accuracy of anchors despite of varying situations.
Situations include but are not limited to section distances, spot sizes,
extent of distortions, and data quality such as level of diffusion.

By practice, our method respectively adopts factors on multiple
scales including 0.8, 0.4, 0.2, 0.1, 0.05, 0.025, 0.013, and 0.006. The
candidate values vary exponentially, for ST-GEARS to find the optimal
term regardless of scale differences between expression and structural
term in (1). The accuracy of each set of optimized anchors by every
regularization factor was evaluated, by measuring weighted percen-
tage

P
GðAÞ

i
=GðBÞ

j
π i,j of anchors that join spots with same annotation

types or clusters. Be noted that GðAÞ
i and GðBÞ

j still indicate grouping
information GA and GB, respectively, with section code A and B being
moved to superscript and added parenthesis for clarity, since sub-
script location are taken by spot index i and j. The regularization factor
value that achieves highest accuracy is then adopted by our method.

Elastic field inference
Finding spotswith highest probability. After rigid registration, elastic
fields are inferredbasedon the anchorswith thehighest probability for
each spot or cell. For elastic field to be applied on each section, it is
calculated using its anchors with closest sections, as well as spatial
coordinates of sections after rigid registration. Along cross-sectioning
order, each section in themiddle has two closest sections, respectively
on its anterior and posterior sides. Exceptionally, if a section is on
anterior or posterior end, it has only one closest section.

Specifically for a section in the middle with N spots, we calculate
IpreϵZ

N and InextϵZ
N which stores the mapped spots on anterior and

posterior neighbor section for each of its spots. The calculation takes
as input adjacencymatrix πpre, which stores anchors with the anterior
neighbor section output by FGW OT, and πnext storing anchors with
posterior section.

Inpre =argmaxiϵ 0,...,Npre�1f gπ preð Þ
:,n

Innext =argmaxjϵf0,:::,Nnext�1gπ
ðnextÞ
n,:

Be noted that π preð Þ
:,n andπðnextÞ

n,: still indicate adjacency matrix πpre

andπnext, with direction code pre and nextbeingmoved to superscript
and added parenthesis for clarity, since subscript location are taken by
spot index n.

Notably, not every spot in a selected section has its own anchored
spot, due to multiple strategies including distributive constraint and
anchors filtration, hence their corresponding element in Ipre and Inext
are null. For section located on posterior end, only Inext is applicable;
and for section located on anterior end, only Inpre is applicable.

Elastic field establishment. After specifying spots with highest
probability, ST-GEARS calculates location displacements between the
spots, then establishes elasticfields for each section. An elasticfield is a
2D displacement distribution, describing how displacement values are
distributed across different locations. And it is established to enable
ST-GEARS to benefit from further denoising functions to reduce elastic

operation outliers and improve elastic effect consistency across
regions.

For each section located in the middle, 4 elastic fields are gener-
ated. Two of those represent the section’s horizontal and vertical
displacement distribution compared to anterior neighbor section,
denoted as 2D matrix F(x_pre) and F(y_pre), while the other two represent
its horizontal and vertical displacement distribution compared to
posterior neighbor, denoted as F(x_next) and F(y_next). To initialize F(x_pre),
F(y_pre), F(x_next) and F(y_next) for the section, the shape of the matrix is first
decided. Its height denoted byHeight and width denoted byWidth are
calculated by gridding the spot locations using a fixed step.Height and
Width are shared across the 4 matrices:

Height = dðmaxiϵf0,:::,NgXi,0 �miniϵf0,:::,NgXi,0Þ=psizee
Width= dðmaxiϵf0,:::,NgXi,1 �miniϵf0,:::,NgXi,1Þ=psizee

For its input, X 2 RN,2 denotes spots location of current section
after rigid registration. For a single section, we prepare XðpreÞϵRN pre,2

and XðnextÞϵRN next,2 as spots location of its anterior and posterior
section after rigid alignment, respectively. psize represents average
distance between closest spot or cell centers, and it is to be input by
users. The matrix has no filled values to this step.

To fill in the fields, we first transform spot locations into the
coordinate system of field. With X shifted ϵRN,2 and X pixel ϵRN,2:

X shiftedi,: =Xi,: � ½miniϵf0,:::,NgXi,0,miniϵf0,:::,NgXi,1�T
X pixeli,j = dX shiftedi,j=psizee

We then calculate location displacements between each of its
spots and their anchored spots with highest probability, on both
anterior and posterior neighbors. With X corres ϵRN,2 and
X deltaϵRN,2:

X corresðpreÞn,: =XðpreÞ
Inpre,:

X corresðnextÞn,: =XðnextÞ
Innext,:

X delta preð Þ
n,: =X corresðpreÞn,: �Xn,:

X delta nextð Þ
n,: =X corresðnextÞn,: �Xn,:

With the spot locations in field coordinates and the displacement
values above, we fill in corresponding elements of the elastic field:

Fðx preÞ½X pixel�=X deltaðpreÞ:,0

Fðy preÞ½X pixel�=X deltaðpreÞ:,1

Fðx nextÞ½X pixel�=X deltaðnextÞ:,0

Fðy nextÞ½X pixel�=X deltaðnextÞ:,1 ð2Þ

By the end of Eqs. (2), 4 elastic fields for each section in themiddle
is established. However, some elements in the matrix are still empty,
because of absence of spots or cells located in the grid of location. To
address this problem, 2d nearest interpolationmethod44 was adopted,
which fills in every empty element, with the displacement value of its
neighboring elements:

Fðx preÞ = f interp gridðX pixel,X delta preð Þ
:,0 ,meshtransÞ

Fðy preÞ = f interp gridðX pixel,X delta preð Þ
:,1 ,meshtransÞ

Fðx nextÞ = f interp gridðX pixel,X deltaðnextÞ:,0 ,meshtransÞ
Fðy nextÞ = f interp gridðX pixel,X deltaðnextÞ:,1 ,meshtransÞ

thereintomeshtransϵN
ngrids × 2 denotes grid coordinates of the designed

field, with ngrids =Height ×Width. And finterp_grid denotes the nearest
interpolation method.
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For section located on posterior end, only F(x_next) and F(y_next) are
applicable; and for section located on anterior end, only F(x_pre) and
F(y_pre) are applicable.

2D Gaussian denoising
As caused by exerted force, the displacement or elastic field is
expected to have static or smoothly changing values across different
locations45–47. ST-GEARS makes use of this property, to smoothen the
field and to reduce errors in the field caused by any upper stream
process, such as raw data noises and inaccuracy in anchor computa-
tion. Gaussian filtering48,49 is adopted to implement the denoising,
similarly to image denoising processes50,51. Denoised elastic fields are
then generated.

It calculates weighted average across the neighboring region of
each element to replace its value:

Fðx preÞ = f gaussian f ilterðFðx preÞÞ
Fðy preÞ = f gaussian f ilterðFðy preÞÞ
Fðx nextÞ = f gaussian f ilterðFðx nextÞÞ
Fðy nextÞ = f gaussian f ilterðFðy nextÞÞ

where fgaussian_filter denotes the method of Gaussian filtering.

Bi-sectional fields application
Bi-sectional fields application plan. With elastic fields generated and
denoised, ST-GEARS uses the fields as a guidance to correct distortion
for each section. Through querying the elastic fields with spatial
location of each spot, thedisplacement to be implemented is returned.
For a section in the middle, its elastic fields calculated with both
anterior and posterior neighbor sections are queried, and guidance
provided by both anterior and posterior sections are applied on the
rigid aligned result, called ‘Bi-sectional Fields Application’. After the
application, the distortion of the section is corrected, and the elastic
registration result is generated.

Specifically, the denoised elastic fields are first queried, returning
the displacement to be implemented:

X deltaðpre f inalÞ
i,0 = F ðx preÞ

X ðpixelÞ
i,0

X deltaðpre f inalÞ
i,1 = F ðy preÞ

X ðpixelÞ
i,1

X deltaðnext f inalÞ
i,0 = F ðx nextÞ

X ðpixelÞ
i,0

X deltaðnext f inalÞ
i,1 = F ðy nextÞ

X ðpixelÞ
i,1

Next, average displacement returned by both anterior and pos-
terior sections are applied on the rigid registration result, leading to
final elastic registration result X final 2 RN,2:

X final =X+
1
2
X deltaðpre finalÞ +

1
2
X deltaðnext finalÞ

For section located on posterior end,

X final =X+X deltaðpre finalÞ

For section located on anterior end,

X final = X+X deltaðnext finalÞ

The validity of this plan is proved in the section: Proof of validity
of Bi-sectional Fields Application.

Proof of validity of Bi-sectional fields application. Bi-sectional Fields
Application accurately recovers the spatial profile beforedistortion, by

averaging and applying displacement value guided by both anterior
and posterior neighbor section. The effect is approvedmathematically
as following:

Take section A, B, and C as an example of a sequence of sections,
withXA, XB and XC denoting their spots’ spatial information after rigid
alignment, and XA_insitu, XB_insitu and XC_insitu denoting their in vivo
spatial information. The distortion occurred to the slices during
experiments are denoted as XA_dis, XB_dis and XC_dis.

According to Bi-sectional Fields Application, the corrected spatial
information is:

XB cor =XB +
1
2

XA � XB

� �
+
1
2

Xc � XB

� �

=
1
2
ðXA +XcÞ

Thereinto,

XA =XA insitu +XA dis

XC =XC insitu +XC dis

Hence,

XB cor =
1
2
XA insitu +

1
2
XC insitu +

1
2
ðXA dis +XC disÞ ð3Þ

Based on the in vivo morphological consistency across sections,
spatial information of section B can be approximated by an average of
information of A and C, written as

XB insitu =
1
2
ðXA insitu +XC insituÞ ð4Þ

Given that XA_dis and XC_dis can be seen as independent and
identically distributed sets of variables,

XA dis +XC dis =NðμABC,ΣABCÞ ð5Þ

where μABC is the universal mean, and ΣABC is the variance of the 2d
displacement information.

Inserting the terms (4) and (5) back to Eq. (3) gives

XB cor =XB insitu +
1
2
NðμABC,ΣABCÞ

=XBinsitu
+ o XBinsitu

� �

! XB insitu

indicating the proximity of corrected spatial information to in vivo
spatial information.

Evaluation metrix
We evaluated the accuracy of anchors by index of Mapping Accuracy,
and measured the reconstruction effect by MSSIM and SI-STD-DI, in
both elastic effect study and overall methodology comparison.

Mapping accuracy. Designed and adopted by PASTE27, Mapping
Accuracy calculates the weighted percentage of anchors joining spots
with same annotation.

Mapping Accuracy=
X

i,j,lðiÞ= lðjÞ
π ij

MSSIM index. MSSIMmeasures the accuracy of registration, based on
the assumption that in some sectioning positions, tissue morphology
remains almost consistent across slices. The method quantifies the
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accuracy, by measuring the similarity of annotation type distribution
of such section pairs.

To implement the quantification, first, structurally consistent
section pairs are selected among all sections arranged in sequence.

Next, on each section from the pair, transformation from indivi-
dual spots to a complete image is implemented, by gridding the rec-
tangular area that surrounds the tissue, and assigning each grid of a
value that represents the annotation type which occurs most fre-
quently in the grid. The resulted image describes the annotation type
distribution of the section.

Finally, similarity between each pair of images is measured, by
index of MSSIM52. The method generates a window with fixed size,
slides the window simultaneously on both images, and compares the
two framed parts by windows on their intensity, contrast, and struc-
tures. Among those, the intensity difference is measured by difference
of average pixel values, the contrast difference is measured by com-
paring variance of the two sets of framed pixel values, and the struc-
ture difference is measured by comparing their covariances. A
Structural Similarity of Images (SSIM) index is calculated for each

position of the window using SSIMðX ,Y Þ= ð2μxμyÞð2σxy + c2Þ
ðμ2

x +μ
2
y + c1Þðσ2

x + σ
2
y + c2Þ

, where μx

and μy denote average pixel values of the frames, σx and σy denote
variances of the frames, and σxydenotes covariances of the two frames.
c1 and c2 are constants to avoid 0 value of the divisor. Averaging the
SSIM value across all windows gives the final MSSIM result of the two
sections.

SI-STD-DI. SI-STD-DI measures smoothness of area changing across
sections along a fixed axis, by calculating the standard deviation of
area changes on each pair of adjacent sections and scale the result by
dividing it by average area.

SI� STD� DI = STDðfsi � si�1 : i 2 ½1,2,:::,I � 1�gÞ=
jmeanðfsi � si�1 : i 2 ½1,2,:::,I � 1�gÞj�

Software and code
Data analysis. All software used to analyze data in this study are open-
sourced Python packages, including anndata = 0.9.2, numpy = 1.22.4,
pandas = 1.4.3, scipy = 1.10.1, matplotlib = 3.5.2, k3d = 2.15.3.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this research were collected from published sources.
DLPFC data was obtained from the research: Transcriptome-scale
Spatial Gene Expression in the Human Dorsolateral Prefrontal Cortex,
with data downloading link of http://research.libd.org/spatialLIBD/
index.html; Drosophila embryo and Drosophila larva data were col-
lected from High-resolution 3d Spatiotemporal Transcriptomic Maps
of Developing Drosophila Embryos and Larvae, with the dataset link of
https://db.cngb.org/stomics/datasets/STDS0000060. Mouse brain
data was collected from research: Modular cell type organization of
cortical areas revealed by in vivo sequencing. The download link is:
https://data.mendeley.com/datasets/8bhhk7c5n9/1. All datasets were
generated on Spatial Transcriptomics platform, with DLPFC data

generated by Visium technology of 10x Genomics, Mouse brain data
generated by BARseq of Cold Spring Harbor Laboratory, while Droso-
phila embryo and larva generated by Stereo-seq technology of
BGI. Source data are provided with this paper.

Code availability
The methods of ST-GEARS is packaged, and distributed as an open-
source, publicly available repository at https://github.com/STOmics/
ST-GEARS53.
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